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Abstract— This paper presents a novel method for ground
segmentation in Velodyne point clouds. We propose an encoding
of sparse 3D data from the Velodyne sensor suitable for training
a convolutional neural network (CNN). This general purpose
approach is used for segmentation of the sparse point cloud
into ground and non-ground points. The LiDAR data are
represented as a multi-channel 2D signal where the horizontal
axis corresponds to the rotation angle and the vertical axis
represents channels – laser beams. Multiple topologies of rela-
tively shallow CNNs (i.e. 3-5 convolutional layers) are trained
and evaluated, using a manually annotated dataset we prepared.
The results show significant improvement of performance over
the state-of-the-art method by Zhang et al. in terms of speed
and also minor improvements in terms of accuracy.

I. INTRODUCTION

Recent development in exploration and 3D mapping of the
environment surrounding a mobile robot aims at techniques
which capture semantic information besides the simple ge-
ometrical properties. The analysis of scene dynamics was
successfully used in the task of object detection (pedestrians,
cars, bicycles, ...) [2], and by filtering out moving objects,
3D maps capturing only static parts of the environment can
be built [3]. Such maps are useful for the localization or
the motion planning where measurements of moving objects
are undesirable and introduce motion artifacts into the map.
Successful methods for the detection and tracking of moving
objects (DATMO) assume that the way, in which sensors are
used, causes that only the objects (static or dynamic) are
captured [4], or that the ground can be detected (see Fig. 1)
and filtered out in the preprocessing stage [5]–[9]. For these
purposes, we intend to reliably and efficiently segment the
data to ground/non-ground parts. We consider the ground to
be every surface traversable by commonly moving objects
(pedestrians, cars, bikes, etc.).

In these DATMO systems, the ground detection is typi-
cally based on primitive features with low discriminative
capabilities. The state of the art technique for robust ground
segmentation by Zhang et al. [1] achieves good results in
terms of accuracy by building a Markov Random Field
(MRF) and inference using the Loopy belief propagation.
Unfortunately, the robustness of this method is achieved by
compromising its time efficiency (over 2minutes per frame).
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Fig. 1: Expected segmentation of the Velodyne LiDAR point
cloud into sets of ground (red) and non-ground (grey) points.

The Velodyne sensor – nowadays common source of
LiDAR (Light Detection And Ranging) data – captures the
full 3D information about environment, in contrast to simple
range finders, providing information about occupancy in a
certain height around the robotic platform only. Currently, the
most powerful model HDL-64E covers full 360◦ horizontal
field and 26.8◦ vertical field of view, and with up to 15Hz
frame rate, captures over 1.3M of points per second. This
sensor scans the surrounding area by 64 rotating laser beams
while each beam produces one ring of 3D points (red circles
in Fig. 1).

Since the breakthrough in machine learning after intro-
duction of AlexNet [10], the attractiveness of Convolu-
tional Neural Networks (CNNs) has grown rapidly and this
model was successfully used for many computer vision
tasks including image classification, object detection, face
recognition, semantic segmentation [11], etc. In this work,
we deployed convolutional neural networks for the task of
ground segmentation in sparse Velodyne point cloud data.
We designed multiple networks with shallow topologies (3-5
convolutional layers) fulfilling the requirements for robust-
ness and accuracy. We trained and evaluated them by using
a hand-annotated dataset.

The main contributions of this work are the following:
• we show that the sparse 3D LiDAR data can be encoded

into a multi-channel 2D signal (analogous to HHA
encoded range images [12] or LiDAR data encoding
in vehicle detection task [13]) and processed by convo-
lution neural network;

• new approach to ground segmentation in Velodyne point
clouds using CNN which outperforms current state of
the art in accuracy and time performance.

Besides this, we developed a semi-automatic ground an-
notation tool and we annotated a part of the KITTI tracking
dataset. Source code of the annotation tool and LiDAR point
clouds preprocessing methods, design and configuration of
the trained convolutional networks, as well as annotated
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ground truth data are publicly available1.

II. RELATED WORK

As mentioned above, we define the ground as a surface
traversable by commonly moving objects. A similar def-
inition has been already used for an outdoor robot [14].
The traversability estimation was performed using geometric
features (extracted from stereo-vision) and texture features
(from RGB images). By clustering, the labels are assigned
to parts of the surrounding environment. Compared to our
approach, this method requires explicit feature specification
and different type of input data – stereo RGB vision, IMU,
and motor current sensor.

Convolutional networks were deployed for learning rich
descriptors of RGB-D data [12] useful for per-pixel object
detection. The input of networks encodes horizontal disparity
(equivalent to the range), height and normals angle. Our work
proposes a similar type of encoding suitable for processing
the sparse LiDAR data. Since the normals can not be robustly
estimated in these data, the angles are not used.

Many DATMO (detection and tracking of moving objects)
methods segment and filter out the ground measurements
from LiDAR data in a preprocessing stage [5]–[9], [15], [16].
These approaches usually rely on primitive features with low
discriminative capabilities like mean or variance of measured
height in a certain small area, or changes in the elevation
between the rings in Velodyne data.

More traditional DATMO methods operate over data from
simple laser rangefinders [4], assuming the measurements
provided by LiDAR positioned approximately parallel to the
ground surface, capturing only the upright (moving and/or
static) objects and not the ground. Over such data, the
occupancy grid can be built and detection of movement is
performed by particle filtering.

When data from multiple laser sensors including Velodyne
3D LiDAR are fused [9], building the occupancy grid starts
to be an issue, since the sensors cover a significantly larger
area including the ground. The ground measurements must
be recognized and filtered out in order to build a valid
occupancy grid representing free space, the space occupied
by obstacles, and currently unobserved areas. For sake of
effectivity, authors [9] selected a computationally inexpen-
sive approach where all measurements within a certain height
range are considered to be ground. Besides the sensitivity to
selection of optimal thresholds, the robustness/repeatability
of such approach is far from the optimal (see Fig. 2).

The motion detection generalized to motion field estima-
tion [5] in a polar grid benefits from the large area covered by
the Velodyne LiDAR scanner. The preprocessing step, same
as in the previously mentioned work – i.e. the ground detec-
tion and filtering – is performed as well. Using the simple
thresholding, this method shares the same disadvantages. The
areas (polar grid cells), fulfilling at least one of the following
conditions, are considered to be ground: the average height
fits an exactly defined range, the standard deviation of the

1https://www.github.com/to-be-added-after-acceptance

Fig. 2: Different results of ground segmentation methods.
top: Simple height thresholding can not deal with terrain
elevation; middle: Loopy belief propagation [1] produces in-
correct results when objects are close to the sensor; bottom:
our method.
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Fig. 3: Ground detection by comparison of expected range
difference ei with observed difference oi. Since e4−o4 > th,
the border between the obstacle and the ground is found [6].

height is below a certain threshold, or the difference between
the minimal and the maximal height inside the cell is below
another threshold. A very similar approach with only small
modifications was used by Asvadi et al. [8] in a DATMO
system operating over a regular orthogonal grid. The area
within one grid cell is considered to be ground if both the
mean height and the standard deviation of the heights fit
below a predefined threshold.

Other approaches analyse changes in the elevation in order
to segment the ground in Velodyne LiDAR scans [7], [15],
[16]: each vertical slice consisting of all points captured at
exactly the same moment by all laser rays, is analysed sep-
arately. Three points A, B, C from adjacent rings form two
vectors

−−→
AB and

−−→
BC. If the dot product of these (normalized)

vectors is above a certain threshold, a significant change
of elevation – the breakpoint – is found. Such breakpoints
form the border between the ground (points between the
sensor and the breakpoint) and an obstacle (points behind
the breakpoint). Besides the lack of robustness, this approach
does not allow to reason about the space behind the first
obstacle where the ground can be observed again.

Analysis of ranges differences between two adjacent Velo-
dyne rings (Fig. 3) was also used for the ground segmentation
[6] in LiDAR data. On the ideal flat horizontal surface, the
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expected range difference ei between two adjacent rings can
be computed, assuming the height and the vertical angle of
each laser beam is known. This range difference decreases
with increasing elevation of the surface. At the ideal vertical
obstacle, this difference becomes zero.

Besides the previously mentioned DATMO methods, the
ground detection and filtering plays important role in point
cloud registration by scan segments matching [17]. However,
in a preprocessing step, the ground points are also detected
by thresholding the mean and the variance of vertical height
withing the cells of voxel grid [18].

The lack of accuracy and robustness in previously men-
tioned methods, mostly caused by the fixed thresholding of
simple features with low discriminative power, was over-
come by the inference in Markov Random Field (MRF)
[1]. Although the introduced 3D volumetric grid is built
by estimation of a slope in each vertical slice in a sim-
ilar way to 2D occupancy grids, the final segmentation
to ground/obstacle is not made directly. At first, based on
the slope detected, the points are categorized as unknown,
probably ground, probably obstacle, and probably obstacle
borders. This categorization implies the initial cost assigned
to each volumetric element of the regular 3D polar grid.
The key improvement is done by Loopy Belief Propagation
inference in order to estimate ground height within a certain
region. All measurements within this region with a smaller
height are considered to be the ground points. The rest is
classified as non-ground. Unfortunately, the robustness of
this method is achieved by compromising its time efficiency.
In our experiments with the original MATLAB implemen-
tation, kindly provided by the authors, the processing of a
single Velodyne HDL-64E frame takes approximately 145
seconds.

The key improvement achieved by our method is the
reduction of time complexity of the ground segmentation
process to fraction of the time required by Loopy Belief
Propagation [1], while slightly better results in terms of
accuracy were achieved as well. Processing of a single
Velodyne frame by our L05+deconv network takes 140ms
on average, using only CPU. By using GPU (GeForce GTX
770), the processing time is further reduced to 7ms per
frame.

Simultaneously with our work, the Baidu research team
[13] proposed a similar encoding of sparse LiDAR data
into 2D matrices for the vehicles detection by convolutional
neural networks. Our encoding differs from their work in
polar bin aggregation of LiDAR points (described in Sec. III-
A) to improve the stability of prediction.

III. PROPOSED GROUND SEGMENTATION METHOD

The goal of our method is to assign a binary label
ground/non-ground (1) to each 3D point p ∈ P measured
by the LiDAR sensor. The point cloud elements p are
represented by 3D coordinates originating at the LiDAR
sensor position, accompanied by the laser intensity reading
and the ring ID identifying the source laser beam which
was used to measure the point p = [px, py, pz, pi, pr]. Since
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Fig. 4: Transformation of the sparse Velodyne point cloud
into the multi-channel dense matrix. Each row represents
measurements of a single laser beam done during one
rotation of the sensor. Each column contains measurements
of all 64 laser beams captured at a specific rotational angle
at the same time.

we do not assign the ground label to each LiDAR point
separately, we solve the assignment (2) of binary labels to
all the points jointly.

g : P → {0, 1} (1)
G : P→ {0, 1}|P |, P ∈ P (2)

A. Encoding Sparse 3D Data Into a Dense 2D Matrix

In order to process the Velodyne LiDAR data by a con-
volutional neural network, we encode (3) the original sparse
point cloud P into a multi-channel dense matrix M . The
original 3D data are treated as a 2D signal in the domain of
the ring (the ID of the source laser beam) and the horizontal
angle, as illustrated in Fig. 4. The size of the resulting matrix
M depends on the number of rings in the LiDAR frame (i.e.
number of laser beams used) and the sampling rate R of
the horizontal angle. In our experiments, we used Velodyne
LiDAR HDL-64E with 64 rays and resolution R = 1◦.

G(P ) = G̃(M), M = E(P ) (3)

At first, the point cloud is aggregated into the polar
bins br,c (6) analogous to our previous work [19]. All the
points assigned to the same bin share the same ring ID r
(points captured by the same laser beam) and fit into the
same polar cone c = ϕ(p) (7), computed according to the
horizontal angle of the point. Each polar bin is encoded
into the element mr,c of matrix M in its r-th row and
c-th column (4). Since multiple points fall into the same
bin (the horizontal representation of our encoding is coarser
than original Velodyne resolution), a single representative
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Fig. 5: Flooding the human made annotation from seed
points along the ring. The ground points are red. When the
breakpoint is found (first of blue not-ground points), the
flooding is stopped.

of the bin is found as the average (5). Moreover, since the
horizontal index in the matrix M encodes the rotational
angle in the 3D horizontal XZ plane, we can reduce the
number of channels by replacing XZ coordinates px, pz by
depth (or range) value d = ‖px, pz‖2 without the loss of any
information.

mr,c = ε(br,c) (4)

ε(br,c) =

∑
p∈br,c

[py, ‖px, pz‖2 , pi]

|br,c|
(5)

br,c = {p ∈ P | pr = r ∧ ϕ(p) = c} (6)

ϕ(p) =

⌊
atan( pz

px
) + 180◦

360◦

R

⌋
(7)

In case of empty bins (e.g. no measurement exists in this
area due to the sensor limits), the value in the matrix M is
linearly interpolated from the neighbourhood.

B. Training Dataset

The most serious issue in development of the proposed
system was the lack of training data, especially missing
annotations of ground data in the Velodyne scans. The
developement of KITTI Semantic Segmentation dataset2 is
still in progress and only small subsets are available at the
moment. The only annotations relevant to our task were
created by Richard Zhang [20] in his work on semantic
segmentation of urban scenes. However, Zhang used the
LiDAR point clouds as a supplementary data only, and
annotations were made for RGB camera images in the first
place. These annotations were probably back-projected into
the LiDAR frames and spread across consequent frames
which caused serious inaccuracies in the ground annotations
and made these data unsuitable for our training and testing.

Therefore we prepared a semiautomatic tool for ground
annotation in 3D Velodyne data3. Using a pen-like drawing
tool, the user highlights certain ground points as ground seed
points ps. From these points, the annotation automatically
floods along the ring until a breakpoint pb is found (see
Fig. 5). The breakpoint is defined as the first point, where
the height difference with respect to the previous point |pby−
pi−1y | > t1, or with respect to the seed point |pby − psy| > t2,
is above a respective threshold. When annotating the dataset,

2http://www.cvlibs.net/datasets/kitti/eval semantics.php
3https://www.github.com/to-be-added-after-acceptance

we found the values t1 = 3 cm and t2 = 7 cm work best as
they save annotator’s time and they reduce manual changes.

Using this tool, we prepared accurate annotations of the
ground in 3D LiDAR data for a subset of KITTI Tracking
Dataset – the same data as was annotated by [20] in RGB
images. The subset consists of 8 data sequences taken at
different places of urban and suburban environments. In total,
there are 252 frames captured in 1 s interval. We randomly
split those frames into training and evaluation set in 70 : 30
ratio.

Since the amount of available annotated data is quite small,
we prepared automatic artificial annotations for the rest of
the KITTI Tracking Dataset (19 k frames) by thresholding
simple features, like the mean and the variance of height, and
the distance and the elevation differences between rings, as
used in the previous works [5]–[9], [15], [16]. These artificial
annotations are used for CNNs pretraining. The resulting pa-
rameters are used as initial weights of convolutional kernels
for further training on more precise human annotations.

We also tried to use data augmentation and generate
artificial 3D LiDAR frames automatically. Unfortunately, this
approach proved to be infeasible, since the available 3D
models are not detailed enough, lack fine surface details,
and substitute this structure information (trees, bushes, curbs,
etc.) by texturing flat surfaces (so called billboarding).

C. Topology and Training of the Proposed Networks

Because of the small amount of annotated training data, we
used shallow CNN architectures only. All the networks are
fully convolutional. They consists of convolution and decon-
volution layers with ReLU non-linearities. Gradient descent
is used as the optimization method for the training. The most
interesting and successful topologies we experimented with
are presented in Fig. 6.

The multi-channel matrix M , obtained by the encoding
described in III-A, is the input of all proposed networks.
The probability of being ground point pg = p(g(p) = 1)
is estimated for each pixel of this matrix. Therefore, the
output of all networks has the same size as the input matrices
except the number of channels. The output channels represent
probabilities pg and 1 − pg since the softmax function is
applied to the output.

Presented architectures (Fig. 6) differ in the type and
number of layers used, dimension of convolutional kernels,
and in the number of channels within each layer. Deconvolu-
tional layers (previously also used in semantic segmentation
[11]) were used in 3 of 4 presented topologies, including
the best topology L05+deconv, which performs best in our
experiments. In topologies L05+deconv and L04-conv-dec,
the size of the convolutional layers is decreasing, when
compared to the other two topologies. The effect of a
significantly larger number of intermediate output channels
is evaluated for topology L03+deconv-inc-multich.

The input of the CNN, which is prepared as described in
Sec. III-A Eq. (3-7), is normalized and rescaled (8). This
applies only to the depth d and the height py channels,
since the intensity values of Velodyne sensor are already
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Fig. 6: Topology of the four proposed CNNs including dimensions of intermediate data blobs (blue blocks) and the number
of channels below each blob. L05+deconv consists of 5 convolutional layers plus single deconvolution to restore the original
frame width and height. L04-conv-dec process the input frame by 4 convolutional layers with decreasing size (7, 5, 3, 3) of
convolution kernel. In L03+deconv-inc, 3 convolutional layers with increasing kernel size are used. Deconvolution is used
to restore original frame size in both this topology and in L03+deconv-inc-multich where the number of output channels
are significantly larger comparing with other networks. Note: if the stride parameter N is set in (de-)colutional layers, the
width and height of the output blob is (larger or) smaller N -times.

normalized to the interval (0; 1). In our experiments, the
normalization constant is set to H = 3, since in usual
scenarios, the Velodyne model HDL-64E captures vertical
slice approximately 3m high.

py =
py
H

, d = log (d) (8)

We applied this logarithmic rescaling for the depth channel
to get approximately the same range differences between
consequent rings for flat surfaces, both close and far from the
sensor. The rescaling should suppress differences between
the rings, due to varying distance from the sensor, and high-
light those differences caused by the structure of observed
scene – i.e. the obstacles (illustrated in Fig. 3). In the similar
manner, the horizontal disparity was previously used as an
input of a convolutional network, instead of using range value
directly [12], what finally results in a normalization similar
to ours.

IV. EXPERIMENTS

The proposed convolutional networks were implemented,
trained and evaluated using Caffe4 deep learning framework.
The human annotated dataset and the automatically annotated
dataset were both used for training and pre-training of the
proposed networks. We compared the results of our CNNs
with the results of the robust state-of-the-art method [1]
(using the original MATLAB implementation shared by the
authors). It is necessary to mention one limitation of the
Zhang’s method. Because dimensions of the polar grid need
to be set, the maximal range from the sensor is limited. In
the experiments we used the 60m limit by default (and the

4http://caffe.berkeleyvision.org/
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Fig. 7: The accuracy of the proposed networks and the refer-
ence method [1] for comparison. See Table I for numerical
results.

30m limit in the time performance test). In order to make
fair evaluation, we computed the accuracy of our method for
both the maximal range set to 60m (same conditions as for
[1]) and the unlimited range (to illustrate behavior for more
distant measurements). Also, since the Zhang’s method has
no threshold/parameter for tuning the false positives to false
negatives ratio, only a single precision/recall value can be
computed instead of the whole PR curve.

Fig. 7 shows the comparison of different networks with
the reference method [1]. The results are also summarized in
Table I by means of the average precision and F-score as the
metrics of accuracy. All networks were pre-trained using the
automatically annotated data, trained and evaluated using the
human annotated data and only the points within the range
of 60m were taken into account.
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AP
Precision*
recall=.992

Recall*
prec=.924

Best
F-score

[Zhang15] - 0.924 0.992 0.957

L05+deconv 0.996 0.929 0.993 0.969
L04-conv-dec 0.995 0.914 0.990 0.966

L03+deconv-inc 0.994 0.910 0.989 0.964

L03+deconv-inc-multich 0.995 0.916 0.990 0.966

TABLE I: Average precision (area under the PR curve),
precision, recall and the best F-score of the proposed net-
works compared to [1]. *The precision (and the recall)
was estimated for points where the recall (and precision
respectively) is the same as the results of [1] (also displayed
in Fig. 7 by red and blue line). The best F-score is taken
as the highest value of harmonical average of precision and
recall within the whole PR curve.

The results (Fig. 7 and Table I) show that the accuracy
is quite similar for different network topologies. Better
accuracy is achieved with the networks where the size of
convolution kernels decreases (L05+deconv and L04-conv-
dec CNNs) and also with larger networks. The accuracy of
L05+deconv network is also slightly higher compared to the
reference method [1]. Preserving the same recall we were
able to achieve 0.5% better precision and vice versa: 0.1%
higher recall while preserving the same precision. Also, since
our method enables balancing FP:FN ratio, we were able to
find an optimal operating point yielding better F-score.

In Fig. 8, the precision-recall curves of different network
topologies trained and evaluated in different ways are shown.
We compared CNNs which were trained either by using
the human-made annotations only (label human-only), or
just by automatically annotated dataset (automatic-only), or
by using both datasets together (label both). Moreover, we
evaluated the accuracy of the situation in which all points are
considered (label all), or when the maximal range is limited
to 60m (label near) as used also by Zhang [1]. The examples

CPU only [ms] with GPU [ms]

L05+deconv 139 7.0

L04-conv-dec 90 3.2

L03+deconv-inc 8 1.2

L03+deconv-inc-multich 355 6.9

TABLE II: Performance comparison of the proposed net-
works in terms of speed. The average processing time
per single Velodyne LiDAR HDL-64E frame is presented.
The mini-batches of size 4 were used (i.e. 4 frames were
processed in parallel).

of CNN outputs can be found in Fig. 9.
The results depicted in Fig. 8 show that cases in which

reasoning about the ground was made only within the certain
range (label near) yield better results. This is expected,
since the density of measurements in farther areas is much
lower. Also, the CNNs trained with human annotated datasets
behave more accurately than CNNs trained on artificial data
(evaluation is always made using the human annotations).
An interesting fact is that this gap is less significant for
networks with smaller architectures (e.g. L03 compared to
L05). This is probably caused by higher generalization which
compromises discriminative power when learned on real
annotations.

Table II shows the average processing time of proposed
networks using CPU implementation (Intel i5-6500) and
using GPU acceleration (GeForce GTX 770) on a standard
desktop computer. These numbers indicate the usability of
the networks for certain mobile robot platforms. L03+decov-
inc requires low CPU consumption and therefore it is suitable
also for small robots with low computational power. On the
contrary, the L05+deconv topology would be suitable for
platforms where GPU acceleration is available because of
the superior accuracy.

As was said before, the main advantage of our method is
superior time performance when compared to the method of
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Fig. 9: Ground segmentations (outputs of CNN L05+deconv, bottom) for different LiDAR scans compared with human-made
annotations (up). The results are near ideal but small differences are still visible under closer inspection.

Zhang et al. [1]. In our experiments, when using the Zhang’s
MATLAB implementation, the processing time of Velodyne
HDL-64E LiDAR frame was 145 sec and consumed 11GB
of memory on average (note: no memory swapping which
would compromise the performance happened during the
experiments). Also, when we decreased the maximal range
(and also the size of the internal 3D polar grid) to 30m, the
processing time dropped to 75sec per frame and the memory
consumption to approximately one half. However, this is still
really far from real-time performance.

V. CONCLUSION

We presented a real time and robust ground segmentation
method of Velodyne LiDAR data which outperforms the
current state-of-the art methods in both the accuracy and
speed. Our results show that the sparse LiDAR data can
be encoded into its dense 2D representation and effectively
processed by CNN. Our method improved the precision of
state of the art [1] (by 0.5%) and significantly improved
speed of the ground segmentation process from minutes to
140ms using CPU and 7ms with GPU acceleration.

In this paper we demonstrate that CNN approach is
suitable for simpler task of ground segmentation where the
results are near ideal. In the follow-up work, we want to
explore the potential of this approach in more challenging
semantic segmentation or move detection and also in quite
different tasks of visual odometry estimation in the LiDAR
data or point cloud registration.

As a secondary outcome of our work, we created the
dataset with ground annotated and made it publicly available
along with the annotation tool. Such data can be used for
designing, training, and evaluation of other ground segmen-
tation approaches.
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