
ClassBench-ng: Recasting ClassBench After a Decade of
Network Evolution

Jiří Matoušek1
imatousek@fit.vutbr.cz

Gianni Antichi2
gianni.antichi@cl.cam.ac.uk

Adam Lučanský3
xlucan01@stud.fit.vutbr.cz

Andrew W. Moore2
andrew.moore@cl.cam.ac.uk

Jan Kořenek1
korenek@fit.vutbr.cz

1Brno University of Technology, Faculty of Information Technology, Centre of Excellence IT4Innovations
Brno, CZ

2University of Cambridge
Cambridge, UK

3CESNET
Praha, CZ

ABSTRACT
Internet evolution is driven by a continuous stream of new
applications and users driving the demand for services. To
keep up with this, a never-stopping research has been trans-
forming the Internet ecosystem over the time. Technological
changes on both protocols (the uptake of IPv6) and network
architectures (the adoption of Software Defined Networking)
introduced new challenges for ASIC designers. In particu-
lar, IPv6 and OpenFlow increased the complexity of the rule
matching problem, pushing researchers to build new packet
classification algorithms capable to keep pace with a steady
growth of link speed.
A lot of research effort identifies better lookup techniques

capitalizing on the characteristics of rule sets. So far, the
availability of small numbers of real rule sets and synthetic
ones, generated with tools such as ClassBench, has boosted
research in the IPv4 world. Starting from an analysis of
rule sets taken from operational environments, we present
ClassBench-ng, a new open source tool for the generation of
synthetic IPv4, IPv6, and OpenFlow 1.0 rule sets exposing
the same properties of real ones. We feel this tool can meet
the requirements of nowadays researchers, boosting the rule
matching research as ClassBench has done since ten years
ago.

CCS Concepts
•Networks → Packet classification; Network exper-
imentation; Network performance analysis; Network
performance modeling; Network measurement; Packet-swit-
ching networks; Network dynamics; •Hardware → Net-
working hardware; Hardware accelerators; Reconfigurable
logic applications;

Keywords
ClassBench, OpenFlow, packet classification

1. INTRODUCTION
Internet enables users to access applications and services

through the network at a global scale. It is a very dynamic
ecosystem, where the evolution is driven by a continuous
stream of new applications, as well as users driving the de-
mand for a steady growing number of services. Today’s In-

ternet is no more the one of a decade ago. The continuous
innovation, a desirable property of Internet, shapes network
devices operation. Technological changes/improvements on
both protocols and network architecture transformed device
operations over the time.
From a protocol perspective, the last few years have shown

a steady rise of IPv6 deployments. In particular, Czyz et
al. [6] show that, while raw IPv6 Internet traffic is still
a small fraction, the nature of its use and the trajectory
of growth have shifted dramatically. Consequently, IPv6
should no longer be dismissed by researchers as an uninter-
esting rarity. On the other side, from a network architec-
ture point of view, the Software Defined Networking (SDN)
paradigm, with its predominant realization, the OpenFlow
protocol [12], is getting more and more interest in production
networks. New OpenFlow-enabled switches are hitting the
market from a number of different companies, e.g., Pica8,
Arista, Corsa, facilitating real SDN implementations as for
the CARDIGAN project [15], the Google WAN [8], or other
deployments around the world [10].
However, the basic operation of each networking device is

still the same: packet classification at physical link speed.
As a packet arrives, the system must compare one or more
header fields against a set of rules to assign a flow identifier.
This is used for the basic forwarding operation, to apply
security policies, application-specific processing, or quality-
of-service guarantees. The packet classification problem is
not new and has been driving a lot of research in the last
years [17, 19, 13, 9, 21]. As the matching complexity and
link speed increase, we argue the rule matching problem
still remains a hot topic. In particular, the IPv6 protocol
quadrupled the size of IP addresses, making the lookup pro-
cess more complicated compared to the IPv4 case. More-
over, OpenFlow extended the matching criteria to multiple
fields, resulting in new challenges for ASIC designers.
A lot of research effort in the past identified better packet

classification techniques leveraging the characteristics of real
rule sets for faster searches [14, 11]. It has also been demon-
strated that the capacity and efficiency of the most promi-
nent packet classification solution, Ternary Content Address-
able Memory (TCAM), is also subject to the characteristics
of rule sets [17]. The lack of publicly available rule sets has
been mitigated by a number of synthetic rule set genera-
tors [18, 7, 16]. However, none of them provide a flexible so-

2017 ACM/IEEE Symposium on Architectures for Networking and Communications

978-1-5090-6386-4/17 $31.00 © 2017 IEEE 204

2017 ACM/IEEE Symposium on Architectures for Networking and Communications

978-1-5090-6386-4/17 $31.00 © 2017 IEEE

DOI 10.1109/ANCS.2017.33

204

2017 ACM/IEEE Symposium on Architectures for Networking and Communications

978-1-5090-6386-4/17 $31.00 © 2017 IEEE

DOI 10.1109/ANCS.2017.33

204

lution that allows for an accurate generation of IPv4, IPv6,
and OpenFlow rule sets.
Into this lacuna, we launch ClassBench-ng, a new open

source tool for the generation of synthetic IPv4, IPv6, and
OpenFlow 1.0 rule sets. It accepts an input parameter file
that can specify the statistical properties for all the match-
ing fields that need to be generated. Therefore, to make the
ClassBench-ng output rule set as close as possible to a realis-
tic one, it is important that such properties reflect precisely
the current trends. We thus present also an analysis of real
IPv4 and IPv6 prefix sets. In addition, we inspected Open-
Flow 1.0 flow tables taken from an operational environment.
Finally, to make this solution attractive in the long term
and for a wide number of different use cases, ClassBench-ng
offers a mechanic to create input parameter files from real
rule sets. We aim to use the tool repository as a place where
researchers and operators can continuously upload new pa-
rameter files that match a number of different environments
or use cases, e.g., datacenter, Internet Service Provider, In-
ternet eXchange Point. This will further increase the (poten-
tial) impact of ClassBench-ng on the research community.
The main contributions of the paper can be summarized

as follows:

• In-depth analysis of real classification rule sets based
on IPv4, IPv6, and OpenFlow 1.0.

• A new tool which is able to generate and analyze IPv4,
IPv6, and OpenFlow 1.0 rule sets.

• The tool is open and available to anyone at:
http://github.com/classbench-ng/classbench-ng.

The rest of the paper is organized as follows: we first
concentrate on the challenges in synthetic rule set genera-
tion (Section 2). We then present an analysis of real IPv4,
IPv6, and OpenFlow data sets (Section 3), alongside the
ClassBench-ng architecture (Section 4) and the experimen-
tal evaluation (Section 5). Finally, we cover related works
(Section 6) and conclude the paper (Section 7).

2. CHALLENGES IN RULE GENERATION
Synthetic rule generation process transforms input param-

eters1 into a complete rule set. Available tools use as an
input either statistic distributions of real sets [18] or user-
defined characteristics [7]. While the former solution results
to be more accurate when an output as close as possible to
a real set is required, the latter is (potentially) more flexible
in the long term. Indeed, the continuous innovation, a desir-
able property of Internet, might change the statistic prop-
erties of rule sets, thus likely making a tool obsolete, if the
input parameters are not updated accordingly. Providing
an analysis mechanic, able to generate input seeds from real
sets, is thus the most sensible way to ensure the longevity of
the tool. Therefore, combining a generation module, which
rely on statistic distributions of real sets, with an analysis
toolkit is the best combination for a synthetic rule set gen-
erator.
ClassBench-ng proposes a tight integration of generation

and analysis. While, the generation module creates IPv4,
IPv6, or OpenFlow rules from an input seed (Equation 1a),
the analysis toolkit can recreate input seed files from real

1We call them seeds.

rule sets (Equation 1b). Because of space limitations, this
paper describes only the algorithms that enable the first
transformation (Section 4), as the other is the inverse op-
eration: it derives rules statistical distributions from real
data.

rule set = f(seed) (1a)

seed = f−1(rule set) (1b)

The generation quality, i.e., how similar is the output set
to a real one, directly depends on the parameters being used
as an input. To this end, we identified the main properties
a seed needs to assure:

• anonymity — retain all important characteristics of a
real set without revealing any confidential information.

• completeness — be sufficient for the generation of a
new synthetic set.

• scalability — allow the generation of synthetic sets of
different sizes.

The first property easier the redistribution of seeds that
match a number of different environments or use cases, while
keeping the output set as close as possible to a real one. The
other properties are needed to enable the generation process.
ClassBench-ng meets all three properties allowing for the

generation of the desired amount of output rules that match
input distributions. A statistical approach in the defini-
tion of input parameters enables the first property: the
anonymity is guaranteed as no real rules are strictly needed
(thus avoiding the use of sensitive information). The com-
pleteness of the rule set representation is proven by the tool
itself and the past experience of ClassBench [18]. As for the
scalability, we feel that the statistical approach being used
for the rule set representation impacts favorably when the
size of the generated data starts to scale. Indeed, the more
entries need to be generated, the easier they will have the
required statistical properties.
Understanding the statistical properties of real rule sets is

thus the first step towards the realization of ClassBench-ng.
Given past research [18] had shown a complete analysis of
real IPv4-based classification rules, along with a keen de-
sire to determine if such a study is nowadays still valid, we
propose a comparative analysis of IPv4 and IPv6-based rule
sets after a decade. We then investigate the properties of
OpenFlow 1.0 flow tables taken from an operational envi-
ronment. The statistical insights from this study will serve
as a basis for the creation of appropriate seeds that will be
used as an input in the generation process.

3. ANALYSIS OF REAL CLASSIFICATION
RULES

This section provides an analysis of IPv4, IPv6, and Open-
Flow 1.0 classification rule sets taken from operational en-
vironments. IPv4 and IPv6 prefixes have been taken from
core routers. Classification rule sets come from access con-
trol lists (ACLs) applied at a university network’s perime-
ter, while the analysis of OpenFlow data is based on a set of
Open vSwitches running in a cloud datacenter environment.
Table 1 summarizes the data sets being used in the analysis.

205205205

Table 1: Utilized data sets. OpenFlow set of3 exists in
several instances, one for each day in the given interval.

Prefixes
Name or Rules Source Date

IPv4 Prefix Sets
eqix_2015 550 511

Route Views
2015-07-02

eqix_2005 164 455 2005-07-02
rrc00_2015 571 351

RIPE RIS
2015-07-02

rrc00_2005 168 525 2005-07-02
IPv6 Prefix Sets

eqix_2015 23 866
Route Views

2015-07-02
eqix_2013 13 444 2013-07-02
eqix_2005 658 2005-07-02
rrc00_2015 24 162

RIPE RIS

2015-07-02
rrc00_2013 14 374 2013-07-02
rrc00_2005 499 2005-07-02

ACL Rule Sets
uni_2010 96 ACLs from 2010-08-30
uni_2015 122 university network 2015-01-14

OpenFlow Rule Sets
of1 16 889 2015-05-29
of2 20 250 OpenFlow Switch 2015-05-29

of3
1 757 in a datacenter 2015-06-18

to to
7 456 2015-07-14

In the following sections, we first analyze properties of IP
prefix sets from core routers (Section 3.1) and classification
rules from university ACLs (Section 3.2). Then we conduct
an analysis of real rule sets from Open vSwitches deployed
in a cloud datacenter environment (Section 3.3).

3.1 IP Prefixes

3.1.1 IPv4
A binary prefix tree, i.e., a trie, is the most common data

structure being used to represent a set of IP prefixes. The
main statistical parameters that influence its shape are four:
a prefix length distribution, a branching probability distri-
bution, an average skew distribution, and a prefix nesting
threshold [18]. A prefix length distribution characterizes
prefixes span. A branching probability distribution repre-
sents the probability, at each trie level, of having one-child
or two-children nodes. Skew is defined in Equation 2.

skew = 1− weight(lighter)

weight(heavier)
(2)

weight() function returns the number of prefixes in a spec-
ified subtree and lighter/heavier represent subtrees of a
two-children node with smaller/higher number of prefixes,
respectively. Finally, a prefix nesting threshold specifies the
maximum number of prefix nodes that appear on an arbi-
trary path from the root to the leaves.
Figures 1 compare the same prefix set (eqix) in ten years

time. While the prefix length distribution is almost the same
between years 2005 and 2015 (Figure 1a), nowadays we are
facing an increase of two-children nodes in the trie (Fig-
ure 1b) and the average skew is lower (Figure 1c). The
prefix nesting threshold remained unchanged between 2005
and 2015. The same results are also confirmed in prefix
sets rrc00. Growing number of two-children nodes and
their smaller skew correlates with more than three times
higher number of prefixes after 10 years, as shown in Ta-
ble 1. Branching probability and average skew distributions

0 %

20 %

40 %

60 %

80 %

100 %

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

D
is

tr
ib

ut
io

n

Pre�x Length

eqix_2015 eqix_2005

(a) Prefix length distribution.

0 %

20 %

40 %

60 %

80 %

100 %

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

D
is

tr
ib

ut
io

n
Trie Depth

eqix_2015 eqix_2005

(b) Branching probability distribution (two-children nodes).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Av
er

ag
e

Sk
ew

Trie Depth

eqix_2015 eqix_2005

(c) Average skew distribution.

Figure 1: Comparison between eqix IPv4 prefix sets in 2005
and 2015.

follow the same trends and although the prefix sets grew in
size, prefix length distribution is the same. These results
are aligned with the path towards the saturation of IPv4
addresses [2].

3.1.2 IPv6
We propose for the IPv6 analysis the same statistical ap-

proach being used in the IPv4 context. Prefix sets are col-
lected from the same core routers over a span of ten years.
Figures 2 compare the selected parameters between the

eqix prefix sets from years 2005 and 2015. Only the first 64
trie levels are shown as there were no IPv6 prefixes longer
than 48 bits in 2005. Figure 2a shows that the prefix length
distribution has changed significantly in the last 10 years.
While prefix length 32 dominated the distribution in 2005,
currently the most common prefix length is 48. This has
affected both the branching probability distribution (Fig-
ure 2b) and the average skew distribution (Figure 2c). We

206206206

0 %

20 %

40 %

60 %

80 %

100 %

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

D
is

tr
ib

ut
io

n

Pre�x Length

eqix_2015 eqix_2005

(a) Prefix length distribution.

0 %

20 %

40 %

60 %

80 %

100 %

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

D
is

tr
ib

ut
io

n

Trie Depth

eqix_2015 eqix_2005

(b) Branching probability distribution (two-children nodes).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

Av
er

ag
e

Sk
ew

Trie Depth

eqix_2015 eqix_2005

(c) Average skew distribution.

Figure 2: Comparison between eqix IPv6 prefix sets in 2005 and 2015.

believe that such a big difference in the prefix length distri-
bution is related to the steady growth of IPv6 deployments
over the last years. In 2005, most of the allocated prefixes
belonged to ISPs/RIRs, while nowadays most of the pre-
fixes belong to end users (organizations) [3]. Changes of
branching probability and average skew between 2005 and
2015 have also been caused by the emergence of prefixes
longer than 64 bits. Prefix set rrc00 shows similar behav-
ior, except for the prefix nesting threshold parameter, which
remains unchanged.
In 2005, both the eqix and rrc00 prefix sets contained

only a few hundreds of IPv6 prefixes, while there are cur-
rently more than 23 thousands of prefixes in both sets (Ta-
ble 1). In this context, big changes over the parameter dis-
tributions, i.e., branching probability and average skew, are
not surprising. However, if we compare parameter values
over a shorter span (between 2013 and 2015), where the pre-
fix length distribution is almost stable, the values of branch-
ing probability and average skew distributions follow similar

trends. Note that the number of IPv6 prefixes in the eqix

set almost doubled between 2013 and 2015.

Table 2: Distribution of rules over protocol values.

Data Set
Protocol Values

wildcard TCP UDP
uni_2010 26.0% 71.9% 2.1%
uni_2015 38.5% 54.9% 6.6%

3.2 Ports and Protocol
The following analysis is performed using rule sets taken

from ACLs in a university campus network, which were pre-
sented in Table 1. The data spans over a period of five
years to enable a comparative analysis over the time. We
first concentrated on the distribution of rules over protocol
values (Table 2). The results show an increased number of
rules specifying a wildcard or UDP, while the number of

207207207

rules specifying TCP is decreasing. The ICMP protocol is
not specified in the available rule sets at all.
Table 3 presents the distribution of rules over port classes,

separately for source and destination port fields. The classes
being used to describe port ranges are five [18]:

• WC — wildcard

• HI — user port range [1024 : 65535]

• LO — well-known system port range [0 : 1023]

• AR — arbitrary range

• EM — exact match

While the source port field is always treated with a wild-
card, the destination shows an interesting property over the
time. In particular, arbitrary range (AR) values and wild-
card (WC) entries increase at the expenses of exact match
(EM) ones.

Table 3: Distribution of rules over port classes.

Data Set Port Classes
WC HI LO AR EM

Source Port
uni_2010 100.0% 0.0% 0.0% 0.0% 0.0%
uni_2015 100.0% 0.0% 0.0% 0.0% 0.0%

Destination Port
uni_2010 26.0% 0.0% 0.0% 5.2% 68.8%
uni_2015 38.5% 0.0% 0.0% 8.2% 53.3%

Finally, we analyzed the distribution of rules over com-
bined source-destination port pair classes (PPCs). Figures 3
and 4 are based on the uni_2015 dataset and refer to TCP
protocol- and UDP protocol-based rules, respectively. The
most common class pair being adopted in the TCP case is
WC-EM, which represents rules specifying a wildcard for the
source port and an exact value for the destination. The ex-
act match values refer mostly to the SMTP protocol, widely
used for e-mail transmission. On the other hand, the UDP
case shows a big utilization of the WC-AR class pair. The
rising of new applications and the massive usage of the RTP
protocol-based solutions have led to specifically designed
classification rules.
The analysis reported in this section shows that wildcard

and TCP matching are commonly used in the protocol decla-
ration. There is also an increasing usage of arbitrary ranges
in the destination port field selection. As new applications
arise, the need for arbitrary ranges become mandatory, thus
justifying the obtained result.

3.3 OpenFlow
This section provides an analysis of real OpenFlow rule

sets taken from a cloud datacenter in operation. We fo-
cused our study on understanding the statistical properties
of OpenFlow-based rule sets as well as their temporal be-
havior. This is a once-in-a-lifetime opportunity to observe
technological changes on such a grand scale, which is both
practically and scientifically important. We first focus on a
header fields distribution (Section 3.3.1). Then we move our
attention to fields dependency (Section 3.3.2) and rule set
dynamics (Section 3.3.3).

Figure 3: PPC matrix for TCP protocol (rule set uni_2015).

Figure 4: PPC matrix for UDP protocol (rule set uni_2015).

3.3.1 Header Fields
OpenFlow 1.0 extends the standard 5-tuple, i.e., ip src,

ip dst, l4 src, l4 dst, and ip proto, with seven more header
fields [4]. Figure 5 shows the header field distribution in rule
sets of1 and of2 introduced in Table 1. Fields from the stan-
dard 5-tuple present a non-wildcard value in at least 20% of
rules, while, except formac dst and eth type, the others show
a big predominance of wildcard entries. Moreover, header
fields vlan id, vlan prio, and ip tos are never specified. It is
clear that in this case the network configuration plays a key
role, i.e., virtual LANs are not enabled.
Table 4 shows a per-field count of unique values2 being

used in rule sets of1 and of2, alongside their uniqueness
factor expressed in percentage. The factor estimates the
per-field variance between rules. For instance, a value close
to zero suggests little variance, i.e., rules specifying that field
tend to use every time the same value, while a value close
to one suggests the exact opposite. The uniqueness factor
shows an interesting property of the of1 data set. While the

2eth type presents just one value referred to the IPv4 type –
0x0800

208208208

Table 4: Per-field count of unique values and associated uniqueness factor expressed in percentage (in parenthesis).

Rule Set in port mac src mac dst eth type ip proto ip src ip dst l4 src l4 dst
of1 123 (86.6) 27 (3.2) 593 (4.7) 1 (<0.1) 3 (0.3) 478 (4.6) 109 (0.9) 4 (2.9) 48 (2.2)
of2 140 (86.4) 19 (8.1) 791 (5.0) 1 (<0.1) 3 (0.1) 390 (2.8) 97 (0.7) 4 (<0.1) 8227 (92.7)
of1+of2 182 (59.9) 45 (4.2) 1176 (4.1) 1 (<0.1) 3 (<0.1) 498 (2.0) 119 (0.4) 6 (0.1) 8237 (74.2)

0 %

20 %

40 %

60 %

80 %

100 %

in_
po

rt

mac
_s

rc

mac
_d

st

et
h_

typ
e

vla
n_

id

vla
n_

pr
io
ip_

tos

ip_
pr

oto
ip_

src
ip_

ds
t
l4_

src
l4_

ds
t

D
is

tr
ib

ut
io

n

Header Fields

speci�ed wildcarded

Figure 5: Per-field distribution of rules from combined
of1+of2 rule set over specified and wildcarded classes.

mac dst field has the highest number of unique values, its
uniqueness factor is close to zero. In particular, the in port
field has the highest uniqueness factor. Therefore, we can
state that rules specifying a value for in port are physical-
port-oriented, i.e., the value of in port represents the most
important part of the rule. Things changes in the of2 data
set. In this case, we can assert that rules specifying a value
for the l4 dst field are application-oriented.

Figure 6 shows the prefix length distribution for the ip src
field in data set of1. The most common prefix lengths are 0
(a wildcard rule), 10, and 32 (an exact match rule). Similar
trends can also be seen for the ip dst field of the of1 data set
and both IP fields belonging to the of2 data set. The differ-
ences between the presented prefix length distribution and
the one from Figure 1a are big. We justify this considering
the nature of OpenFlow rules: they are not dictated by any
routing protocol unless a given daemon is running on the
top of the controller. In addition, the different environment
(a core router for the previous study and a cloud datacenter
for this one) plays an important role.

0 %

20 %

40 %

60 %

80 %

100 %

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

D
is

tr
ib

ut
io

n

Pre�x Length

Figure 6: Prefix length distribution of source prefixes from
of1 rule set.

A further analysis of data sets of1 and of2 shows that
the TCP protocol is specified only in 14.03% of rules while
10.59% of rules specify the ICMP protocol. Trends similar
to what was shown in Section 3.2 can also be shown for the
distribution of source/destination port values over five port
classes and their combination into source-destination port
pair classes.

3.3.2 Rule Types
In this section we provide an analysis of fields depen-

dency. In particular, we characterize the relationship be-
tween header fields to study which fields are more likely to
be specified together. Figure 7 shows the results of our anal-
ysis on the combined of1+of2 rule set. We define rule type
as a template that indicate which header fields are specified,
i.e., have a non-wildcard value in a rule. To easier the graph
representation, each rule type has been associated to a 12-
bit number (rule type number) where each bit is referred to
a given header field. The bit set to 1 stands for a specified
field, while 0 for a wildcard. While it is clear that rule type
number 0 refers to the combination of all header fields with
a wildcard and 4 095 the exact opposite, it is important to
define the bit-field correlation to correctly read the proposed
graph. Starting from the most significant bit we used the
following order: in port, mac src, mac dst, eth type, vlan id,
vlan prio, ip tos, ip proto, ip src, ip dst, l4 src, and l4 dst.
Given the proposed encoding scheme, rule type number 796
refers to rules where mac dst, eth type, ip proto, ip src, and
ip dst present specified values, while other fields a wildcard.
Despite there are 4 096 possible rule types, the amount of
rule types being used is much lower. In practice, our Open-
Flow data sets of1 and of2 contain rules of 18 types only.
Six of them are the most common and appear in more than
5% of the cases.

0 %

5 %

10 %

15 %

20 %

25 %

30 %

35 %

0 4 7 8 51
2
51

6
51

9
52

4
52

7
78

8
78

9
79

6
10

24
10

32
13

04
13

05
15

51
20

48

D
is

tr
ib

ut
io

n

Rule Type Number

Figure 7: Distribution of rules from combined of1+of2 rule
set over rule types.

Figure 5 shows that eth type and ip proto are specified
by the same number of rules. Moreover, eth type is always
defined as IPv4 (value 0x0800) and it appears only in rules
that define also ip proto (note rule types 788, 789, 796, 1304,

209209209

and 1305 in Figure 7). For the sake of analysis they can be
considered redundant. Thus, mac dst is the only OpenFlow
header field that is specified in all the most common rule
types.

3.3.3 Dynamics
Figure 8 shows the dynamics of rule set of3 over a two-

week period. We define the rate of changes as the size (car-
dinality) of symmetric difference divided by the size of union
of of3 in two subsequent days.

0 %

20 %

40 %

60 %

80 %

100 %

20
15

-07
-01

20
15

-07
-02

20
15

-07
-03

20
15

-07
-04

20
15

-07
-05

20
15

-07
-06

20
15

-07
-07

20
15

-07
-08

20
15

-07
-09

20
15

-07
-10

20
15

-07
-11

20
15

-07
-12

20
15

-07
-13

20
15

-07
-14

Ra
te

 o
f C

ha
ng

es

Day of Origin

Figure 8: Rate of changes (compared to the previous day)
of rule set of3 between 1st and 14th July 2015.

The studied datacenter environment has 220 physical hy-
pervisors. The analysis has been performed exporting a
flow table snapshot from the same hypervisor every day at
the same time. Users creating/deleting virtual machines
(VMs) or updating security profiles on any VM trigger a
flow change. While the rate remains stable in June (not
shown) and for the first week of July, it presents a spike on
7th July 2015.

 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

20
15

-06
-30

20
15

-07
-01

20
15

-07
-02

20
15

-07
-03

20
15

-07
-04

20
15

-07
-05

20
15

-07
-06

20
15

-07
-07

20
15

-07
-08

20
15

-07
-09

20
15

-07
-10

20
15

-07
-11

20
15

-07
-12

20
15

-07
-13

20
15

-07
-14

Si
ze

Day of Origin

Figure 9: Size of rule set of3 between 30th June and 14th
July 2015.

The behavior can be justified with Figure 9. On that
day, in fact, the number of rules decreased drastically, thus
creating the big spike in the rate of changes.

4. CLASSBENCH-NG: NEXT
GENERATION CLASSBENCH

This section discusses the design of ClassBench-ng. The
tool builds upon the original ClassBench software. Fig-
ure 10 shows its high-level architecture composed of four

main building blocks, which are presented in the following
subsections. The Improved ClassBench block patches the
original tool to improve the IPv4 prefix generation fidelity
(Section 4.1), while IPv6 Generation block provides IPv6
prefix generation capabilities (Section 4.2). The OpenFlow
Analysis block analyses OpenFlow rules to produce an out-
put seed, while OpenFlow Generation block is in charge of
generating synthetic OpenFlow rules (Section 4.4). Despite
ClassBench-ng already provides seeds for rule generation,
we believe a seed generator is necessary to adapt the tool
to a number of different scenarios, especially for OpenFlow-
enabled networks where the dynamics are bounded by ap-
plications running on top of a controller.

Figure 10: High-level architecture of ClassBench-ng.

4.1 Improved ClassBench
This section motivates the need for improving the original

ClassBench software and describes the algorithm adopted in
ClassBench-ng for IPv4 classification rules generation. We
performed a test campaign to evaluate the fidelity of Class-
Bench in order to understand its internals. While the layer
four ports and protocol accurately follow the input seed, the
IPv4 prefixes show a lower accuracy.
Figures 11 compare prefix set parameters extracted from

the input IPv4 seed and from rules generated by original
ClassBench, along with their errorbars. While the genera-
tion process proves to be accurate with respect to a prefix
nesting threshold, the other parameters do not precisely fol-
low the required distribution. Indeed, the generated branch-
ing probability meets the requirements only for 13 trie lev-
els, while the average skew only for 5. We believe that
such errors are caused by parameters interdependence: once
the parameter with the highest priority has been fixed, the
tool tries to meet the other requirements. A prefix nesting
threshold has the highest priority, thus justifying its accu-
racy.
ClassBench-ng tries to improve the ClassBench generation

process by iteratively building an output rule set with char-
acteristics as close as possible to the input seed. The pseu-
docode in Figure 12 shows the process of rule set construc-
tion in the Improved ClassBench block. The tool first cre-
ates a big rule set using the original ClassBench application
(line 3). Then it prunes the tries representing source and
destination IP prefix sets to converge on a solution which
is accurate and contain the target number of IP prefixes
(lines 4, 5). The algorithm performing the trie pruning is
described in Section 4.1.1.
Improved ClassBench selects rules from the initial set, i.e.,

rules, that contain source/destination IP prefixes available

210210210

0 %

20 %

40 %

60 %

80 %

100 %

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

D
is

tr
ib

ut
io

n

Trie Depth

seed generated

(a) Branching probability distribution (two-children nodes).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Av
er

ag
e

Sk
ew

Trie Depth

seed generated

(b) Average skew distribution.

Figure 11: Comparison of destination prefix set parameters
from acl4 seed and rule sets generated from this seed using
original ClassBench (target size was set according to the
seed). The parameters of the generated sets are represented
by average, minimum, and maximum values of 10 sets.

1: function ImprovedClassBench(seed, size)
2: output rules← ∅
3: rules← ClassBench(seed, size · 100)
4: src trie← TriePruning(rules.src trie, seed, size, 4)
5: dst trie← TriePruning(rules.dst trie, seed, size, 4)
6: max match← MaxBiMatch(src trie, dst trie, rules)
7: for each rule ∈ max match do
8: output rules← output rules ∪ {rule}
9: rules← rules \ {rule}
10: RemovePrefix(src trie, rule.src prefix)
11: RemovePrefix(dst trie, rule.dst prefix)

12: for each dst prefix ∈ dst trie do
13: if not TrieIsEmpty(src trie) then
14: rule← SelectRule(rules, dst prefix)
15: rules← rules \ {rule}
16: src prefix← GetAnyPrefix(src trie)
17: RemovePrefix(src trie, src prefix)
18: ReplaceSrcPrefix(rule, src prefix)
19: output rules← output rules ∪ {rule}
20: return output rules
21: end function

Figure 12: Pseudocode of rule set construction in Improved
ClassBench.

also in the pruned tries, i.e., src trie and dst trie. To find
these rules, the tool employs the maximum matching in a
bipartite graph algorithm (line 6). The selected rules are
added to the final set, i.e., output rules, as shown in line 8.

Every time a new rule is added, it is also removed from the
initial set (line 9) and its source and destination prefixes are
removed from the pruned tries as well (lines 10, 11). In case
the maximum matching does not return the target number
of rules, the last loop (line 12) creates the remaining rules
by replacing a source prefix with an arbitrary prefix from
src trie (lines 14 to 18).

4.1.1 Trie Pruning
Figure 13 shows the pseudocode of the trie pruning pro-

cess. In addition to its parameters trie, seed (target val-
ues of trie parameters are extracted from line 3 to 6), and
target size, parameter n is used to fix the number of itera-
tions over the last two pruning steps. These iterations try to
minimize the negative effect of the convergence over the tar-
get amount of prefixes on average skew. While each iteration
decreases the number of prefixes in the trie by 1

n
· orig size

(line 13), the last iteration adjusts the number of prefixes to
the target value (target size parameter), as shown in line 11.

Branching Probability Adjustment: This step (line 7)
adjusts branching probability at each trie level (starting
from the root of the trie) by removing a subtree of two-
children nodes and then a subtree of one-child nodes. Sub-
trees to be removed are selected increasingly according to
the number of prefixes they carry. Moreover, this step never
removes the last branch with the maximum prefix nesting
to do not alter the prefix nesting threshold (already met by
original ClassBench).
Average Skew Distribution Adjustment: This step

(line 9) increases or decreases average skew at each trie level
(starting from the leaves of the trie). In particular, it re-
moves prefixes from the lighter or the heavier subtree of
two-children nodes. As in the previous case, nodes are se-
lected increasingly according to the total number of prefixes
in their subtrees. This step does not remove the last prefix
from the leaf nodes and it tries to do not alter average skew
when removing prefixes at already adjusted levels, i.e., levels
below the current level.
Prefix Length Distribution and the Total Number

of Prefixes Adjustment: This step (lines 11 and 13) re-
moves prefixes at each trie level (starting from the root of
the trie) to get their total number matching the target value.
When removing the prefixes, the algorithm also tries to do
not alter the skew of two-children nodes; this is obtained
by tracking the number of prefixes that should be removed
from each subtree. Similarly to the average skew distribu-
tion adjustment, this step does not remove the last prefix
from leaf nodes: doing so would imply the deletion of the
whole branch, thus altering the branching probability.

4.2 IPv6 Generation
The IPv6 Generation block is based upon our improved

version of original ClassBench. As the trie construction me-
chanic does not depend on specific IPv4 features, ClassBench-
ng takes advantage of the IPv4 toolchain with different input
parameters, i.e, IPv6 seeds.

4.3 OpenFlow Analysis
The OpenFlow Analysis block takes as an input OpenFlow

rules and generates the corresponding seed. ClassBench-ng
already comes with seeds for OpenFlow rules generation.
However, given the programmability of OpenFlow-enabled
networks, we believe that providing a seed generator is im-

211211211

1: function TriePruning(trie, seed, target size, n)
2: orig size← GetSize(trie)
3: prefixes← GetParam(seed, “prefix length distr”)
4: one child← GetParam(seed, “one child prob”)
5: two children← GetParam(seed, “two children prob”)
6: skew ← GetParam(seed, “skew distr”)
7: AdjustBranching(trie, one child, two children)
8: for each i ∈ [1, n] do
9: AdjustSkew(trie, skew)
10: if i = n then
11: AdjustPrefixes(trie, prefixes, target size)
12: else
13: AdjustPrefixes(trie, prefixes, n−i

n
· orig size)

14: return trie
15: end function

Figure 13: Pseudocode of trie pruning.

portant to adapt the tool to a number of different scenarios.
At the current state, ClassBench-ng is able to correctly parse
rule sets represented in the format used by ovs-ofctl com-
mand line tool and generate the appropriate OpenFlow 1.0
seed.
An OpenFlow seed is composed of three main elements:

(1) a rule type distribution, (2) a 5-tuple seed, and (3) an
OpenFlow-specific fields seed. The first provides an overview
of fields dependency (as shown in Section 3.3.2) and the
second supplies 5-tuple-related distributions. Finally, an
OpenFlow-specific fields representation is based on the fol-
lowing types:

• values — a distribution over a set of original values;

• parts — a distribution over a set of the selected part
of original values;

• size — a total number of unique original values;

• null — no representation.

The pairing between a type and a particular header field
reflects different requirements. As an example, the values
representation contains specific information from the orig-
inal rule set. Therefore, it is appropriate only for fields
that do not carry confidential data, i.e., in port and eth type.
On the other hand, null and size representations do not in-
clude values from the original rule set, thus they are suitable
for header fields carrying confidential content. The former
(null) is used for header fields with a relatively small number
of possible values, i.e., vlan prio and ip tos, while the latter
(size) is used for header fields with a potentially big subset,
i.e., vlan id. Finally, parts represents a trade-off between val-
ues and null. ClassBench-ng uses this representation for the
mac src and mac dst header fields, as it stores their vendor
part in a seed.

4.4 OpenFlow Generation
The OpenFlow Generation block generates a set of Open-

Flow rules from an input seed. Figure 14 shows the pseu-
docode of the generation process. IPv4 5-tuples are gen-
erated according to the OpenFlow seed using the modules
present in the Improved ClassBench block (line 3). Each
generated 5-tuple is then transformed to an OpenFlow rule
that complies with the generated ruletype (line 5). In par-
ticular, some of the created fields might be removed (func-
tion Remove in line 8) and others OpenFlow-specific added
(function Add in line 12).

1: function OpenFlowGeneration(seed, size)
2: of rules← ∅
3: ipv4 5tuples← ImprovedClassBench(seed, size)
4: for each rule ∈ ipv4 5tuples do
5: rule type← Generate(seed, “rule type”)
6: for each field ∈ IPv4 5-tuple fields do
7: if field /∈ rule type then
8: Remove(rule, field)

9: for each field ∈ OpenFlow-specific fields do
10: if field ∈ rule type then
11: field value← Generate(seed, field)
12: Add(rule, field value)

13: of rules← of rules ∪ {rule}
14: return of rules
15: end function

Figure 14: Pseudocode of OpenFlow rules generator.

To generate consistent OpenFlow rules, some dependency
among fields has to be ensured. As an example, the value
of eth type depends on the presence of several others header
fields, e.g., the presence of a VLAN tag. Per-field constraints
are also taken into account: the value of ip tos is randomly
selected from a pool of values defined by IANA [1], while
the values of 0x000 and 0xFFF for vlan id are not allowed
(the VLAN standard [5] reserves these values for a special
purpose). A similar approach is applied when generating
the value of mac src and mac dst, which use the parts repre-
sentation. Their vendor part is generated according to the
distribution from the seed, but the device part is randomly
generated.

5. CLASSBENCH-NG EVALUATION
This section evaluates ClassBench-ng, focusing on the gen-

eration of IPv4 prefixes (Section 5.1), IPv6 prefixes (Sec-
tion 5.2), and OpenFlow rules (Section 5.3). In the case
of IPv4 prefixes we compare ClassBench-ng against Class-
Bench [18] and FRuG [7], while IPv6 prefixes generation
fidelity is compared against Non-random Generator [20]. Fi-
nally, the OpenFlow Generation block is evaluated against
FRuG [7]. We do not asses layer four ports and protocol
generation, as ClassBench-ng relies directly on ClassBench
for them.
The evaluation uses the root-mean-square error (RMSE),

defined in Equation 3, to fairly compare the different tools.
In the equation, n represents the number of generated rule
sets, ȳ is the target value, and yi stands for the generated
ones. The experiments are carried on by generating 10 rule
sets, i.e., n = 10, using tool-specific seeds extracted from
an original rule set. In this case, the characteristics of the
original rule set represent the target values, i.e., ȳ, against
which we compare the same characteristics extracted from
rule sets generated by various tools, i.e., yi.

RMSE =

√√√√ 1

n

n∑
i=1

(ȳ − yi)2 (3)

5.1 IPv4 Prefixes Generation
This section compares the RMSE of ClassBench-ng, Class-

Bench, and FRuG on IP prefix set parameters. We first
generated an original rule set with ClassBench using the
acl4 seed provided with this tool. Then, capitalizing on

212212212

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

RM
SE

Pre�x Length

ClassBench-ng
ClassBench

FRuG

(a) Prefix length distribution.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

RM
SE

Trie Depth

ClassBench-ng
ClassBench

FRuG

(b) Branching probability distribution (two-children nodes).

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

RM
SE

Trie Depth

ClassBench-ng
ClassBench

FRuG

(c) Average skew distribution.

Figure 15: Comparison of root-mean-squared error of
ClassBench-ng, ClassBench, and FRuG in IPv4 prefix sets
generation.

FRuG/ClassBench-ng capabilities of producing input seeds
from an input rule set, we created the appropriate seeds
for FRuG, ClassBench-ng, and ClassBench. We then used
these seeds to generate back rule sets whose characteristics
are assessed using their RMSE.
The comparison of ClassBench-ng, ClassBench, and FRuG

on IP prefix sets generation is shown in Figures 15. In
terms of a branching probability distribution (Figure 15b),
ClassBench-ng outperforms ClassBench and results to be
worse than FRuG at only one trie level. The situation is
more balanced with respect to an average skew distribution

(Figure 15c). In this case, ClassBench-ng is more precise
in approximately 50% of trie levels when compared against
ClassBench and in more than 80% of levels when compared
against FRuG. On the other hand, Figure 15a shows poor
performance of ClassBench-ng with respect to prefix length
distribution fidelity. Although it is not possible to improve
ClassBench-ng generation fidelity for this parameter without
impacting negatively on the other ones, it is worth noting
that in this case the RMSE is ten times lower than for the
other parameters, making ClassBench-ng overall a more ac-
curate solution. In fact, Figure 16 shows the average RMSE
per trie level when all the evaluated parameters are consid-
ered at once. In this case, ClassBench-ng outperforms the
other solutions in most of the trie levels, and in particular
the 24th, which is the most commonly used in operation
(Section 3.1).

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Av
er

ag
e

RM
SE

Trie Depth

ClassBench-ng
ClassBench

FRuG

Figure 16: Average root-mean-squared error of ClassBench-
ng, ClassBench, and FRuG in IPv4 prefix sets generation.

5.2 IPv6 Prefixes Generation
To evaluate the quality of IPv6 prefix set generation of

ClassBench-ng against Non-random Generator, we used two
prefix sets that come from the same core router. An input
seed for ClassBench-ng was extracted from IPv6 prefix set
rrc00_2015, while Non-random Generator’s input consisted
directly of IPv4 prefix set rrc00_2015. Although such a
setup leads to a not entirely fair comparison of the tools, we
notice that Non-random Generator requires an IPv4 prefix
set to generate an IPv6 prefix set.
Results of the comparison are shown in Figures 17. Both

ClassBench-ng and Non-random Generator achieve compa-
rable quality of generation in terms of a prefix length dis-
tribution (Figure 17a). However, ClassBench-ng is more
precise with respect to a branching probability distribution
(Figure 17b) and Non-random Generator wins the compar-
ison on an average skew distribution (Figure 17c).

5.3 OpenFlow Rules Generation
OpenFlow rules generation capability of ClassBench-ng

is compared against FRuG on two different aspects: (1)
field dependencies represented by the rule type parameter
introduced in Section 3.3.2 and (2) generation of selected
OpenFlow-specific fields. As a common original rule set,
which is required to fairly asses the two tools using an RMSE,
we chose of1.
Figure 18a compares the ClassBench-ng rule type RMSE

against the one obtained with FRuG. With respect to this

213213213

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

RM
SE

Pre�x Length

ClassBench-ng Non-random Generator

(a) Prefix length distribution.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

RM
SE

Trie Depth

ClassBench-ng Non-random Generator

(b) Branching probability distribution (two-children nodes).

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

RM
SE

Trie Depth

ClassBench-ng Non-random Generator

(c) Average skew distribution.

Figure 17: Comparison of root-mean-squared error of ClassBench-ng and Non-random Generator in IPv6 prefix sets generation.

experiment, our tool clearly outperforms FRuG as it achieves
higher RMSE only for rule types 1304 and 2048. Therefore,
ClassBench-ng is more accurate in characterizing the rela-
tionship between header fields, i.e., which fields are more
likely to be specified together in a rule. ClassBench-ng also
proves to be be more accurate in the generation of selected
OpenFlow-specific header fields (Figure 18b). As vlan id,
vlan prio, and ip tos are always wildcarded in available rule
sets, we focus the assessment of OpenFlow field generation
on the in port, mac src, mac dst, and eth type header fields.
While the average RMSE of ClassBench-ng and FRuG is al-
most the same (and very low) for in port, in the case of other
fields our tool is clearly better. Finally, Figure 18c shows

the RMSE for the values of vendor part of the mac dst field.
ClassBench-ng outperforms FRuG for all generated values.

6. RELATED WORK
In the absence of publicly available classification rule sets,

past researchers faced the problem of how to realistically as-
sess the performance of new packet classification algorithms.
While a limited number of research groups obtained access
to real rule sets through confidentiality agreements, others
dealt with frameworks for synthetic rule sets generation. In
this scenario, ClassBench [18] is the well known and com-
monly used framework for IPv4 classification rules genera-
tion. So far, it has been a very useful tool but it does not

214214214

 0
 0.002
 0.004
 0.006
 0.008

 0.01
 0.012
 0.014
 0.016

4 7 8
51

2
51

6
51

9
52

4
52

7
78

8
78

9
79

6
10

24
10

32
13

04
13

05
15

51
20

48

RM
SE

Rule Type

ClassBench-ng FRuG

(a) OpenFlow rule types.

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006
 0.007
 0.008
 0.009

 0.01

in_port mac_src mac_dst eth_type

Av
er

ag
e

RM
SE

OpenFlow Header Fields

ClassBench-ng FRuG

(b) Average RMSE for selected OpenFlow-specific fields.

 0
 0.002
 0.004
 0.006
 0.008

 0.01
 0.012
 0.014
 0.016
 0.018

an
y

c2
:81

:09

fa:
16

:3e
�:
�:
�

00
:e0

:2b

00
:00

:00

01
:00

:0c

01
:00

:00

01
:80

:c2

RM
SE

mac_dst (vendor part)

ClassBench-ng FRuG

(c) Vendor part of mac dst.

Figure 18: Comparison of root-mean-squared error of
ClassBench-ng and FRuG in OpenFlow rule sets generation.

reflect anymore current research community needs, as it fo-
cuses only on IPv4.
Sun et al. [16] responded to the increasing interest towards

IPv6 protocol proposing ClassBenchv6, a reshaped version of
the ClassBench framework for the IPv6 world. With a focus
on IPv6 lookup tables only, Wang et al. [20] developed new
algorithms for the synthetic generation of IPv6 forwarding
tables. Following this effort, Zheng et al. [22] developed
a scalable IPv6 prefix generator, called V6Gene, for IPv6-
based route lookup algorithms benchmarking.
With an eye towards new future protocols, Ganegedara et

al. [7] proposed FRuG, a generic synthetic rule generator. It
allows the user to select the protocol fields and the charac-
teristics of each field, which can either be defined by the user
or configured to follow a distribution from an input seed file.
The user has complete control over the structure and the size

of the rule table which makes it a powerful benchmark to
assess various packet forwarding algorithms and for differ-
ent types of routers. However, only MAC and IP addresses
fields can be set to follow an input distribution. The other
OpenFlow-related fields need to be manually configured by
the user, making this solution less attractive if a realistic set
of synthetic rules needs to be generated.
ClassBench-ng has been designed to provide the flexibility

of generating IPv4, IPv6, and OpenFlow rule sets. It accepts
an input seed file which can specify a distribution for all the
OpenFlow 1.0 matching fields, making this solution very at-
tractive when a realistic rule set generation is needed. The
detailed analysis performed on real sets allows to include
in the tool input seeds that reflect the real world proper-
ties. In addition, the ability to self-generate seeds from real
sets allows to create a repository for a number of seeds that
reflect different scenarios, e.g., datacenter, Internet Service
Provider, or Internet eXchange Point.

7. CONCLUSION
This paper presents ClassBench-ng, a new open source

tool for the generation of synthetic IPv4, IPv6, and Open-
Flow 1.0 flow rules. It accepts an input parameter file that
can specify the statistical behavior for all the matching fields
that need to be generated. Therefore, we analyzed real sets
to understand their properties. To the best of our knowl-
edge, this is the first attempt to characterize OpenFlow rules
in a real environment. As a result, we provide input seeds
that accurately reflect characteristics of different operational
scenarios. In addition, to make this solution attractive in
the long term and for a wide number of different use cases,
ClassBench-ng offers a mechanic to create input parameter
files from real rule sets. We aim to use a tool repository
as a place where researchers and operators can continuously
upload new parameter files that match a number of different
environments or use cases, e.g., datacenter, Internet Service
Provider, Internet eXchange Point. This aspect will further
increase the (potential) impact of ClassBench-ng on the re-
search community. Finally, by providing an open source
solution we invite everyone from the community to audit
(and improve) our implementation as well as adapt it to
their needs, e.g., newer version of OpenFlow or introducing
a multi-table support.
Given the increasing complexity of the rule matching prob-

lem, i.e., from IPv4 to OpenFlow, but also the dependency
between characteristics of rule sets and packet classification
algorithms optimization, we feel this tool can meet the re-
quirements of nowadays researchers. We hope ClassBench-
ng will boost the rule matching research as ClassBench has
done since ten years ago.

8. ACKNOWLEDGMENTS
We thank Viktor Puš for his feedback and comments.
This research was supported by the European Union’s

Horizon 2020 research and innovation programme 2014-2018
under the SSICLOPS (grant agreement No. 644866) and
ENDEAVOUR (grant agreement No. 644960). It was also
supported by The Ministry of Education, Youth and Sports
of the Czech Republic from the ”CESNET E-infrastructure”
project No. LM2015042 and the National Programme of
Sustainability (NPU II); project IT4Innovations excellence
in science - LQ1602.

215215215

9. REFERENCES
[1] Differentiated Services Field Codepoints (DSCP).

http://www.iana.org/assignments/dscp-registry/
dscp-registry.xhtml.

[2] IPv4 address report.
http://www.potaroo.net/tools/ipv4.

[3] IPv6 Deployment Status.
https://www.vyncke.org/ipv6status.

[4] OpenFlow 1.0 specification. http://archive.openflow.
org/documents/openflow-spec-v1.0.0.pdf.

[5] Virtual Bridged Local Area Networks. IEEE Standard
802.1Q, 2005.

[6] J. Czyz, M. Allman, J. Zhang, S. Iekel-Johnson,
E. Osterweil, and M. Bailey. Measuring IPv6
Adoption. In SIGCOMM. ACM, 2014.

[7] T. Ganegedara, W. Jiang, and V. K. Prasanna.
FRuG: A benchmark for packet forwarding in future
networks. In IPCCC. IEEE, 2010.

[8] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. B4:
Experience with a Globally-deployed Software Defined
Wan. In SIGCOMM. ACM, 2013.

[9] W. Jiang and V. K. Prasanna. Scalable Packet
Classification on FPGA. Transactions on Very Large
Scale Integration Systems, 20(9), 2012.

[10] M. Kobayashi, S. Seetharaman, G. Parulkar,
G. Appenzeller, J. Little, J. Van Reijendam,
P. Weissmann, and N. Mckeown. Maturing of
OpenFlow and Software-defined Networking Through
Deployments. Computer Network, 61, 2014.

[11] H. Lim, N. Lee, G. Jin, J. Lee, Y. Choi, and C. Yim.
Boundary Cutting for Packet Classification.
Transactions on Networking, 22(2), 2014.

[12] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. OpenFlow: Enabling Innovation in Campus
Networks. CCR, 38(2), 2008.

[13] H. Song and J. S. Turner. Toward Advocacy-Free
Evaluation of Packet Classification Algorithms.
Transactions on Computers, 6(5), 2011.

[14] H. Song and J. S. Turner. ABC: Adaptive Binary
Cuttings for Multidimensional Packet Classification.
Transactions on Networking, 21(1), 2013.

[15] J. P. Stringer, Q. Fu, C. Lorier, R. Nelson, and C. E.
Rothenberg. Cardigan: Deploying a Distributed
Routing Fabric. In HotSDN. ACM, 2013.

[16] Q. Sun, X. Huang, W. Yang, X. Zhou, Y. Ma, and
C. Wang. ClassBenchv6: An IPv6 Packet
Classification Benchmark. In GLOBECOM. IEEE,
2009.

[17] D. E. Taylor. Survey and Taxonomy of Packet
Classification Techniques. Computing Surveys, 37(3),
2005.

[18] D. E. Taylor and J. S. Turner. ClassBench: A Packet
Classification Benchmark. Transactions on
Networking, 15(3), 2007.

[19] B. Vamanan, G. Voskuilen, and T. N. Vijaykumar.
EffiCuts: Optimizing Packet Classification for
Memory and Throughput. In SIGCOMM. ACM, 2010.

[20] M. Wang, S. Deering, T. Hain, and L. Dunn.
Non-random Generator for IPv6 Tables. In HOTI.
IEEE, 2004.

[21] Y. Xu, Z. Liu, Z. Zhang, and H. J. Chao.
High-throughput and Memory-efficient Multimatch
Packet Classification Based on Distributed and
Pipelined Hash Tables. Transactions on Networking,
22(3), 2014.

[22] K. Zheng and B. Liu. V6Gene: A Scalable IPv6 Prefix
Generator for Route Lookup Algorithm Benchmark.
In AINA. IEEE, 2006.

216216216

