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Abstract. In the context of shape analysis, counterexample valida-
tion and abstraction refinement are complex and so far not sufficiently
resolved problems. We provide a novel solution to both of these problems
in the context of fully-automated and rather general shape analysis based
on forest automata. Our approach is based on backward symbolic exe-
cution on forest automata, allowing one to derive automata-based inter-
polants and refine the automata abstraction used. The approach allows
one to distinguish true and spurious counterexamples and guarantees
progress of the abstraction refinement. We have implemented the app-
roach in the Forester tool and present promising experimental results.

1 Introduction

In [14,17], forest automata (FAs) were proposed as a formalism for representing
sets of heap graphs within a fully-automated and scalable shape analysis of pro-
grams with complex dynamic linked data structures. FAs were implemented in
the Forester tool and successfully used to verify programs over a wide range of
data structures, such as different kinds of lists (singly- and doubly-linked, circu-
lar, nested, and/or having various additional pointers), different kinds of trees,
as well as skip lists. FAs have the form of tuples of tree automata (TAs), allowing
abstract transformers corresponding to heap operations to have a local impact
(i.e., to change just a few component TAs instead of the entire heap represen-
tation), leading to scalability. To handle complex nested data structures, FAs
may be hierarchically nested, i.e., lower-level FAs can be used as (automatically
derived) alphabet symbols of higher-level FAs.

Despite Forester managed to verify a number of programs, it suffered from
two important deficiencies. Namely, due to using abstraction and the lack of
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mechanisms for checking validity of possible counterexamples, it could report
spurious errors, and, moreover, it was unable to refine the abstraction using the
spurious counterexample. Interestingly, as discussed in the related work section,
this problem is common for many other approaches to shape analysis, which may
perhaps be attributed to the complexity of heap abstractions. In this paper, we
tackle the above problem by providing a novel method for validation of possible
counterexample traces as well as a counterexample guided abstraction refinement
(CEGAR) loop for shape analysis based on FAs.

Our counterexample validation is based on backward symbolic execution of
a candidate counterexample trace on the level of FAs (with no abstraction on
the FAs) while checking non-emptiness of its intersection with the forward sym-
bolic execution (which was abstracting the FAs). For that, we have to revert not
only abstract transformers corresponding to program statements but also vari-
ous meta-operations that are used in the forward symbolic execution and that
significantly influence the way sets of heap configurations are represented by
FAs. In particular, this concerns folding and unfolding of nested FAs (which we
call boxes) as well as splitting, merging, and reordering of component TAs, which
is used in the forward run for the following two reasons: to prevent the number
of component TAs from growing and to obtain a canonic FA representation.

If the above meta-operations were not reverted, we would not only have
problems in reverting some program statements but also in intersecting FAs
obtained from the forward and backward run. Indeed, the general problem of
checking emptiness of intersection of FAs that may use different boxes and differ-
ent component TAs (i.e., intuitively, different decompositions of the represented
heap graphs) is open. When we carefully revert the mentioned operations, it,
however, turns out that the FAs obtained in the forward and backward run
use compatible decomposition and hierarchical structuring of heap graphs, and
so checking emptiness of their intersection is possible. Even then, however, the
intersection is not trivial as the boxes obtained in the backward run may repre-
sent smaller sets of sub-heaps, and hence we cannot use boxes as symbols and
instead have to perform the intersection recursively on the boxes as well.

Our abstraction on FAs is a modification of the so-called predicate language
abstraction [10]. This particular abstraction collapses those states of component
TAs that have non-empty intersection with the same predicate languages, which
are obtained from the backward execution. We show that, in case the intersection
of the set of configurations of the above described forward and backward symbolic
runs is empty, we can derive from it an automata interpolant allowing us to get
more predicate languages and to refine the abstraction such that progress of
the CEGAR loop is guaranteed (in the sense that we do not repeat the same
abstract forward run).

We have implemented the proposed approach in Forester and tested it on
a number of small but challenging programs. Despite there is, of course, a lot of
space for further optimisations, the experimental results are very encouraging.
Forester can now not only verify correct programs with complex dynamic data
structures but also reliably report errors in such programs. For some classes of
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dynamic data structures (notably skip lists), Forester is, to the best of our
knowledge, the only tool that can provide both sound verification as well as
reliable error reporting in a fully automated analysis (i.e., no manually provided
heap predicates, no invariants, etc.). Moreover, for some classes of programs (e.g.,
various kinds of doubly-linked lists, trees, and nested lists), the only other tool
that we are aware to be able to provide such functionality is our older automata-
based tool [7], which is, however, far less scalable due to the use of a monolithic
heap encoding based on a single TA. Finally, the refinement mechanism we
introduced allowed us to verify some programs that were before out of reach of
Forester due to handling finite domain data stored in the heap (which can be
used by the programs themselves or introduced by tagging selected elements in
dynamic data structures when checking properties such as sortedness, reordering,
etc.).

2 Related Work

Many different approaches to shape analysis have been proposed, using var-
ious underlying formalisms, such as logics [9,18,21,24,25,27], automata [7,8,
12,14,17], graphs [11,13], or graph grammars [15]. Apart from the underlying
formalisms, the approaches differ in their degree of automation, in the heap
structures they can handle, and in their scalability. The shape analysis based on
forest automata proposed in [17] that we build on in this paper belongs among
the most general, fully automated approaches, still having decent scalability.

As noted also in the recent work [2], a common weakness of the current
approaches to shape analysis is a lack of proper support for checking spurious-
ness of counterexample traces, possibly followed by automated refinement of
the employed abstraction. This is exactly the problem that we tackle in this
paper. Below, we characterize previous attempts on the problem and compare
our approach with them.

The work [4] adds a CEGAR loop on top of the TVLA analyzer [25], which
is based on 3-valued predicate logic with transitive closure. The refinement is,
however, restricted to adding more pointer variables and/or data fields of allo-
cated memory cells to be tracked only (together with combining the analysis
with classic predicate analysis on data values). The analysis assumes the other
necessary heap predicates (i.e., the so-called core and instrumentation relations
in terms of [25]) to be fixed in advance and not refined. The work [20] also builds
on TVLA but goes further by learning more complex instrumentation relations
using inductive logic programming. The core relations are still fixed in advance
though. Compared with both of these works, we do not assume any predefined
fixed predicates. Moreover, the approach of [20] is not CEGAR-based—it refines
the abstraction whenever it hits a possible counterexample in which some loss
of precision happened, regardless of whether the counterexample is real or not.

In [23], a CEGAR-based approach was proposed for automated refinement of
the so-called Boolean heap abstraction using disjunctions of universally quantified
Boolean combinations of first-order predicates with free variables and transitive
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closure. Unlike our work, the approach assumes the analyzed programs to be
annotated by procedure contracts and representation invariants of data struc-
tures. New predicates are inferred using finite-trace weakest preconditions on the
annotations, and hence new predicates with reachability constraints can only be
inferred via additional heuristic widening on the inferred predicates. Moreover,
the approach is not appropriate for handling nested data structures, such as lists
of lists, requiring nested reachability predicates.

In the context of approaches based on separation logic, several attempts to
provide counterexample validation and automated abstraction refinement have
appeared. In [3], the SLAyer analyzer was extended by a method to check
spuriousness of counterexample traces via bounded model checking and SMT.
Unlike our work, the approach may, however, fail in recognising that a given trace
represents a real counterexample. Moreover, the associated refinement can only
add more predicates to be tracked from a pre-defined set of such predicates. In [2],
another counterexample analysis for the context of separation logic was proposed
within a computation loop based on the Impact algorithm [19]. The approach
uses bounded backwards abduction to derive so-called spatial interpolants and
to distinguish between real and spurious counterexample traces. It allows for
refinement of the predicates used but only by extending them by data-related
properties. The basic predicates describing heap shapes are provided in advance
and fixed. Another work based on backwards abduction is [5]. The work assumes
working with a parametrized family of predicates, and the refinement is based on
refining the parameter. Three concrete families of this kind are provided, namely,
singly-linked lists in which one can remember bigger and bigger multisets of
chosen data values, remember nodes with certain addresses, or track ordering
properties. The basic heap predicates are again fixed. The approach does not
guarantee recognition of spurious and real counterexamples nor progress of the
refinement.

Unlike our approach, none of the so-far presented works is based on automata,
and all of the works require some fixed set of shape predicates to be provided
in advance. Among automata-based approaches, counterexample analysis and
refinement was used in [7] (and also in some related, less general approaches
like [6]). In that case, however, a single tree automaton was used to encode sets
of memory configurations, which allowed standard abstraction refinement from
abstract regular (tree) model checking [10] to be used. On the other hand, due
to using a single automaton, the approach did not scale well and had problems
with some heap transformations.

The basic formalism of forest automata using fixed abstraction and user-
provided database of boxes was introduced in [14]. We later extended the basic
framework with automatic learning of boxes in [17]. The work [1] added ordering
relations into forest automata to allow verification of programs whose safety
depends on relations among data values from an unbounded domain. In [14,
17], we conjectured that counterexample validation and abstraction refinement
should be possible in the context of forest automata too. However, only now, do
we show that this is indeed the case, but also that much more involved methods
than those of [10] are needed.
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3 Forest Automata and Heaps

We consider sequential non-recursive C programs, operating on a set of pointer
variables and the heap, using standard statements and control flow constructs.
Heap cells contain zero or several pointer or data fields.

Configurations of the considered programs consist of memory-allocated data
and an assignment of variables. Heap memory can be viewed as a (directed)
graph whose nodes correspond to allocated memory cells. Every node contains
a set of named pointer and data fields. Each pointer field points to another node
(we model the NULL and undefined locations as special memory nodes pointed by
variables NULL and undef, respectively), and the same holds for pointer variables
of the program. Data fields of memory nodes hold a data value. We use the term
selector to talk both about pointer and data fields. For simplification, we model
data variables as pointer variables pointing to allocated nodes that contain a
single data field with the value of the variable, and therefore consider only pointer
variables hereafter.

We represent heap memory by partitioning it into a tuple of trees, the so-
called forest. The leaves of the trees contain information about roots of which
trees they should be merged with to recover the original heap. Our forest
automata symbolic representations of sets of heaps is based on representing sets
of forests using tuples of tree automata.

Let us now formalize these ideas. In the following, we use f : A ⇀ B to
denote a partial function from A to B (also viewed as a total function f : A →
(B ∪ {�}), assuming that � �∈ B). We also assume a bounded data domain D.

Graphs and Heaps. Let Γ be a finite set of selectors and Ω be a finite set of
references s.t. Ω ∩ D = ∅. A graph g over 〈Γ,Ω〉 is a tuple 〈Vg,nextg〉 where Vg

is a finite set of nodes and nextg : Γ → (Vg ⇀ (Vg ∪ Ω ∪D)) maps each selector
a ∈ Γ to a partial mapping nextg(a) from nodes to nodes, references, or data
values. References and data values are treated as special terminal nodes that are
not in the set of regular nodes, i.e., Vg ∩ (Ω ∪ D) = ∅. For a graph g, we use
Vg to denote the nodes of g, and for a selector a ∈ Γ , we use ag to denote the
mapping nextg(a). Given a finite set of variables X, a heap h over 〈Γ,X〉 is a
tuple 〈Vh,nexth, σh〉 where 〈Vh,nexth〉 is a graph over 〈Γ, ∅〉 and σh : X → Vh is
a (total) map of variables to nodes.

Forest Representation of Heaps. A graph t is a tree if its nodes and pointers
(i.e., not references nor data fields) form a tree with a unique root node, denoted
root(t). A forest over 〈Γ,X〉 is a pair 〈t1 · · · tn, σf 〉 where t1 · · · tn is a sequence
of trees over 〈Γ, {1, . . . , n}〉 and σf is a (total) mapping σf : X → {1, . . . , n}.
The elements in {1, . . . , n} are called root references (note that n must be the
number of trees in the forest). A forest 〈t1 · · · tn, σf 〉 over 〈Γ,X〉 represents a heap
over 〈Γ,X〉, denoted ⊗〈t1 · · · tn, σf 〉, obtained by taking the union of the trees
of t1 · · · tn (assuming w.l.o.g. that the sets of nodes of the trees are disjoint),
connecting root references with the corresponding roots, and mapping every
defined variable x to the root of the tree indexed by x. Formally, ⊗〈t1 · · · tn, σf 〉
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is the heap h = 〈Vh,nexth, σh〉 defined by (i) Vh =
⋃n

i=1 Vti , and (ii) for a ∈ Γ
and v ∈ Vtk , if atk(v) ∈ {1, . . . , n} then ah(v) = root(tatk

(v)) else ah(v) = atk(v),
and finally (iii) for every x ∈ X, σh(x) = root(tσf (x)).

3.1 Forest Automata

A forest automaton is essentially a tuple of tree automata accepting a set of
tuples of trees that represents a set of graphs via their forest decomposition,
associated with a mapping of variables to root references.

Tree Automata. A (finite, non-deterministic) tree automaton (TA) over 〈Γ,Ω〉 is
a triple A = (Q, q0,Δ) where Q is a finite set of states (we assume Q∩ (D∪Ω) =
∅), q0 ∈ Q is the root state (or initial state), denoted root(A), and Δ is a set
of transitions. Each transition is of the form q → a(q1, . . . , qm) where m ≥ 0,
q ∈ Q, q1, . . . , qm ∈ (Q ∪ Ω ∪ D)1, and a = a1 · · · am is a sequence of different
symbols from Γ .

Let t be a tree over 〈Γ,Ω〉, and let A = (Q, q0,Δ) be a TA over 〈Γ,Ω〉. A
run of A over t is a total map ρ : Vt → Q where ρ(root(t)) = q0 and for each
node v ∈ Vt there is a transition q → a(q1, . . . , qm) in Δ with a = a1 · · · am such
that ρ(v) = q and for all 1 ≤ i ≤ m, we have (i) if qi ∈ Q, then ai

t(v) ∈ Vt and
ρ(ai

t(v)) = qi, and (ii) if qi ∈ Ω ∪ D, then ai
t(v) = qi. We define the language of

A as L(A) = {t | there is a run of Aover t}, and the language of a state q ∈ Q as
L(A, q) = L((Q, q,Δ)).

Forest Automata. A forest automaton (FA) over 〈Γ,X〉 is a tuple of the form
F = 〈A1 · · · An, σ〉 where A1 · · · An, with n ≥ 0, is a sequence of TAs over
〈Γ, {1, . . . , n}〉 whose sets of states Q1, . . . , Qn are mutually disjoint, and σ : X →
{1, . . . , n} is a mapping of variables to root references. A forest 〈t1 · · · tn, σf 〉 over
〈Γ,X〉 is accepted by F iff σf = σ and there are runs ρ1, . . . , ρn such that for all
1 ≤ i ≤ n, ρi is a run of Ai over ti. The language of F , denoted as L(F ), is the
set of heaps over 〈Γ,X〉 obtained by applying ⊗ on forests accepted by F .

Cut-Points and the Dense Form. A cut-point of a heap h is its node that is
either pointed by some variable or is a target of more than one selector edge. The
roots of forests that are not cut-points in the represented heaps are called false
roots. A forest automaton is dense if its accepted forests do not have false roots.
Each forest automaton can be transformed into a set of dense forest automata
that together have the same language as the original. This property is a part
of canonicity, which can be achieved by normalization, introduced in [14] for
the purpose of checking entailment of forest automata. A transformation to the
dense form is essential in the symbolic execution of a program.

1 For simplicity, data values and references are used as special leaf states accepting the
data values and references they represent, instead of having additional leaf transitions
to accept them.
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3.2 Boxes

Forest automata, as defined in Sect. 3.1, can represent heaps with cut-points of an
unbounded in-degree as, e.g., in singly-linked lists (SLLs) with head/tail pointers
(indeed there can be any number of references from leaf nodes to a certain root).
The basic definition of FAs cannot, however, deal with heaps with an unbounded
number of cut-points since this would require an unbounded number of TAs
within FAs. An example of such a set of heaps is the set of all doubly-linked
lists (DLLs) of an arbitrary length, where each internal node is a cut-point. The
solution provided in [14] is to allow FAs to use other nested FAs, called boxes, as
symbols to “hide” recurring subheaps and in this way eliminate cut-points. The
alphabet of a box itself may also include boxes, these boxes are, however, required
to form a finite hierarchy—they cannot be recursively nested. The language of
a box is a set of heaps over two special variables, in and out, which correspond
to the input and the output port of the box. For simplicity of presentation, we
give only a simplified version of boxes; see [14] for a more general definition that
allows boxes with an arbitrary number of output ports.

A nested forest automaton over 〈Γ,X〉 is an FA over 〈Γ ∪ B,X〉 where B
is a finite set of boxes. A box B over Γ is a nested FA 〈A1 · · · An, σ�〉 over
〈Γ, {in, out}〉 such that σ�(in) �= σ�(out) and A1 · · · An do not contain an
occurrence of B (even a nested one). Unless stated otherwise, the FAs in the
rest of the paper are nested.

In the case of a nested FA F , we need to distinguish between its language
L(F ), which is a set of heaps over 〈Γ ∪ B,X〉, and its semantics �F �, which
is a set of heaps over 〈Γ,X〉 that emerges when all boxes in the heaps of the
language are recursively unfolded in all possible ways. Formally, given heaps h
and h′, the heap h′ is an unfolding of h if there is an edge (B, u, v) ∈ nexth
with a box B = 〈A1 · · · An, σ�〉 in h, such that h′ can be constructed from
h by substituting (B, u, v) with some hB ∈ �B� such that σ�(in) = u and
σ�(out) = v. The substitution is done by removing (B, u, v) from h and uniting
the heap-graph of h with that of hB . We then write h �(B,u,v)/hB

h′, or only
h � h′ if the precise edge (B, u, v) and heap hB are not relevant. We use �∗ to
denote the reflexive transitive closure of �. The semantics of F , written as �F �,
is the set of all heaps h′ over 〈Γ,X〉 for which there is a heap h in L(F ) such
that h �∗ h′.

4 Program Semantics

The dynamic behaviour of a program is defined by its control flow graph, a map-
ping p : T → (L × L) where T is a set of program statements, and L is a set
of program locations. Statements are partial functions τ : H ⇀ H where H is
the set of heaps over the selectors Γ and variables X occurring in the program,
which are used as representations of program configurations. The initial config-
uration is hinit = 〈∅, ∅, ∅〉. We assume that statements are indexed by their line
of code, so that no two statements of a program are equal. If p(τ) = (	, 	′), then
the program p can move from 	 to 	′ while modifying the heap h at location 	
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into τ(h). We assume that X contains a special variable pc that always evaluates
to a location from L, and that every statement updates its value according to
the target location. Note that a single program location can have multiple suc-
ceeding program locations (which corresponds, e.g., to conditional statements),
or no successor (which corresponds to exit points of a program). We use src(τ)
to denote 	 and tgt(τ) to denote 	′ in the pair above. Every program p has
a designated location 	init called its entry point and 	err ∈ L called the error
location2.

A program path π in p is a sequence of statements π = τ1 · · · τn ∈ T
∗ such

that src(τ1) = 	init, and, for all 1 < i ≤ n, it holds that src(τi) = tgt(τi−1). We
say that π is feasible iff τn ◦ · · · ◦ τ1(hinit) is defined. The program p is safe if it
contains no feasible program path with tgt(τn) = 	err. In the following, we fix
a program p with locations L, variables X, and selectors Γ .

5 Symbolic Execution with Forest Automata

Safety of the program p is verified using symbolic execution in the domain F of
forest automata over 〈Γ,X〉. The program is executed symbolically by iterating
abstract execution of program statements and a generalization step. These high-
level operations are implemented as sequences of atomic operations and splitting.
Atomic operations are functions of the type o : F ⇀ F. Splitting splits a forest
automaton F into a set S of forest automata such that �F � =

⋃
F ′∈S�F ′�. Split-

ting is necessary for some operations since forest automata are not closed under
union, i.e., some sets of heaps expressible by a finite union of forest automata
are not expressible by a single forest automaton.

To show an example of sets of heaps not expressible using a single FA, assume
that the statement x = y->sel is executed on a forest automaton that encodes
cyclic singly linked lists of an arbitrary length where y points to the head of the
list. If the list is of length 1, then x will, after execution of the statement, point
to the same location as y. If the list is longer, x and y will point to different
locations. In the former case, the configuration has a single tree component,
with both variables pointing to it. In the latter case, the two variables point to
two different components. These two configurations cannot be represented using
a single forest automaton.

The symbolic execution explores the program’s abstract reachability tree
(ART). Elements of the tree are forest automata corresponding to sets of reach-
able configurations at particular program locations. The tree is rooted by the
forest automaton Finit s.t. �Finit� = {hinit}. Every other node is a result of an
application of an atomic operation or a split on its parent, and the applied
operation is recorded on the tree edge between the two. The atomic operation
corresponds to one of the following: symbolic execution of an effect of a program
2 For simplification, we assume checking the error line (un-)reachability property only,

which is, anyway, sufficient in most practical cases. For detection of garbage (which
is not directly expressible as line reachability), we can extend the formalism and
check for garbage after every command, and if a garbage is found, we jump to �err.
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statement, generalization, or an auxiliary meta-operation that modifies the FAs
while keeping its semantics (e.g., connects or cuts its components). Splitting
appears in the tree as a node with several children connected via edges labelled
by a special operation split . The said operations are described in more detail in
Sect. 7.

The tree is expanded starting from the root as follows: First, a symbolic con-
figuration in the parent node is generalized by iterating the following three oper-
ations: (i) transformation to the dense form, (ii) application of regular abstrac-
tion over-approximating sets of sub-graphs between cut-points of the represented
heaps, (iii) folding boxes to decrease the number of cut-points in the represented
heaps, until fixpoint. The transformation into the dense form is performed in
order to obtain the most general abstraction in the subsequent step. A configura-
tion where one more loop of the transformation-abstraction-folding sequence has
no further effect is called stable. Operations implementing effects of statements
are then applied on stable configurations. Exploration of a branch is terminated
if its last configuration is entailed by a symbolic configuration with the same
program location reached previously elsewhere in the tree.

A symbolic path is a path between a node and one of its descendants in
the ART, i.e., a sequence of FAs and operations ω = F0o1F1 . . . onFn such that
Fi = oi(Fi−1). A forward run is a symbolic path where F0 = Finit. We write
ωi to denote the prefix of ω ending by Fi and ωi to denote its suffix from Fi.
A forward run that reaches 	err is called an abstract counterexample. We associate
every operation o with its exact semantics ô, defined as ô(H) =

⋃
h∈H{τ(h)} if o

implements the program statement τ , and as the identity for all other operations
(operations implementing generalization, splitting, etc.), for a set of heaps H.
The exact execution of ω is a sequence h0 · · · hn such that h0 ∈ �F0� and hi ∈
ô({hi−1}) ∩ �Fi� for 0 < i ≤ n. We say that ω is feasible if it has an exact
execution, otherwise it is infeasible/spurious. The atomic operations are either
semantically precise, or over-approximate their exact semantics, i.e., it always
holds that ô(�F �) ⊆ �o(F )�. Therefore, if the exploration of the program’s ART
finds no abstract counterexample, there is no exact counterexample, and the
program is safe.

The regular abstraction mentioned above is based on over-approximating sets
of reachable configurations using some of the methods described later in Sect. 9.
The analysis starts with some initial abstraction function, which may, however,
be too rough and introduce spurious counterexamples. The main contribution
of the present paper is that we are able to analyse abstract counterexamples
for spuriousness using the so-called backward run (cf. Sect. 8), and if the coun-
terexamples are indeed spurious, we can refine the abstraction used to avoid the
given spurious error symbolic path, and continue with the analysis, potentially
further repeating the analyse-refine steps. We will describe the backward run and
abstraction refinement shortly in the following section and give a more thorough
description in Sects. 8 and 9.
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5.1 Counterexample Analysis and Abstraction Refinement

Assume that the forward run ω = F0o1F1 · · · onFn is spurious. Then there must
be an index i > 0 such that the symbolic path ωi is feasible but ωi − 1 is not.
This means that the operation oi over-approximated the semantics of ω and
introduced into �Fi� some heaps that are not in ôi(�Fi−1�) and that are bad
in the sense that they make ωi feasible. An interpolant for ω is then a forest
automaton Ii representing the bad heaps of �Fi� that were introduced into �Fi�
by the over-approximation in oi and are disjoint from ôi(�Fi−1�). Formally,

1. �Ii� ∩ ôi(�Fi−1�) = ∅ and
2. ωi is infeasible from all h ∈ �Fi� \ �Ii�.

In the following, we describe how to use backward run, which reverts oper-
ations of the forward run on the semantic level, to check spuriousness of an
abstract counterexample. Moreover, we show how to derive interpolants from
backward runs reporting spurious counterexamples, and how to use those inter-
polants to refine the operation of abstraction so that it will not introduce the
bad configurations in the same way again. A backward run for ω is the sequence
ω = F 0 · · · Fn such that

1. Fn = Fn and
2. �F i−1� = ô−1

i (�F i�)∩�Fi−1�, that is, F i−1 represents the weakest precondition
of �F i� w.r.t. ôi that is localized to �Fi−1�.

If there is an F i such that �F i� = ∅ (and, consequently, �F 0� = ∅, . . . , �F i−1� =
∅), the forward run is spurious. In such a case, an interpolant Ii for ω can be
obtained as F i+1 where i + 1 is the smallest index such that �F i+1� �= ∅. We
elaborate on the implementation of the backward run in Sect. 8.

We note that our use of interpolants differs from that of McMillan [22] in two
aspects. First, due to the nature of our backward run, we compute an interpolant
over-approximating the source of the suffix of a spurious run, not the effect
of its prefix. Second, for simplicity of implementation in our prototype, we do
not compute a sequence of localized interpolants but use solely the interpolant
obtained from the beginning of the longest feasible suffix of the counterexample
for a global refinement. It would also, however, be possible to use the sequence
F i, . . . , Fn as localized interpolants.

In Sect. 9, we show that using the interpolant Ii, it is possible to refine regular
abstraction oi (the only over-approximating operation) to exclude the spurious
run. The progress guarantees for the next iterations of the CEGAR loop are then
the following:

1. for any FA F such that �F � ⊆ �Fi−1� that is compatible with Fi−1 (as defined
in Sect. 6) it holds that �oi(F )� ∩ �Ii� = ∅,

2. forward runs ω′ = F ′
0o1F

′
1 · · · onF ′

n such that for all 1 ≤ j ≤ n, �F ′
i � ⊆ �Fi�

and F ′
i is compatible with Fi are excluded from the ART.

The compatibility intuitively means that boxes are folding the same sub-heaps
of represented heaps and that the TA components are partitioning them in the
same way.
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6 Intersection of Forest Automata

The previous section used intersection of semantics of forest automata to detect
spuriousness of a counterexample. In this section, we give an algorithm that
computes an under-approximation of the intersection of semantics of a pair of
FAs, and later give conditions (which are, in fact, met by the pairs of FAs in our
backward run analysis) on the intersected FAs to guarantee that the computed
intersection is precise.

A simple way to compute the intersection of semantics of two FAs, denoted
as ∩, is component-wise, that is, for two FAs F = 〈A1 · · · An, σ〉 and F ′ =
〈A′

1 · · · A′
n, σ〉, we compute the FA F ∩ F ′ = 〈(A1 ∩ A′

1) · · · (An ∩ A′
n), σ〉—note

that the assignments need to be equal. The tree automata product construction
for our special kind of tree automata synchronizes on data values and on ref-
erences. That is, a pair (a, b) that would be computed by a classical product
construction where a or b is a reference or a data value is replaced by a if a = b,
and removed otherwise.

The above algorithm is, however, incomplete, i.e., it only guarantees
�F ∩ F ′� ⊆ �F � ∩ �F ′�. To increase the precision, we take into account the
semantics of the boxes in the product construction, yielding a construction
denoted using �. When synchronising two rules in the TA product, we recur-
sively call intersection of forest automata. That is, we compute the FA F � F ′

in a similar way as ∩, but replace the tree automata product A ∩ A′ by its
variant A � A′. For A = (Q, q0,Δ) and A′ = (Q′, q′

0,Δ
′), it computes the TA

A � A′ = (Q × Q′, (q0, q′
0),Δ � Δ′) where Δ � Δ′ is built as follows:

Δ � Δ′ =
{
(q, q′) → a � a′((q1, q′

1), . . . , (qm, q′
m)) | q → a(q1, . . . , qm) ∈ Δ,

q′ → a′(q′
1, . . . , q

′
m) ∈ Δ′}.

Suppose a = a1 · · · am, a′ = a′
1 · · · a′

m, and that there is an index 0 ≤ i ≤ m such
that if j ≤ i, aj and a′

j are not boxes, and if i < j, aj and a′
j are boxes. The

vector of symbols a � a′ is created as (a1 � a′
1) · · · (am � a′

m) if ai � a′
i is defined

for all i’s, otherwise the transition is not created. The symbol ai � a′
i is defined

as follows:

1. for j ≤ i, aj � a′
j is defined as aj if aj = a′

j and is undefined otherwise,
2. for j > i, aj � a′

j is the intersection of FAs (both aj and a′
j are boxes, i.e.,

FAs).

Compatibility of Forest Automata. For a forest automaton F = 〈A1 · · · An, σ〉,
its version with marked components is the FA FD = 〈A1 · · · An, σ ∪ σroot〉 where
σroot is the mapping {root1 �→ 1, . . . , rootn �→ n}. The root variables rooti are
fresh variables that point to the roots of the tree components in L(F ). �FD�
then contains the same heaps as �F �, but the roots of the components from
L(F ) remain visible as they are explicitly marked by the root variables. In other
words, the root variables track how the forest decomposition of heaps in L(F )
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partitions the heaps from �F �. By removing the root variables of hD ∈ �FD�,
we get the original heap h ∈ �F �. We call hD the component decomposition of h
by F .

Using the notion of component decomposition, we further introduce a notion
of the representation of a heap by an FA. Namely, the representation of a box-
free heap h by an FA F with h ∈ �F � records how F represents h, i.e., (i) how
F decomposes h into components, and (ii) how its sub-graphs enclosed in boxes
are represented by the boxes. Formally, the representation of h by F is a pair
repre = (hD, {repre1, . . . , repren}) such that hD is the component decomposition
of h by F , and repre1, . . . , repren are obtained from the sequence of unfoldings

h0 �(B1,u1,v1)/g1 h1 �(B2,u2,v2)/g2 · · · �(Bn,un,vn)/gn
hn

with h0 = hD and hn ∈ L(FD), such that for each 1 ≤ i ≤ n, reprei is (recur-
sively) the representation of gi in Bi.

We write �repre� to denote {h}, and, for a set of representations R, we let
�R� =

⋃
repre∈R�repre�. The set of representations accepted by a forest automaton

F is the set Repre(F ) of all representations of heaps from �F � by F . We say
that a pair of FAs F and F ′ is (representation) compatible iff �F � ∩ �F ′� =
�Repre(F ) ∩ Repre(F ′)�. The compatibility of a pair of FAs intuitively means
that for every heap from the semantic intersection of the two FAs, at least one
of its representations is shared by them.

Lemma 1. For a pair F and F ′ of compatible FAs, it holds that �F � F ′� =
�F � ∩ �F ′�.

To illustrate the reason why compatibility is necessary in the backward run
(cf. Sect. 5.1), consider a forward run that reaches an error line after passing
through an FA Fk with the language consisting of a single configuration with
one edge n1

DLL−−−→ n2. The box encloses a DLL segment, i.e., its output port is the
next-successor of the input port, and the input is the prev -successor of the output
port. Assume that the backward run then arrives with an FA o−1

k+1(Fk+1) with

the same language as Fk up to using the edge n2
revDLL−−−−−→ n1 with a reversed DLL-

segment, where the output is the prev -successor of the input. Despite Fk and
o−1

k+1(Fk+1) have the same semantics, their languages are different and incom-
patible: In L(Fk), n1 has a successor and n2 does not, while it is the other
way round in L(o−1

k+1(Fk+1)). The intersection computed using � will be empty.
Under-approximating the intersection this way can lead to wrong spuriousness
detection and ineffective abstraction refinement. Enforcing compatibility rules
out such situations and guarantees that the intersection computed using � is
precise.

7 Implementation of the Forward Run

This section describes the operations that are used to implement the forward
symbolic execution over FAs. To be able to implement the backward run, we
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will need to maintain compatibility between the forward run and the so-far
constructed part of the backward run. Therefore, we will present the operations
used in the forward run mainly from the point of view of their effect on the
representation of heaps (in the sense of Sect. 6). Then, in Sect. 8, we will show
how this effect is inverted in the backward run such that, when starting from
compatible configurations, the inverted operations preserve compatibility of the
configurations in the backward run with their forward run counterparts.

We omit most details of the way the operations are implemented on the level
of manipulations with rules and states of FAs. We refer the reader to [14,26]
for the details. We note that when we talk about removing a component or
inserting a component in an FA, this also includes renaming references and
updating assignments of variables. When a component is inserted at position i,
all references to j with j > i are replaced by i + 1, including the assignment σ
of variables. When a component is removed from position i, all references to j
with j > i are replaced by references to j − 1.

Splitting. Splitting has already been discussed in Sect. 5. It splits the symbolic
execution into several branches such that the union of the FAs after the split
is semantically equal to the original FA. The split is usually performed when
transforming an FA into several FAs that have only one variant of a root rule
of some of their components. From the point of view of a single branch of the
ART, splitting is an operation, denoted further as split , that transforms an FA
F into an FA F ′ s.t. �F ′� ⊆ �F � and Repre(F ′) ⊆ Repre(F ). Therefore, F is
compatible with F ′.

Operations Modifying Component Decomposition. This class of operations is
used to implement transformation of FAs to the dense form and as pre-processing
steps before the operations of folding, unfolding, and symbolic implementation
of program statements. They do not modify the semantics of forest automata,
but change the component decomposition of the represented heaps.

– Connecting of components. When the j-th component Aj of a forest automaton
F accepts trees with false roots, then Aj can be connected to the component
that refers to it. Indeed, as such roots are not cut-points, a reference j to them
can appear only in a single component, say Ak, and at most once in every tree
from its language (because a false root can have at most one incoming edge).
For simplicity, assume that Aj has only one root state q that does not appear
on the right-hand sides of rules. The connection is done by adding the states
and rules of Aj to Ak, replacing the reference j in the rules of Ak by q. The
j-th component is then removed from F . The previous sequence of actions is
denoted as the operation connect [j, k, q] below.

– Cutting of a component. Cutting divides a component with an index j into two.
The part of the j-th component containing the root will accept tree prefixes
of the original trees, and the new k-th component will accept their remaining
sub-trees. The cutting is done at a state q of Aj , which appears exactly once in
each run (the FA is first transformed to satisfy this). Occurrences of q at the
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right-hand sides of rules are replaced by the reference k to the new component,
and q becomes the root state of the new component. We denote this operation
by cut [j, k, q].

– Swapping of components. The operation swap[j, k] swaps the j-th and the k-th
component (and renames references and assignments accordingly).

Folding of Boxes. The folding operation assumes that the concerned FA is first
transformed into the form F = 〈AinA2 · · · An−1AoutA

′
1 · · · A′

m, σ〉 by a sequence
of splitting, cutting, and swapping. The tuple of TAs AinA2 · · · An−1Aout will
then be folded into a new box B with Ain as its input component and Aout

as its output. Moreover, the operation is given sets of selectors Sin, Sout of
roots of components in Ain and Aout that are to be folded into B. The
box B = 〈AB

inA2 · · · An−1A
B
out, {in �→ 1, out �→ n}〉 arises from F by taking

AinA2 · · · An−1Aout and by removing selectors that are not in Sin and Sout from
root rules of Ain and Aout to obtain AB

in and AB
out respectively.

Folding returns the forest automaton F ′ = 〈A′
inA

′
outA

′
1 · · · A′

m, σ′〉 that arises
from F as follows. All successors of the roots accepted in Ain and Aout reachable
over selectors from Sin and Sout are removed in A′

in and A′
out respectively (since

they are enclosed in B). The root of the trees of A′
in gets an additional edge

labelled by B, leading to the reference n (the output port), and the components
A2 · · · An−1 are removed (since they are also enclosed in B). This operation is
denoted as fold [n, Sin, Sout, B].

Unfolding of Boxes. Unfolding is called as a preprocessing step before operations
that implement program statements in order to expose the selectors accessed by
the statement. It is called after a sequence of cutting, splitting, and swapping
that changes the forest automaton into the form F ′ = 〈A′

inA
′
outA

′
1 · · · A′

m, σ′〉
where trees of A′

in have a reference 2 to A′
out accessible by an edge going from

the root and labelled by the box B that is to be unfolded. Furthermore, assume
that the box B is of the form 〈AB

inA2 · · · An−1A
B
out, {in �→ 1, out �→ n}〉 and the

input and the output ports have outgoing selectors from the sets Sin and Sout

respectively. The operation returns the forest automaton F that arises from F ′

by inserting components AB
inA2 · · · An−1A

B
out in between A′

in and A′
out, removing

the B successor of the root in A′
in, merging AB

in with A′
in, and AB

out with A′
out.

The merging on the TA level consists of merging root transitions of the TAs. We
denote this operation as unfold [n, Sin, Sout, B].

Symbolic Execution of Program Statements. We will now discuss our symbolic
implementation of the most essential statements of a C-like programming lan-
guage. We assume that the operations are applied on an FA F = 〈A1 · · · An, σ〉.
– x := malloc(): A new (n + 1)-th component Anew is appended to F s.t. it

contains one state and one transition with all selector values set to σ(undef).
The assignment σ(x) is set to n + 1.

– x := y->sel and y->sel := x: If σ(y) = σ(undef), the operation moves to
the error location. Otherwise, by splitting, cutting, and unfolding, F is trans-
formed into the form where Aσ(y) has only one root rule and the rule has
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a sel-successor that is a root reference j. The statement x := y->sel then
changes σ(x) to j, and y->sel := x changes the reference j in Aσ(y) to σ(x).

– assume(x ∼ y) where ∼ ∈ {==, !=}: This statement tests the equality of σ(x)
and σ(y) and stops the current branch of the forward run if the result does
not match ∼.

– assume(x->data ∼ y->data) where ∼ is some data comparison: We start by
unfolding and splitting F into the form where Aσ(x) and Aσ(y) have only one
root rule with exposed data selector. The data values at the data selectors
are then compared and the current branch of the forward run is stopped if
they do not satisfy ∼. The operation moves to the error locations if σ(x) or
σ(x) are equal to σ(undef).

– free(x): The component Aσ(x) is removed, and all references to σ(x) are
replaced by σ(undef).

The updates are followed by checking that all components are reachable from
program variables in order to detect garbage. If some component is not reachable,
the execution either moves to the error location, or—if the analysis is set to
ignore memory leaks—removes the unreachable component and continues with
the execution.

Regular Abstraction. Regular abstraction is described in Sect. 9. It is preceded
by a transformation to the dense form by connecting and splitting the FA.

8 Inverting Operations in the Backward Run

We now present how we compute the weakest localized preconditions (inversions
for short) of the operations from Sect. 7 in the backward run. As mentioned
in Sect. 7, it is crucial that compatibility with the forward run is preserved.
Let Fi = o(Fi−1) appear in the forward run and F i be an already computed
configuration in the backward run s.t. Fi and F i are compatible. We will describe
how to compute F i−1 such that it is also compatible with Fi−1.

Inverting most operations is straightforward. The operation cut [j, k, q] is
inverted by connect [k, j, qk] where qk is the root state of Ak, swap[j, k] is inverted
by swap[k, j], and split is not inverted, i.e., F i−1 = F i.

One of the more difficult cases is connect [j, k, q]. Assume for simplicity that k
is the index of the last component of Fi−1. Connecting can be inverted by cutting,
but prior to that, we need to find where the k-th component of F i should be
cut. To find the right place for the cut, we will use the fact that the places of
connection are marked by the state q in the FA Fi from the forward run. We
use the tree automata product � from Sect. 6, which propagates the information
about occurrences of q to F i, to compute the product of the k-th component
of Fi and the k-th component of F i. We replace the k-th component of F i by
the product, which results in an intermediate FA F

′
i. The product states with

the first component q now mark the places where the forward run connected the
components (they were leaves referring to the k-th component). This is where
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the backward run will cut the components to revert the connecting. Before that,
though, we replace the mentioned product states with q by a new state q′. This
replacement does not change the language because q was appearing exactly once
in every run (because in the forward run, it is the root state of the connected
component that does not appear on the right-hand sides of rules), therefore, a
product state with q can appear at most once in every run of the product too.
Finally, we compute F i−1 as cut [k, j, q′](F

′
i).

Folding is inverted by unfolding and vice versa. Namely, fold [n, Sin, Sout, B]
is inverted by unfold [n, Sin, Sout, B

′] and unfold [n, Sin, Sout, B] by
fold [n, Sin, Sout, B

′] where the box B′ (un-)folded in the backward run might
be semantically smaller than B (since the backward run is returning with a
subset of configurations of the forward run).

Regular abstraction is inverted using the intersection construction from
Sect. 6. That is, if oi is a regular abstraction, then F i−1 = F i � Fi−1.

Finally, inversions of abstract statements compute the FA F i−1 =
〈Ā′

1 · · · Ā′
n, σ̄′〉 from F i = 〈Ā1 · · · Ām, σ̄〉 and Fi−1 = 〈A1 · · · An, σ〉 as follows:

– x = malloc(): We obtain F i−1 from F i by removing the j-th TA, for σ̄(x) = j.
The value of σ̄′(x) is set to σ(x).

– x := y->sel: Inversion is done by setting σ̄′(x) to the value of σ(x) from Fi−1.
– y->sel := x: The target of the sel-labelled edge from the root of Aσ̄′(y) is set

to its target in Aσ(y).
– assume(...): Tests do not modify FAs and as we are returning with a subset

of configurations from the forward run, they do not need to be inverted, i.e.,
F i−1 = F i.

– free(x): First, the component of Fi−1 at the index σ(x), which was removed
in the forward run, is inserted at the same position in F i, and σ̄′(x) is set to
that position. Then we must invert the rewriting of root references pointing to
σ(x) to σ(undef) done by the forward run. For this, we compute the � forest
automata product from Sect. 6 with Fi−1, but modified so that instead of
discarding reached pairs (σ(undef), σ(x)), it replaces them by σ(x). Intuitively,
the references to x are still present at Fi−1, so their occurrences in the product
mark the occurrences of references to undef that were changed to point to
undef by free(x). The modified product therefore redirects the marked root
references to undef back to x.

The Role of Compatibility in the Backward Run. Inversions of regular abstrac-
tion, component connection, and free(x), use the TA product construction �
from Sect. 6. The precision of all intersection and product computations in the
backward run depends on the compatibility of the backward and forward run.
Inverting the program statements also depends on the compatibility of the back-
ward and forward run. Particularly, inversions of x := y->sel and y->sel := x
use indices of components from Fi−1. They therefore depend on the property
that heaps from F i are decomposed into components in the same way. The com-
patibility is achieved by inverting every step of folding and unfolding, and every
operation of connecting, cutting, and swapping of components.



304 L. Hoĺık et al.

9 Regular Abstractions over Forest Automata

Our abstraction over FAs is based on automata abstraction from the framework
of abstract regular tree model checking (ARTMC) [10]. This framework comes
with two abstractions for tree automata, finite height abstraction and predicate
abstraction. Both of them are based on merging states of a tree automaton that
are equivalent according to a given equivalence relation. Formally, given a tree
automaton A = (Q, q0,Δ), its abstraction is the TA α(A) = (Q/∼, [q0]∼,Δ∼)
where ∼ is an equivalence relation on Q, Q/∼ is the set of ∼’s equivalence classes,
[q0]∼ denotes the equivalence class of q0, and Δ∼ arises from Δ by replacing
occurrences of states in transitions by their equivalence classes. It holds that
|Q/∼| ≤ |Q| and L(A) ⊆ L(α(A)).

Finite height abstraction is a function αh that merges states with languages
equivalent up to a given tree height h. Formally, it merges states of A according
to the equivalence relation ∼h defined as follows: q1 ∼h q2 ⇔ L≤h(A, q1) =
L≤h(A, q2) where L≤h(A, q) is the language of tree prefixes of trees from of
L(A, q) up to the height h. Predicate language abstraction is a function α[P]

parameterized by a set of predicate languages P = {P1, . . . , Pn} represented by
tree automata. States are merged according to the equivalence q ∼P q′, which
holds for the two states if their languages L(A, q) and L(A, q′) intersect with the
same subset of predicate languages from P.

Abstraction on Forest Automata. We extend the abstractions from ARTMC to
FAs by applying the abstraction over TAs to the components of the FAs. For-
mally, let α be a tree automata abstraction. For an FA F = 〈A1 · · · An, σ〉,
we define α(F ) = 〈α(A1) · · · α(An), σ〉. Additionally, in the case of predicate
abstraction, which uses automata intersection to annotate states by predicate
languages, we use the intersection operator � from Sect. 6, which descends recur-
sively into boxes and is thus more precise from the point of view of the semantics
of FAs. Since the abstraction only over-approximates languages of the individual
components, it holds that �F � ⊆ �α(F )� and Repre(F ) ⊆ Repre(α(F ))—and so
F and α(F ) are compatible.

Abstraction Refinement. The finite height abstraction may be refined by simply
increasing the height h. Advantages of finite height abstraction are its relative
simplicity and the fact that the refinement does not require counterexample
analysis. A disadvantage is that the refinement done by increasing the height is
quite rough. Moreover, the cost of computing in the abstract domain rises quickly
with increasing the height of the abstraction as exponentially more concrete
configurations may be explored before the abstraction closes the analysis of
a particular branch. The finite height abstraction was used—in a specifically
fine-tuned version—in the first versions of Forester [14,17], which successfully
verified a number of benchmarks, but the refinement was not sufficiently flexible
to prove some more challenging examples.

Predicate abstraction, upon which we build in this paper, offers the needed
additional flexibility. It can be refined by adding new predicates to P and gives
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strong guarantees about excluding counterexamples. In ARTMC, interpolants in
the form of tree automata Ii are extracted from spurious counterexamples in the
way described in Sect. 5.1. The interpolant is then used to refine the abstraction
so that the spurious run is excluded from the program’s ART.

The guarantees shown to hold in [10] on the level of TAs are the following.
Let A and I = (Q, q0,Δ) be two TAs and let P(I) = {L(I, q) | q ∈ Q} denote
the set of languages of states of I. Then, if L(A)∩L(I) = ∅, it is guaranteed that
L(α[P(I)](A))∩L(I) = ∅. That is, when the abstraction is refined with languages
of all states of I, it will exclude L(I)—unless applied on a TA whose language
is already intersecting L(I).

We can generalize the result of [10] to forest automata in the following way,
implying the progress guarantees of CEGAR described in Sect. 5.1. For a forest
automaton F = 〈A1 · · · An, σ〉, let P(F ) =

⋃n
i=1 P(Ai).

Lemma 2. Let F and I be FAs s.t. I is compatible with α[P](F ) and �F �∩�I� =
∅. Then �α[P∪P(I)](F )� ∩ �I� = ∅.
We note that the lemma still holds if P(I) is replaced by P(Ai) only where Ai

is the i-th component of I and L(Ai � A′
i) = ∅ for the i-th component A′

i of
α[P](F ).

10 Experiments

We have implemented our counterexample analysis and abstraction refinement
as an extension of Forester and evaluated it on a set of C programs manip-
ulating singly- and doubly-linked list, trees, skip-lists, and their combinations.
We were able to analyse all of them fully automatically without any need to
supply manually crafted predicates nor any other manual aid. The test cases are
described in detail in [16].

We present our experimental results in Table 1. The table gives for each test
case its name, information whether the program is safe or contains an error,
the number of lines of code, the time needed for the analysis, the number of
refinements, and, finally, the number of predicates learnt during the abstraction
refinement. The experiments were performed on a computer with Intel Core i5
@2.50 GHz CPU and 8 GiB of memory running the Debian Sid OS with the
Linux kernel.

Some of the test cases consider dynamic data structures without any data
stored in them, some of them data structures storing finite-domain data. Such
data can be a part of the data structure itself, as, e.g., in red-black trees, they
can arise from some finite data abstraction, or they are also sometimes used
to mark some selected nodes of the data structure when checking the way the
data structure is changed by a given algorithm (e.g., one can check whether
an arbitrarily chosen successive pair of nodes of a list marked red and green is
swapped when the list is reversed—see e.g. [10]).

As the results show, some of our test cases do not need refinement. This is
because the predicate abstraction is a priori restricted in order to preserve the
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Table 1. Results of experiments.

Program Status LoC Time [s] Refnm Preds Program Status LoC Time [s] Refnm Preds

SLL (delete) safe 33 0.02 0 0 DLL (rev) safe 39 0.70 0 0
SLL (bubblesort) safe 42 0.02 0 0 CDLL safe 32 0.02 0 0
SLL (insersort) safe 36 0.04 0 0 DLL (insersort) safe 42 0.56 0 0
SLLOfCSLL safe 47 0.02 0 0 DLLOfCDLL safe 54 1.76 0 0
SLL01 safe 70 1.20 1 1 DLL01 safe 73 0.65 2 2
CircularSLL safe 49 3.57 3 3 CircularDLL safe 52 37.22 18 24
OptPtrSLL safe 59 1.90 3 3 OptPtrDLL safe 62 1.87 5 5
QueueSLL safe 71 11.32 10 10 QueueDLL safe 74 44.68 14 14
GBSLL safe 64 0.84 3 3 GBDLL safe 71 1.89 4 4
GBSLLSent safe 68 0.85 3 3 GBDLLSent safe 75 2.19 4 4
RGSLL safe 72 14.41 22 38 RGDLL safe 76 78.76 26 26
WBSLL safe 62 0.84 5 5 WBDLL safe 71 1.37 7 7
SortedSLL safe 76 227.12 15 15 SortedDLL safe 82 36.67 11 11
EndSLL safe 45 0.07 2 2 EndDLL safe 49 0.10 3 3
TreeRB error 130 0.08 0 0 TreeWB error 125 0.05 0 0
TreeCnstr safe 52 0.31 0 0 TreeCnstr error 52 0.03 0 0
TreeOfCSLL safe 109 0.57 0 0 TreeOfCSLL error 109 0.56 1 3
TreeStack safe 58 0.20 0 0 TreeStack error 58 0.01 0 0
TreeDsw safe 72 1.87 0 0 TreeDsw error 72 0.02 0 0
TreeRootPtr safe 62 1.43 0 0 TreeRootPtr error 62 0.17 2 6
SkipList safe 84 3.36 0 0 SkipList error 84 0.08 1 1

forest automata “interconnection graph” [17], which roughly corresponds to the
reachability relation among variables and cut-points in the heaps represented by
a forest automaton (an approach used already with the finite height abstraction
in former versions of Forester).

Table 1 also provides a comparison with the version of Forester from [17].
In particular, the highlighted cases are not manageable by that versions of
Forester. These cases can be split into two classes. In the first class there
are safe programs where the initial abstraction is too coarse and introduces spu-
rious counterexamples, and the abstraction thus needs to be refined. The other
class consists of programs containing a real error (which could not be confirmed
without the backward run). The times needed for analysis are comparable in
both versions of Forester.

To illustrate a typical learnt predicate, let us consider the test case GBSLL.
This program manipulates a list with nodes storing two data values, green and
blue, for which it holds that a green node is always followed by a blue one. The
program also contains a tester code to test this property. Forester first learns
two predicates describing particular violations of the property: (1) a green node
is at the end of the list and (2) there are two green nodes in a row. After that,
Forester derives a general predicate representing all lists with the needed
invariant, i.e., a green node is followed by a blue one. The program is then
successfully verified.

Another example comes from the analysis of the program TreeCSLL, which
creates and deletes a tree where every tree node is also the head of a circular list.
It contains an undefined pointer dereference error in the deletion of the circular
lists. Forester first finds a spurious error (an undefined pointer dereference
too) in the code that creates the circular lists. In particular, the abstraction
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introduces a case in which a tree node that is also the head of a list needs not
be allocated, and an attempt of accessing its next selector causes an undefined
pointer dereference error. This situation is excluded by the first refinement, after
which the error within the list deletion is correctly reported. Notice that, in this
case, the refinement learns a property of the shape, not a property over the
stored data values. The ability to learn shape as well as data properties (as well
as properties relating shape with data) using a uniform mechanism is one the
features of our method which distinguishes it from most of the related work.

11 Discussion and Future Work

Both the described forward and backward symbolic execution are quite fast. We
believe that the efficiency of the backward run (despite the need of computing
expensive automata products) is to a large degree because it inverts unfolding
(by folding). Backward run is therefore carried out with configurations encoded
in a compact folded form.

Forester was not able to terminate on a few tree benchmarks. For a pro-
gram manipulating a red-black tree using the rebalancing procedures, the initial
forward run did not terminate. For another tree-based implementation of a set
that includes a tester code checking full functional correctness, the CEGAR did
not learn the right predicates despite many refinements. The non-termination
of the forward run is probably related to the initial restrictions of the predicate
abstraction. Restricting the abstraction seems to be harmful especially in the
case of tree structures. If the abstraction remembers unnecessary fine informa-
tion about tree branches, the analysis will explore exponentially many variants
of tree structures with different branches satisfying different properties. The
scenario where CEGAR seems to be unable to generalize is related to the split-
ting of the symbolic execution. The symbolic runs are then too specialised and
CEGAR learns a large number of too specialised predicates from them (which
are sometimes irrelevant to the “real” cause of the error).

A closer examination and resolution of these issues is a part of our future
work. Allowing the abstraction more freedom is mostly an implementation issue,
although nontrivial to achieve in the current implementation of Forester.
Resolving the issue of splitting requires to cope with the domain of forest
automata not being closed under union. This is possible, e.g., by modifying
the definition of the FA language, which currently uses the Cartesian product
of sets of trees, so that it would connect tree components based on reachability
relation between them (instead of taking all elements of the Cartesian product).
Another possibility would be to use sets of forest automata instead of individual
ones as the symbolic representation of sets of heaps.
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