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1. INTRODUCTION

Jumping versions of language-defining rewriting sys-
tems, such as grammars and automata, represent a
brand new trend in formal language theory (see [16,
10, 4, 9, 2, 5, 8, 15, 17]. In essence, they work just
like classical rewriting systems except that they work
on strings discontinuously. That is, they apply a pro-
duction so they erase an occurrence of its left-hand side
in the rewritten string while placing the right-hand side
anywhere in the string, so the position of the insertion
may occur far away from the position of the erasure.
The present paper contributes to this trend by investi-
gating the generative power of jumping pure grammars.

Recall that the notion of a pure grammar G
represents a language-generating rewriting system
based upon an alphabet of symbols and a finite set
of productions (as opposed to the notion of a general
grammar, its alphabet of symbols is not divided
into the alphabet of terminals and the alphabet of
nonterminals). Each production represents a pair of the
form (x, y), where x and y are strings over the alphabet
of G. Customarily, (x, y) is written as x → y, where x
and y are referred to as the left-hand side and the right-
hand side of x→ y, respectively. Starting from a special
start string, G repeatedly rewrites strings according to
its productions, and the set of all strings obtained in
this way represents the language generated by G. In
a greater detail, G rewrites a string z according to
x → y so it (i) selects an occurrence of x in z, (ii)
erases it, and (iii) inserts y precisely at the position
of this erasure. More formally, let z = uxv, where u
and v are strings. By using x → y, G rewrites uxv
as uyv. Recall that pure grammars were introduced in
[6], and their properties are still intensively investigated
in language theory (see [1, 18]). Recently, regulated
versions of these grammars have been discussed, too

(see Chapter 5 in [3] and [12, 11]).
The notion of a jumping pure grammar—that is, the

key notion introduced in this paper—is conceptualized
just like that of a classical pure grammar; however, it
rewrites strings in a slightly different way. Consider G,
described above, as a jumping pure grammar. Let z and
x → y have the same meaning as above. G rewrites a
string z according to x → y so it performs (i) and (ii)
as described above, but during (iii), G can jump over
a portion of the rewritten string in either direction and
inserts y there. More formally, by using x → y, G
rewrites ucv as udv, where u, v, w, c, d are strings such
that either (a) c = xw and d = wy or (b) c = wx
and d = yw. Otherwise, it coincides with the standard
notion of a grammar.

The present paper compares the generative power of
classical and jumping versions of pure grammars. It
distinguishes between these grammars with and without
erasing productions. Apart from these sequential
versions of pure grammars, it also considers parallel
versions of classical and jumping pure grammars
represented by 0L grammars (see [20]). As a
result, the paper studies the mutual relations between
eight language families corresponding to the following
derivations modes (see Definition 2.1) performed
by pure grammars both with and without erasing
productions:

• classical sequential mode (s⇒);
• jumping sequential mode (j⇒);
• classical parallel mode (p⇒);
• jumping parallel mode (jp⇒).

In essence, the paper demonstrates that any version
of these grammars with erasing productions is stronger
than the same version without them. Furthermore, it
shows that almost all of the eight language families
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under considerations are pairwise incomparable–—that
is, any two families are not subfamilies of each other.

The rest of the paper is organized as follows.
Section 2 recalls all the terminology needed in this
paper and introduces a variety of jumping pure
grammars, illustrated by an example. Section 3
presents fundamental results achieved in this paper.
Section 4 closes all the study by summing up ten open
problems.

2. PRELIMINARIES AND DEFINITIONS

This paper assumes that the reader is familiar with
the basic notions of the formal language theory (see
[14, 21, 22]). Let A and B be two sets. By A ⊆ B, we
denote that A is included in B and by A 6⊆ B that A
is not included in B. A ⊂ B denotes proper (or strict)
inclusion. We say that A and B are incomparable iff
A 6⊆ B and B 6⊆ A. The cardinality of A is expressed
as card(A). For some n ≥ 0, An denotes the n-fold
Cartesian product of set A. By N, we denote the set of
all positive integers. Let I ⊂ N be a finite nonempty
set. Then, max I denotes a maximum of I. Let %
be a (binary) relation over X. By %i, %+ and %∗ are
denoted the ith power of %, for all i ≥ 0, the transitive
closure of % and the reflexive and transitive closure of
%, respectively. For x, y ∈ X, instead of (x, y) ∈ %,
we write x%y throughout. Set dom(%) = {x | x%y}.
Let Σ be an alphabet (finite nonempty set). Then, Σ∗

represents the free monoid generated by Σ under the
operation of concatenation, with ε as the unit of Σ∗.
Set Σ+ = Σ∗ − {ε}. For w ∈ Σ∗ and a ∈ Σ, #a(w)
denotes the number of occurrences of symbol a in w.
By substr(w), we denote a set of all substrings of w,
that is substr(w) = {x | w = uxv, u, x, v ∈ Σ∗}. The
length of w is denoted by |w|.

Let n ≥ 0. A set J ⊆ Nn is said to be linear if there
exist α, β1, β2, . . . , βm ∈ Nn,m ≥ 0 such that

J = {x | x = α+ k1β1 + k2β2 + · · ·+ kmβm,

ki ∈ N, 1 ≤ i ≤ m}.

If J is the union of a finite number of linear sets, we
say that J is semilinear. If Σ = {a1, a2, . . . , an} is an
alphabet, then for w ∈ Σ∗,

φ(w) = (#a1
(w),#a2

(w), . . . ,#an
(w))

denote the commutative (Parikh) image of w. For L ⊆
Σ∗, φ(L) = {φ(w) | w ∈ L} denote the commutative
(Parikh) map of L. We say that L is a semilinear
language if and only if φ(L) is a semilinear set. A
language family is semilinear if and only if it contains
only semilinear languages.

Let S be a finite set. Define a permutation in
the terms of bijective mappings as follows: Let I =
{1, 2, . . . , card(S)} be a set of indices. The set of all
permutations of elements of S, perm(S), is a set of
bijections from I to S such that p ∈ perm(S) iff p(i) ∈ S
for every i ∈ I.

An unrestricted grammar is a quadruple G =
(V,Σ, P, σ), where V is a total alphabet, Σ ⊆ V is
an alphabet of terminal symbols, P ⊆ V + × V ∗ is a
finite relation, and σ ∈ V + is the start string of G,
called axiom. Members of P are called productions.
Instead of (x, y) ∈ P , we write x → y throughout.
For brevity, we sometimes denote a production x → y
with a unique label r as r : x → y, and instead of
x → y ∈ P , we simply write r ∈ P . We say that
x → y is a unit production if x, y ∈ V . A relation
of direct derivation in G, denoted ⇒, is defined as
follows: If u, v, x, y ∈ V ∗ and x → y ∈ P , then
uxv ⇒ uyv. The language generated by G, denoted
L(G), is defined as L(G) = {w | σ ⇒∗ w,w ∈ Σ∗}. The
language generated by G is said to be context-free iff
for every production x→ y ∈ P , |x| = 1. Furthermore,
the language generated by G is said to be context-
sensitive iff for every derivation σ ⇒∗ z ⇒∗ w holds
|σ| ≤ |z| ≤ |w|, z ∈ V ∗. By CF and CS, we denote the
family of context-free and context-sensitive languages,
respectively.

Next, we give the formal definition of pure grammar
(see [13, 3]), together with six modes of derivations.

Definition 2.1. Let G = (V,Σ, P, σ) be an
unrestricted grammar. G is a pure grammar (PG
for short), if V = Σ. For brevity, we simplify
G = (V,Σ, P, σ) to G = (Σ, P, σ). We say that G
is propagating or without erasing productions iff for
every production x→ y ∈ P , y 6= ε.

Next, we introduce the six modes of direct derivation
steps as derivation relations over Σ∗. Let u, v ∈ Σ∗.
The six derivation relations are defined as follows

(i) u s⇒ v in G iff there exists x → y ∈ P and
w, z ∈ Σ∗ such that u = wxz and v = wyz;

(ii) u lj⇒ v in G iff there exists x → y ∈ P and
w, t, z ∈ Σ∗ such that u = wtxz and v = wytz;

(iii) u rj⇒ v in G iff there exists x → y ∈ P and
w, t, z ∈ Σ∗ such that u = wxtz and v = wtyz;

(iv) u j⇒ v in G iff u lj⇒ v or u rj⇒ v in G;

(v) u p⇒ v in G iff there exist x1 → y1, x2 →
y2, . . . , xn → yn ∈ P such that u = x1x2 . . . xn
and v = y1y2 . . . yn, where n ≥ 0;

(vi) u jp⇒ v in G iff there exist x1 → y1, x2 →
y2, . . . , xn → yn ∈ P such that u =
x1x2 . . . xn and v = yp(1)yp(2) . . . yp(n), where p ∈
perm({1, 2, . . . , n}), n ≥ 0.

Let h⇒ be one of the six derivation relations (i) through
(vi) over Σ∗. To express that G applies production r
during u h⇒ v, we write u h⇒ v [r], where r ∈ P . By
u h⇒∗ v [π], where π is a sequence of productions from
P , we express that G makes u h⇒∗ v by using π.
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The language that G generates by using h⇒,
L(G, h⇒), is defined as

L(G, h⇒) = {x | σ h⇒∗ x, x ∈ Σ∗}.

The set of all PGs and the set of all PGs without
erasing productions are denoted ΓPG and ΓPG−ε ,
respectively.

Let G = (Σ, P, σ) be a PG. G is said to be a
pure context-free grammar (PCFG for short) if every
x → y ∈ P satisfies x ∈ Σ. The set of all PCFGs and
the set of all PCFGs without erasing productions are
denoted ΓPCFG and ΓPCFG−ε , respectively.

Remark 1. The inclusions ΓPCFG ⊆ ΓPG,
ΓPCFG−ε ⊆ ΓPCFG, and ΓPG−ε ⊆ ΓPG are obvious.

Set

(1) SP = {L(G, s⇒) | G ∈ ΓPG};

(2) SP−ε = {L(G, s⇒) | G ∈ ΓPG−ε};

(3) JSP = {L(G, j⇒) | G ∈ ΓPG};

(4) JSP−ε = {L(G, j⇒) | G ∈ ΓPG−ε};

(5) PP = {L(G, p⇒) | G ∈ ΓPG};

(6) PP−ε = {L(G, p⇒) | G ∈ ΓPG−ε};

(7) JPP = {L(G, jp⇒) | G ∈ ΓPG};

(8) JPP−ε = {L(G, jp⇒) | G ∈ ΓPG−ε};

(9) SPCF = {L(G, s⇒) | G ∈ ΓPCFG};

(10) SPCF−ε = {L(G, s⇒) | G ∈ ΓPCFG−ε};

(11) JSPCF = {L(G, j⇒) | G ∈ ΓPCFG};

(12) JSPCF−ε = {L(G, j⇒) | G ∈ ΓPCFG−ε};

(13) PPCF = {L(G, p⇒) | G ∈ ΓPCFG};

(14) PPCF−ε = {L(G, p⇒) | G ∈ ΓPCFG−ε};

(15) 0L = {L(G, p⇒) | G ∈ ΓPCFG, G =
(Σ, P, σ),dom(P ) = Σ} (see [20]);

(16) 0L−ε = {L(G, p⇒) | G ∈ ΓPCFG−ε , G =
(Σ, P, σ),dom(P ) = Σ} (see [20]);

(17) JPPCF = {L(G, jp⇒) | G ∈ ΓPCFG};

(18) JPPCF−ε = {L(G, jp⇒) | G ∈ ΓPCFG−ε}.

Example 1. Consider the following PCFG

G = (Σ = {a, b, c, d}, P, a)

where P = {a → abcd, a → a, b → b, c → c, d → d}.
Observe that if G makes its derivations by s⇒, we
have L(G, s⇒) = L(G, p⇒) = {a}{bcd}∗, which is a
regular language. But if G performs its derivations by

j⇒, we have L(G, j⇒) = L(G, jp⇒) = {w | #a(w) =
1,#b(w) = #c(w) = #d(w), w ∈ Σ+}, which is a non-
context-free language.

3. RESULTS

The organization of this section is divided into three
parts. First, we give an overview about several
elementary properties of pure grammars. Second, we
investigate the mutual relations of SPCF, JSPCF,
PPCF, JPPCF, CF, and CS and summarize the
results by Venn diagram in Figure 1. Finally, we study
the former without erasing productions and sum up the
investigated relations in Table 1.

Elementary properties

Many properties about pure grammars can be found
in [21, 13]. Recall that1 SPCF ⊂ CF (see [21, 13]).
Furthermore, observe that 0L ⊂ PPCF; the inclusion
0L ⊆ PPCF is obvious and in addition there exist
languages that can be generated by parallel PCFG but
cannot be generated by any 0L system (such a language
is, for example, {a, aab}).

Lemma 3.1. Let X ∈ {SP, JSP, PP, JPP, SPCF,
JSPCF, PPCF, JPPCF, 0L}. Then, X−ε ⊆ X.

Proof. Obvious.

Theorem 3.1. SPCF and JSPCF are semilinear.

Proof. Since SPCF ⊂ CF and CF is semilinear (see
[19]), SPCF must be also semilinear. Consider PCFG
G = (Σ, P, σ). From the definitions of s⇒ and j⇒
it follows that φ(L(G, s⇒)) = φ(L(G, j⇒)). Thus,
JSPCF is semilinear as well.

Theorem 3.2. SPCF ⊂ PPCF.

Proof. First, we proof the inclusion SPCF ⊆ PPCF.
The proof is based on the proof of Theorem 4.2 in
[20]. Let Σ be an alphabet. We claim that for every
PCFG G = (Σ, P, σ) such that L(G, s⇒) ∈ SPCF,
there is a PCFG G′ = (Σ, P ′, σ′) such that L(G′, p⇒) =
L(G, s⇒). Set

P ′ = P ∪ {a→ a | a ∈ Σ} and σ′ = σ

Now, we prove the following two claims.

Claim 3.3. Let σ s⇒m w in G, where w ∈ Σ∗. Then
σ′ p⇒∗ w in G′.

Proof. This claim is proved by induction on m ≥ 0.

Basis. For m = 0, we have σ s⇒0 σ in G. Since σ = σ′,
we also have σ′ p⇒∗ σ and the basis holds.

Induction Hypothesis. Assume that the claim holds for
all 0 ≤ m ≤ k, where k is a non-negative integer.

Induction Step. Let σ s⇒k+1 w in G, where w ∈ Σ∗.
Express σ s⇒k+1w as σ s⇒kuav s⇒uxv, where u, v, x ∈
Σ∗, a ∈ Σ, a→ x ∈ P , and uxv = w. By the induction
hypothesis, there exists a derivation σ′ p⇒∗ uav in G′.

1According to its definition, SPCF in this paper coincides
with PCF in [13].
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Since P ⊆ P ′ and there are also unit productions
b → b ∈ P ′, for every b ∈ Σ, clearly uav p⇒ uxv in
G′, which completes the induction step.

Claim 3.4. Let σ′ p⇒mw in G′, where w ∈ Σ∗. Then
σ s⇒∗ w in G.

Proof. This claim is proved by induction on m ≥ 0.

Basis. Let m = 0. Then σ′ p⇒0 σ′ in G′. Since σ′ = σ,
we have that σ s⇒∗ σ′ in G and the basis holds.

Induction Hypothesis. Assume that the claim holds for
all 0 ≤ m ≤ k, where k is a non-negative integer.

Induction Step. Let σ′ p⇒k+1 w in G′, where w ∈ Σ∗.

Express σ′ p⇒k+1 w as σ′ p⇒k x p⇒ w, where x ∈ Σ∗.
Set n = |x|. Express x and w as x = a1a2 . . . an and
w = y1y2 . . . yn, respectively, where ai ∈ Σ, yi ∈ Σ∗,
and ai → yi ∈ P ′, 1 ≤ i ≤ n. Observe that ai → yi ∈ P ′
and ai 6= yi implies ai → yi ∈ P , for all 1 ≤ i ≤ n.
Thus, x s⇒∗ w in G. By the induction hypothesis, we
have that σ s⇒∗ x in G, which completes the induction
step.

By Claim 3.3 and Claim 3.4, σ s⇒∗ w in G iff
σ′ p⇒∗ w in G′, that is L(G, s⇒) = L(G′, p⇒) and
therefore SPCF ⊆ PPCF. By Theorem 4.7 in [20],
0L 6⊆ CF. Clearly, 0L 6⊆ SPCF. Since 0L ⊂ PPCF,
PPCF 6⊆ SPCF and hence SPCF ⊂ PPCF.

Corollary 3.1. SPCF ⊂ 0L.

Proof. Observe that G′ from the proof of Theorem 3.2
is a correctly defined 0L system according to p. 304 in
[20].

Theorem 3.5. SPCF ⊂ CF ∩PPCF.

Proof. SPCF ⊆ CF ∩ PPCF is a consequence of
recalled inclusion SPCF ⊂ CF and Theorem 3.2. Let
Σ = {a, b, c, d} be an alphabet and L = {ab, ccdd} be a
language over Σ. Clearly, L ∈ CF and also L ∈ PPCF
since there is a PCFG

G = (Σ, {a→ cc, b→ dd, c→ c, d→ d}, ab)

such that L = L(G, p⇒). We show by contradiction
that there is no PCFG G′ = (Σ, P ′, σ) such that
L(G′, s⇒) = L. Clearly, σ must be either ab or ccdd. If
we take ccdd as the axiom, there must be c→ ε or d→ ε
in P ′ and hence cdd or ccd are contained in L, which is
a contradiction. On the other hand, if we take ab, there
is no possible way how to directly derive ccdd from ab
by using s⇒. Hence L /∈ SPCF, which completes the
proof.

Corollary 3.2. SPCF ⊂ CF ∩ 0L.

Theorem 3.6. For a unary alphabet, 0L = PPCF =
JPPCF.

Proof. It follows directly from the definition of p⇒ and

jp⇒ and from the definition of ⇒ in 0L systems (see
[20]).

Theorem 3.7. For a unary alphabet, SPCF =
JSPCF.

Proof. It follows directly from the definition of s⇒ and

j⇒.

We recall the following lemma from [20].

Lemma 3.2 (Rozenberg, Doucet). Let G be a 0L
system. Then there exists a number k such that for
every string w in L(G) there exists a derivation such
that |u| ≤ k|w| for every string u in that derivation.

Since Lemma 3.2 relies only on the lengths of derived
strings, it is natural to extend the lemma also for
PCFGs.

Lemma 3.3. Let G be a PCFG. Let h ∈ {s, j, p, jp}.
Then there exists a number k such that for every string
w in L(G, h⇒) there exists a derivation such that |u| ≤
k|w| for every string u in that derivation.

Lemma 3.4. CS− JPPCF 6= ∅.

Proof. The language X = {ap | p is a prime} over a
unary alphabet {a} is a well-known context-sensitive
non-context-free language (see [7]). By contradiction,
we show that X /∈ JPPCF. Assume that there is
a PCFG G = ({a}, P, σ) such that L(G, jp⇒) = X.

Obviously a→ ε /∈ P and σ = a2 since 2 is the smallest
prime. As 3 is also prime, a2 jp⇒∗ a3 and we have

a→ a ∈ P and a→ a2 ∈ P . Thus, a2 jp⇒∗ a4. Since 4
is not a prime, we have a contradiction.

Corollary 3.3. CS− JSPCF 6= ∅.

Proof. From Lemma 3.4, we have that X = {ap |
p is a prime} is not contained in JPPCF. Since X
is a unary language and for unary languages holds
JSPCF = SPCF ⊂ PPCF = JPPCF (see Theorems
3.2, 3.6 and 3.7), we have that X /∈ JSPCF.

Theorem 3.8. JPPCF ⊂ CS.

Proof. Let G = (Σ, P, σ) be a PCFG. By the Church-
Turing thesis there is an unrestricted grammar H =
(V,Σ, P ′, S) such that L(H) = L(G, jp⇒). More
precisely, we are able to construct H in the way that
H simulates G. In this case, Lemma 3.3 also holds for
H. Observe that Lemma 3.3 is the workspace theorem,
and every language from JPPCF must be then context-
sensitive.

As CS − JPPCF 6= ∅ by Lemma 3.4, we have
JPPCF ⊂ CS.

Theorem 3.9. JSPCF ⊂ CS.

Proof. JSPCF ⊆ CS can be proved analogously as
JPPCF ⊆ CS from Theorem 3.8. Together with
Corollary 3.3, we have JSPCF ⊂ CS.
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Mutual relations of SPCF, JSPCF, PPCF,
JPPCF, CF, and CS

Now, we investigate 20 mutual relations between
SPCF, JSPCF, PPCF, JPPCF, CF, and CS. We
refer them as subfamilies A through T. Seven of these
relations are stated as open problems.

Theorem 3.10 (Subfamily A).

PPCF− (CF ∪ JSPCF ∪ JPPCF) 6= ∅

Proof. Let Σ = {a, b} be an alphabet. Let X =
{a2nb2n | n ≥ 0} be a language over Σ. Clearly,
X ∈ PPCF, since there exists a PCFG, G = (Σ, {a→
aa, b → bb}, ab), such that L(G, p⇒) = X. X /∈ CF
and X /∈ JSPCF is satisfied since X is not semilinear.
By contradiction, we show that X /∈ JPPCF.

Consider that there is a PCFG, G′ = (Σ, P ′, σ′), such
that L(G′, jp⇒) = X. Observe that ab ∈ L(G′, jp⇒).
Let a → x, b → y be productions from P ′, x, y ∈
Σ∗. Then, there exist two derivations, ab jp⇒ xy and
ab jp⇒ yx, in G′. Now, consider the following cases:

• x = y = ε. Then, ε ∈ X, which is a contradiction.
• x = ε (y = ε). Then, y ∈ X (x ∈ X) and either
ab is the only string derivable in G′ using jp⇒ or
there is a derivation y jp⇒∗ z (x jp⇒∗ z) in G′ such
that ba ∈ substr(z), which is a contradiction.

In the following, we assume that x 6= ε and y 6= ε.
• x = bx′ or y = by′, where x′, y′ ∈ Σ∗. Then, there
is a derivation ab jp⇒ bz in G′, where z ∈ Σ∗, and
thus bz ∈ X, which is a contradiction.
• x = x′a or y = y′a, where x′, y′ ∈ Σ∗. Then, there
is a derivation ab jp⇒ za in G′, where z ∈ Σ∗, and
thus za ∈ X, which is a contradiction.
• x = ax′b and y = ay′b, where x′, y′ ∈ Σ∗. Then,
there is a derivation ab jp⇒ z in G′ such that
ba ∈ substr(z), which is a contradiction.

No other cases are possible, which completes the
proof.

Several intersections of some language families are
hard to investigate. Such an intersection is PPCF ∩
JSPCF. At this moment, we are not able to prove
whether PPCF ∩ JSPCF ⊆ CF or not. For this
reason, we leave the subfamilies B and C as open
problems.

Open Problem 3.11 (Subfamily B). Is it true that

(PPCF ∩ JSPCF)− (CF ∪ JPPCF) 6= ∅?

Open Problem 3.12 (Subfamily C). Is it true that

(PPCF ∩ JSPCF ∩ JPPCF)−CF 6= ∅?

Theorem 3.13 (Subfamily D).

(PPCF ∩ JPPCF)− (CF ∪ JSPCF) 6= ∅

Proof. For unary alphabet, 0L = PPCF = JPPCF
(Theorem 3.6). Since CF and JSPCF are both
semilinear, it is sufficient to find any non-semilinear
language over unary alphabet which is also contained
in PPCF. Such a language is indisputably {a2n | n ≥
0}.

Theorem 3.14 (Subfamily E).

SPCF− (JSPCF ∪ JPPCF) 6= ∅

Proof. Let Σ = {a, b, c} be an alphabet. Let X =
{ancbn | n ≥ 0} be a language over Σ. Clearly,
there exists a PCFG G = (Σ, {c → acb}, c) such that
L(G, s⇒) = X and hence X ∈ SPCF. We prove
by contradiction that X is neither jumping sequential
pure context-free nor jumping parallel pure context-free
language.
X /∈ JSPCF. Assume that there is a PCFG G′ =

(Σ, P ′, σ′) such that

L(G′, j⇒) = X.

Clearly, σ′ = c must be the axiom since there must be
no erasing productions in P ′ (observe that ab, ac, cb /∈
X). Because acb ∈ X, we have that c→ acb ∈ P ′. But
acb j⇒ abacb and abacb /∈ X. A contradiction.
X /∈ JPPCF. Assume that there is a PCFG H =

(Σ, R, ω) such that L(H, jp⇒) = X. First, let k ≥ 1

and assume that ω = akcbk is an axiom. Since ω jp⇒∗ c,
there must be a productions a → ε, b → ε, and c → c
contained in R. Now, assume that

• d̂ → dx ∈ R, d̂ ∈ {a, b}, d ∈ Σ, x ∈ Σ∗; then,
ω jp⇒∗ udxcv and ω jp⇒∗ ucdxv and obviously
for d = a holds ucdxv /∈ X and for d = b holds
udxcv /∈ X, u, v ∈ Σ∗; d = c is obvious;
• d̂ → xd ∈ R, d̂ ∈ {a, b}, d ∈ Σ, x ∈ Σ∗; then,
ω jp⇒∗ uxdcv and ω jp⇒∗ ucxdv and obviously
for d = a holds ucxdv /∈ X and for d = b holds
uxdcv /∈ X, u, v ∈ Σ∗; d = c is obvious.

Therefore, a→ x, b→ y ∈ R implies x = y = ε. Hence,
only productions of the form c → z, where z ∈ X,
can be considered. But the finiteness of R implies the
finiteness of X, which is a contradiction.

Clearly, the axiom must be ω = c, which implies
that R contains productions of the form c → z, where
z ∈ X. Obviously, there must be also productions
a → x, b → y ∈ R, x, y ∈ Σ∗. If x = y = ε, X must be
finite. Thus, assume that x 6= ε or y 6= ε. Then, like
before, we can derive a string which is not contained in
X. A contradiction.

Theorem 3.15 (Subfamily F).

(SPCF ∩ JSPCF)− JPPCF 6= ∅

Proof. Let Σ = {a, b, c} be an alphabet and let X =
{aa, aab, aac, aabc} be a language over Σ. Consider a
PCFG

G = (Σ, {b→ ε, c→ ε}, aabc).
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Clearly, L(G, s⇒) = L(G, j⇒) = X and hence X ∈
SPCF ∩ JSPCF.

To show that X /∈ JPPCF, we use a contradiction.
Assume that there exists a PCFG G′ = (Σ, P ′, σ)
such that L(G′, jp⇒) = X. Since σ ∈ X and X ⊆
{aa}{b}∗{c}∗, there must be a production a → x in
P ′ with x ∈ Σ∗. But this implies that there must be
a derivation σ jp⇒∗ aa jp⇒ xx in G′. The only string
from X that has a form xx is aa so a → a is the only
production with a on its left-hand side so a→ a ∈ P ′.

Next, we choose σ. Clearly, σ 6= aa. Furthermore,
σ /∈ {aab, aac} since σjp⇒aabc implies that σjp⇒∗abca,
and abca /∈ X. Thus, the only possibility is to choose
σ = aabc. But aabc jp⇒ aab means that {b → b, c →
ε} ⊆ P ′ or {b → ε, c → b} ⊆ P ′. In both cases,
aabc jp⇒ aba. As aba /∈ X, there is no PCFG G′ such
that L(G′, jp⇒) = X. A contradiction.

Theorem 3.16 (Subfamily G).

SPCF ∩ JSPCF ∩ JPPCF 6= ∅

Proof. Let G = ({a}, {a → a, a → aa}, a) be a PCFG.
It is easy to see that

L(G, s⇒) = L(G, j⇒) = L(G, jp⇒) = {a}+.

Open Problem 3.17 (Subfamily H). Is it true that

(SPCF ∩ JPPCF)− JSPCF 6= ∅?

Theorem 3.18 (Subfamily I).

(PPCF ∩CF)− (SPCF ∪ JSPCF ∪ JPPCF) 6= ∅

Proof. Let X = {aabb, ccdd} be a language over an
alphabet Σ = {a, b, c, d}. Clearly, X ∈ CF. Since
there exists a PCFG G = (Σ, {a → c, b → d}, aabb)
such that L(G, p⇒) = X, X ∈ PPCF. Furthermore,
observe that derivations aabb s⇒ ccdd (aabb j⇒ ccdd) or
ccdds⇒aabb (ccddj⇒aabb) cannot be performed due to
the definition of s⇒ (j⇒) and hence there is no PCFG
G′ such that L(G′, s⇒) = X (L(G′, j⇒) = X). Thus,
X /∈ SPCF and X /∈ JSPCF.

Now, suppose that there is a PCFG H = (Σ, P, σ)
such that L(H, jp⇒) = X. For σ = aabb, we have
aabb jp⇒ ccdd. If a → ε ∈ P or b → ε ∈ P , then
aabb jp⇒ x, where x /∈ X. Thus, a → y and b → z,
where y, z ∈ {c, d}, are only possible productions in
P . But aabb jp⇒ cdcd and since cdcd /∈ X, there is
no PCFG H such that L(H, jp⇒) = X. Analogously
for σ = ccdd. We have a contradiction and therefore
X /∈ JPPCF.

Open Problem 3.19 (Subfamily J). Is it true that

(PPCF ∩CF ∩ JSPCF)− (SPCF ∪ JPPCF) 6= ∅?

Open Problem 3.20 (Subfamily K). Is it true that

(PPCF ∩CF ∩ JSPCF ∩ JPPCF)− SPCF 6= ∅?

Theorem 3.21 (Subfamily L).

(PPCF ∩CF ∩ JPPCF)− (SPCF ∪ JSPCF) 6= ∅

Proof. Consider a language X = {ab, cd, dc} over
an alphabet Σ = {a, b, c, d}. Clearly, X is neither
classical sequential pure context-free nor jumping
sequential pure context-free language since in some
point during a derivation, we must rewrite two symbols
simultaneously.

As X is a finite language, X ∈ CF. As there exists
a PCFG

G = (Σ, {a→ c, b→ d, c→ d, d→ c}, ab)

such that L(G, p⇒) = L(G, jp⇒) = X, X ∈ PPCF ∩
JPPCF.

Theorem 3.22 (Subfamily M).

CF− (PPCF ∪ JSPCF ∪ JPPCF) 6= ∅

Proof. Let Σ = {a, b} and let X = {anbn | n ≥
1} be a language over Σ. Indisputably, X is well-
known context-free language. According to [20], X /∈
0L. Observe that every language Y that belongs to
(PPCF−0L) can be generated by PCFG G = (Σ, P, σ)
such that there exists c ∈ Σ such that for every x ∈ Σ∗,
c→ x /∈ P . Thus, if X ∈ (PPCF− 0L), then X must
be a finite language (since either a or b blocks deriving
of any string from axiom), which is a contradiction.
Therefore, X /∈ (PPCF−0L) and clearly X /∈ PPCF.
Next, we demonstrate that X /∈ JSPCF and X /∈
JPPCF.
X /∈ JSPCF. Suppose that X ∈ JSPCF, so there

exists a PCFG G′ = (Σ, P ′, σ′) such that L(G′, j⇒) =
X. As a, b /∈ X, there are no erasing productions
in P ′ and thus σ′ = ab must be the axiom. Now
consider a derivation ab j⇒aabb. There are exactly two
possibilities how to get a string aabb directly from the
axiom ab—either expand a to aab (a → aab ∈ P ′) or
expand b to abb (b → abb ∈ P ′). Due to the definition
of j⇒, ab j⇒ baab in the first case, and ab j⇒ abba in
the second case. Since neither baab nor abba belongs to
X, X /∈ JSPCF. A contradiction.
X /∈ JPPCF. Suppose that X ∈ JPPCF, so there

exists a PCFG H = (Σ, R, ω) such that L(H, jp⇒) =
X. As a, b, ε /∈ X, there are no erasing productions
in R and thus ω = ab must be the axiom. Clearly,
ab jp⇒ aabb. There are exactly three ways how to get
aabb from ab:

• a→ a ∈ R, b→ abb ∈ R. In this case ab jp⇒aabb
implies that ab jp⇒ abba, but abba /∈ X.
• a→ aa ∈ R, b→ bb ∈ R. In this case ab jp⇒aabb
implies that ab jp⇒ bbaa, but bbaa /∈ X.
• a→ aab ∈ R, b→ b ∈ R. In this case ab jp⇒aabb
implies that ab jp⇒ baab, but baab /∈ X.

Thus, X /∈ JPPCF. A contradiction.
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Open Problem 3.23 (Subfamily N). Is it true that

(CF ∩ JSPCF)− (PPCF ∪ JPPCF) 6= ∅?

Theorem 3.24 (Subfamily O).

(CF ∩ JSPCF ∩ JPPCF)−PPCF 6= ∅

Proof. Let Σ = {a, b} be an alphabet and let

X = {aabb, abab, abba, baab, baba, bbaa}

be a language over Σ. Since X is finite, X is context-
free. Given a PCFG

G = (Σ, {a→ a, b→ b}, aabb).

Clearly, L(G, j⇒) = L(G, jp⇒) = X. Hence, X ∈
CF ∩ JSPCF ∩ JPPCF.

By contradiction, we show that X /∈ PPCF. Assume
that there is a PCFG H = (Σ, P, σ) such that
L(H, p⇒) = X. First, we show that P contains no
erasing productions:

• If a → ε ∈ P and b → ε ∈ P , we have ε ∈ X,
which is a contradiction.
• If a → ε ∈ P , then b → x ∈ P implies that
x ∈ {aa, bb, ab, ba}, since for every w ∈ X, |w| = 4.
Clearly, if b → aa ∈ P or b → bb ∈ P , then
aaaa ∈ X or bbbb ∈ X, respectively, which is a
contradiction. On the other hand, if b → ab ∈ P
and b → ba ∈ P , then aabb /∈ X. A contradiction.
Similarly for b→ ε ∈ P .

Since all strings in X have the same length and there are
no erasing productions in P , only unit productions can
be contained in P . Because aaaa /∈ X and bbbb /∈ X,
either P = {a → a, b → b} or P = {a → b, b → a}. In
both cases, we never get X. Thus, there is no PCFG H
such that L(H, p⇒) = X, and hence X /∈ PPCF.

Theorem 3.25 (Subfamily P).

(CF ∩ JPPCF)− (PPCF ∪ JSPCF) 6= ∅

Proof. Consider a language Y = {aabb, ccdd, cdcd,
cddc, dccd, dcdc, ddcc} over an alphabet Σ = {a, b, c, d}.
Clearly, Y ∈ CF and also Y ∈ JPPCF because there
is a PCFG

G = (Σ, {a→ c, b→ d, c→ c, d→ d}, aabb)

such that L(G, jp⇒) = Y . The proof that Y /∈ PPCF
is almost identical to the proof that X /∈ PPCF from
Theorem 3.24, so it is omitted. Because it is not
possible to rewrite two or more symbols simultaneously
during direct derivation step by using j⇒, we have
Y /∈ JSPCF.

Open Problem 3.26 (Subfamily Q). Is it true that

JSPCF− (CF ∪PPCF ∪ JPPCF) 6= ∅?

Theorem 3.27 (Subfamily R).

(JSPCF ∩ JPPCF)− (CF ∪PPCF) 6= ∅

Proof. Let Σ = {a, b, c} be an alphabet and let X =
{w | #a(w) − 1 = #b(w) = #c(w), w ∈ Σ+} be a
language over Σ. X ∈ JSPCF∩JPPCF since there is
a PCFG

G = (Σ, {a→ abca, a→ a, b→ b, c→ c}, a)

such that L(G, j⇒) = L(G, jp⇒) = X. By pumping
lemma for context-free languages, X /∈ CF.

By contradiction, we show that X /∈ PPCF. Assume
that there is a PCFG H = (Σ, P, σ) such that
L(H, p⇒) = X. First, we show that σ = a. Assume
that σ 6= a. Then, σ p⇒∗ a implies that a→ ε ∈ P and
we have that ε ∈ X, which is a contradiction. Thus,
a must be the axiom. Next, we make the following
observations:

(1) a→ a ∈ P ; if a→ a /∈ P , then the lengths of strings
from X grow exponentially, since, in this case, for
a direct derivation step x p⇒ y, x, y ∈ Σ∗, and for
some k ≥ 2 it holds that #a(y) = k#a(x). Note
that a→ b, a→ c /∈ P from the definition of X.

(2) If a→ x ∈ P , then #a(x)− 1 = #b(x) = #c(x) as
follows from the definition of X.

(3) Let b̄, c̄ ∈ {b, c}, b̄ 6= c̄. If b̄c̄ p⇒ x, then #a(x) =
#b(x) − 1 = #c(x) − 1; otherwise, we get a string
which is not in X.

Let l = 3 max{|β| | α → β ∈ P}. Let ω = al+1blcl.
Clearly, ω ∈ X. Express ω as

ω = uauabububcuc,

where ua ∈ {a}∗, uab ∈ {a}∗{b}∗, ub ∈ {b}∗, ubc ∈
{b}∗{c}∗, and uc ∈ {c}∗. Due to l, there is no suitable
production a→ an+1bncn, n ≥ 1 to get ω. Then, during
the derivation θ p⇒ ω the only used production with a
on its left-hand side is a→ a, so θ can be expressed as
θ = uax̄, x̄ ∈ {b, c}∗. Now, we inspect the ways how H
derives uabububcuc from x̄. Let b̄, c̄ be from observation
(3).

• If uab ∈ {a}∗, there exists an integer n ≥ 0
such that r : b̄ → an ∈ P . The presence of r
in P implies that c̄ → bn+1cn+1 ∈ P . Due to l,
ub 6= ε and uc 6= ε, so there must be productions
d1 → bi, d2 → cj ∈ P , i, j ≥ 1, d1, d2 ∈ {b, c}.
Since either d1 = b̄ or d1 = c̄, there is a derivation

a p⇒∗ aab̄c̄ p⇒∗ aabibn+1cn+1

or
a p⇒∗ aab̄c̄ p⇒∗ aaanbi,

respectively. As aabibn+1cn+1, aaanbi /∈ X, we
have a contradiction.
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• If uab ∈ {b}∗, there exists an integer n ≥ 1 such
that b̄ → bn, c̄ → an−1cn ∈ P . In fact, n = 1 is
the only possibility in this case, so either θ = ω or
|θ| = |ω| and θ p⇒ ω p⇒ θ. This means that one of
θ, ω must be the axiom. A contradiction.
• If uab ∈ {a}+{b}+, there are two integers n,m ≥ 1
such that b̄ → anbm, c̄ → bn−m+1cn+1 ∈ P .
As before, there must be also productions d1 →
bi, d2 → cj ∈ P , i, j ≥ 1, d1, d2 ∈ {b, c}. Since
ub 6= ε and uc 6= ε, a p⇒∗ x, where x /∈ X, which is
a contradiction.

Therefore, al+1blcl /∈ L(H, p⇒), which implies that
X /∈ PPCF.

Theorem 3.28 (Subfamily S).

JPPCF− (CF ∪PPCF ∪ JSPCF) 6= ∅

Proof. Let Σ = {a, b, c, â, b̂, ĉ} be an alphabet and let

X = {âb̂ĉ} ∪ {x | #a(x)− 1 = #b(x) = #c(x),

x ∈ {a, b, c}+}

be a language over Σ. Following the pumping lemma
for context-free languages, X /∈ CF. Since there is a
PCFG G = (Σ, {â → a, b̂ → ε, ĉ → ε, a → abca, a →
a, b → b, c → c}, âb̂ĉ) such that L(G, jp⇒) = X, X ∈
JPPCF. By contradiction, we show that X /∈ JSPCF
and X /∈ PPCF.

Suppose that X ∈ JSPCF. Then, there is a PCFG
H = (Σ, P, σ) such that L(H, j⇒) = X. First, we
choose σ. From the definition of X, a ∈ X and for
every string x ∈ X − {a} holds |x| ≥ 3. Since we are
able to erase only one symbol during direct derivation
step by j⇒ and there is no string of length 2 contained
in X, we must choose σ = a as the axiom. Because
abca ∈ X and âb̂ĉ ∈ X, there must be two derivations,
a j⇒∗ abca and a j⇒∗ âb̂ĉ, and this implies that there

exists also a derivation a j⇒∗ âb̂ĉbca. Since âb̂ĉbca /∈ X,
we have a contradiction.

Next, suppose that X ∈ PPCF, so there exists a
PCFG H ′ = (Σ, P ′, σ′) such that L(H ′, p⇒) = X. In

this case, we must choose σ′ = âb̂ĉ as the axiom. If we
choose a, then a p⇒∗ abca and a p⇒∗ âb̂ĉ implies that
a p⇒∗ u1au2âu3, u1, u2, u3 ∈ Σ∗, and u1au2âu3 /∈ X.
If we choose abca or similar, then abca p⇒∗ a implies
that a p⇒∗ ε, and ε /∈ X. Without loss of generality,
assume that for every α → β ∈ P ′, β ∈ {a, b, c}∗ (this

can be assumed since âb̂ĉ is the only string over {â, b̂, ĉ}
in X). As a ∈ X, a → ε, a → b, and a → c are not
contained in P ′. The observations (1) to (3) from the
proof of Theorem 3.27 hold also for H ′. The rest of
proof is similar to the proof of Theorem 3.27.

Theorem 3.29 (Subfamily T).

CS− (CF ∪ JSPCF ∪PPCF ∪ JPPCF) 6= ∅

Proof. Let X = {ap | p is a prime} be a language over
unary alphabet {a}. X ∈ CS and X /∈ CF are a
well-known containments (see [7]). By Lemma 3.4 and
Corollary 3.3, X /∈ JPPCF and X /∈ JSPCF. As for
unary languages PPCF = JPPCF, X /∈ PPCF.

The summary of theorems 3.10 through 3.29 is
visualized in Figure 1.

Absence of erasing productions

As stated in Lemma 3.1, it is natural that the family of
languages generated by pure grammars without erasing
productions is included in the family of languages
generated by pure grammars in which the presence of
erasing productions is allowed. As we show further, for
PCFG, the inclusions stated in Lemma 3.1 are proper.
The PG case is left as an open problem.

Theorem 3.30. Let

X ∈ {SPCF,JSPCF,PPCF,JPPCF,0L}.

Then, X−ε ⊂ X.

Proof. Let K = {a, ab} and Y = {aa, aab} be two
languages over Σ = {a, b}. Furthermore, let G =
(Σ, {a → a, b → ε}, ab) and G′ = (Σ, {a → a, b →
ε}, aab) be two PCFGs.

a) SPCF−ε ⊂ SPCF. Since K = L(G, s⇒),
K ∈ SPCF. Assume that K ∈ SPCF−ε and
then there is a PCFG H = (Σ, P, σ) with no
erasing productions in P such that L(H, s⇒) = K.
Obviously, σ = a and then a → ab ∈ P . We have
a s⇒∗ abb and since abb /∈ K, K /∈ SPCF−ε.

b) JSPCF−ε ⊂ JSPCF. K ∈ JSPCF and K /∈
JSPCF−ε are proved analogously as in a).

c) PPCF−ε ⊂ PPCF. Since Y = L(G′, p⇒),

Y ∈ PPCF. Assume that Y ∈ PPCF−ε and
then there is a PCFG H = (Σ, P, σ) with no
erasing productions in P such that L(H, p⇒) = Y .
Obviously, σ = aa and then a → ab ∈ P . We have
aa p⇒∗ abab and since abab /∈ Y , Y /∈ PPCF−ε.

d) JPPCF−ε ⊂ JPPCF. Y ∈ JPPCF and Y /∈
JPPCF−ε are proved analogously as in c).

e) 0L−ε ⊂ 0L follows from c).

Open Problem 3.31. Let X ∈
{SP,JSP,PP,JPP}. Is the inclusion X−ε ⊆ X,
in fact, proper?

From Figure 1 and from mentioned theorems, we
are able to find out the most of relations between
investigated language families (even for those which are
generated by PCFGs without erasing productions—the
most of languages used in Figure 1 have this property),
but not all. Following theorems fill this gap.
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CS

PPCF

JPPCF

CF

JSPCF

SPCF

A

?

?

D

E

F

G

?

I

?

?

L

M

?

O

P

?

R

S

T

A = {a2nb2n | n ≥ 0} M = {anbn | n ≥ 1}
D = {a2n | n ≥ 0} O = {aabb, abab, abba, baab, baba, bbaa}
E = {ancbn | n ≥ 0} P = {aabb, ccdd, cdcd, cddc, dccd, dcdc, ddcc}

F = {aa, aab, aac, aabc} R =

{
w

∣∣∣∣ #a(w)− 1 = #b(w) = #c(w),
w ∈ {a, b, c}+

}
G = {a}+ S = {âb̂ĉ} ∪ R

I = {aabb, ccdd} T = {ap | p is a prime}
L = {ab, cd, dc}

FIGURE 1. Summary of hierarchy between SPCF, JSPCF, PPCF, JPPCF, CF, and CS language families (? stands
for an open problem).

Theorem 3.32. SPCF and PPCF−ε are incompa-
rable, but not disjoint.

Proof. Let X = {aa, aab} be a language over alphabet
Σ = {a, b}. Obviously, there is a PCFG G = (Σ, {a →
a, b → ε}, aab) such that L(G, s⇒) = X, and then
X ∈ SPCF. By Theorem 3.30, X /∈ PPCF−ε.
Conversely, there is a language Y = {a2n | n ≥ 0} over
{a} such that Y /∈ SPCF and Y ∈ PPCF−ε (see D in
Figure 1 and observe that to get Y we need no erasing
productions). Finally, {a}+ ∈ SPCF ∩PPCF−ε.

Theorem 3.33. SPCF and 0L−ε are incomparable,
but not disjoint.

Proof. Analogous to the proof of Theorem 3.32.

The mutual relation between JSPCF−ε and
JPPCF−ε is either incomparability or JSPCF−ε ⊂
JPPCF−ε, but we do not know the answer now. We
also do not know either if JSPCF−ε and JPPCF are
incomparable or JSPCF−ε ⊂ JPPCF.

Open Problem 3.34. What is the relation between
JSPCF−ε and JPPCF−ε?

Open Problem 3.35. What is the relation between
JSPCF−ε and JPPCF?

Theorem 3.36. PPCF−ε and 0L are incomparable,
but not disjoint.

Proof. Let X = {aa, aab} and Y = {a, aab} be two
languages over {a, b}. X /∈ PPCF−ε, X ∈ 0L,
Y ∈ PPCF−ε, and Y /∈ 0L proves the incomparability,
while {a}+ ∈ PPCF−ε∩0L proves the disjointness.

Remark on unary alphabets

We close this section by showing how the mutual
relations between investigated language families change
if we consider only alphabets containing only one
symbol. From Theorem 3.2, Theorem 3.6, and
Theorem 3.7, we can conclude that for every unary
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TABLE 1. Mutual relations between investigated language families. A denotes the language family from the first column,
B the language family from the table header. If the relation in the cell given by A and B is ?, then A ? B. A‖B means that
A and B are incomparable, but not disjoint, ? stands for an open problem, and the meaning of ⊂, =, and ⊂ is as usual.

A

B

S
P
C
F

S
P
C
F

−
ε

J
S
P
C
F

J
S
P
C
F

−
ε

P
P
C
F

P
P
C
F

−
ε

J
P
P
C
F

J
P
P
C
F

−
ε

0
L

0
L

−
ε

SPCF = ⊃ ‖ ‖ ⊂ ‖ ‖ ‖ ⊂ ‖
SPCF−ε ⊂ = ‖ ‖ ⊂ ⊂ ‖ ‖ ⊂ ⊂
JSPCF ‖ ‖ = ⊃ ‖ ‖ ‖ ‖ ‖ ‖
JSPCF−ε ‖ ‖ ⊂ = ‖ ‖ ? ? ‖ ‖
PPCF ⊃ ⊃ ‖ ‖ = ⊃ ‖ ‖ ⊃ ⊃
PPCF−ε ‖ ⊃ ‖ ‖ ⊂ = ‖ ‖ ‖ ⊃
JPPCF ‖ ‖ ‖ ? ‖ ‖ = ⊃ ‖ ‖
JPPCF−ε ‖ ‖ ‖ ? ‖ ‖ ⊂ = ‖ ‖
0L ⊃ ⊃ ‖ ‖ ⊂ ‖ ‖ ‖ = ⊃
0L−ε ‖ ⊃ ‖ ‖ ⊂ ⊂ ‖ ‖ ⊂ =

alphabet

SPCF = JSPCF ⊂ PPCF = JPPCF = 0L.

Trivially,

SPCF−ε = JSPCF−ε ⊂ PPCF−ε =

JPPCF−ε = 0L−ε.

As the following theorem demonstrates that PPCF−ε

and SPCF are incomparable, but not disjoint, we can
summarize the results for the unary alphabet by Figure
2.

Theorem 3.37. In the case of unary alphabets,
SPCF and PPCF−ε are incomparable, but not
disjoint.

Proof. Clearly, the language {a}+ is contained in both
SPCF and PPCF−ε. Since the language {ε, a}
from SPCF is not contained in PPCF−ε, SPCF 6⊆
PPCF−ε. Conversely, PPCF−ε 6⊆ SPCF since
PPCF−ε is not semilinear.

4. CONCLUSION

Consider SPCF, JSPCF, PPCF, JPPCF, 0L,
SPCF−ε, JSPCF−ε, PPCF−ε, JPPCF−ε, and 0L−ε

(see Section 2). The present paper has investigated
mutual relations between these language families, which
are summarized in Table 1 and Figure 1. As a special
case, this paper has also performed an analogical study
in terms of unary alphabets (see Figure 2).

Although we have already pointed out several open
problems earlier in the paper (see Open Problems 3.11,
3.12, 3.17, 3.19, 3.20, 3.23, 3.26, 3.31, 3.34, and 3.35),
we repeat the questions of a particular significance next.

• Is it true that (PPCF ∩ JSPCF) − (CF ∪
JPPCF) 6= ∅?

PPCF−ε JPPCF−ε 0L−ε

PPCF JPPCF 0L

SPCF JSPCF

SPCF−ε JSPCF−ε

FIGURE 2. A mutual relations between investigated
language families in the case of unary alphabets. The
straight line between two families means that these families
are identical. The arrow from family A to family B denotes
that A ⊂ B.

• Is it true that (PPCF∩JSPCF∩JPPCF)−CF 6=
∅?

• Is it true that (SPCF ∩ JPPCF)− JSPCF 6= ∅?
• Is it true that (PPCF∩CF∩JSPCF)−(SPCF∪

JPPCF) 6= ∅?
• Is it true that (PPCF∩CF∩JSPCF∩JPPCF)−

SPCF 6= ∅?
• Is it true that (CF ∩ JSPCF) − (PPCF ∪

JPPCF) 6= ∅?
• Is it true that JSPCF−(CF∪PPCF∪JPPCF) 6=
∅?

• Let X ∈ {SP,JSP,PP,JPP}. Is the inclusion
X−ε ⊆ X, in fact, proper?

• What is the relation between JSPCF−ε and
JPPCF−ε?
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• What is the relation between JSPCF−ε and
JPPCF?

Recall that the present study has only considered
pure grammars based upon context-free productions.
Of course, from a broader perspective, we might
reconsider all the study in terms of grammars that allow
non-context-free productions as well.
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[11] Z. Křivka, C. Mart́ın-Vide, A. Meduna, and K.G.
Subramanian, A variant of pure two-dimensional
context-free grammars generating picture languages, in
Proceedings of Combinatorial Image Analysis - 16th
International Workshop (IWCIA 2014), Brno, Czech
Republic, 28–30 May 2014, pp. 123–133.

[12] M. Langer and A. Kelemenová, Positioned agents in
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