
Trading between quality and non-functional properties
of median filter in embedded systems

Zdenek Vasicek1 • Vojtech Mrazek1

Received: 20 December 2015 / Revised: 6 July 2016 / Published online: 19 July 2016

� Springer Science+Business Media New York 2016

Abstract Genetic improvement has been used to improve functional and non-

functional properties of software. In this paper, we propose a new approach that

applies a genetic programming (GP)-based genetic improvement to trade between

functional and non-functional properties of existing software. The paper investigates

possibilities and opportunities for improving non-functional parameters such as

execution time, code size, or power consumption of median functions implemented

using comparator networks. In general, it is impossible to improve non-functional

parameters of the median function without accepting occasional errors in results

because optimal implementations are available. In order to address this issue, we

proposed a method providing suitable compromises between accuracy, execution

time and power consumption. Traditionally, a randomly generated set of test vectors

is employed so as to assess the quality of GP individuals. We demonstrated that

such an approach may produce biased solutions if the test vectors are generated

inappropriately. In order to measure the accuracy of determining a median value and

avoid such a bias, we propose and formally analyze new quality metrics which are

based on the positional error calculated using the permutation principle introduced

in this paper. It is shown that the proposed method enables the discovery of solu-

tions which show a significant improvement in execution time, power consumption,

or size with respect to the accurate median function while keeping errors at a

moderate level. Non-functional properties of the discovered solutions are estimated

using data sets and validated by physical measurements on physical microcon-

trollers. The benefits of the evolved implementations are demonstrated on two real-

& Zdenek Vasicek

vasicek@fit.vutbr.cz

Vojtech Mrazek

imrazek@fit.vutbr.cz

1 Faculty of Information Technology, IT4Innovations Centre of Excellence, Brno University of

Technology, Brno, Czech Republic

123

Genet Program Evolvable Mach (2017) 18:45–82

DOI 10.1007/s10710-016-9275-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-016-9275-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-016-9275-7&domain=pdf

world problems—sensor data processing and image processing. It is concluded that

data processing software modules offer a great opportunity for genetic improve-

ment. The results revealed that it is not even necessary to determine the median

value exactly in many cases which helps to reduce power consumption or increase

performance. The discovered implementations of accurate, as well as approximate

median functions, are available as C functions for download and can be employed in

a custom application (http://www.fit.vutbr.cz/research/groups/ehw/median).

Keywords Genetic programming � Genetic improvement � Cartesian genetic

programming � Median function � Comparison network � Permutation principle �
Median filter

1 Introduction

Genetic programming (GP) has traditionally been used to evolve entirely new

expressions or functions to solve a particular problem which is usually specified by

a training data set [23]. With the development of search based software engineering,

GP has been applied to repair errors in software and assist in numerous tasks of

software engineering [10]. The successful applications of GP in search based

software engineering have attracted more and more researchers which has resulted

in the establishment of a new research direction called Genetic improvement (GI).

The Genetic improvement of software is defined as the application of evolutionary

and search-based optimization methods with the aim of improving functional and/or

non-functional properties of existing software [38].

The number of lines of code, execution time, memory usage, or power

consumption represent the typical non-functional properties of software. These

properties can be improved, for example, by replacing the existing code fragments

by newly evolved code fragments that are semantically equivalent. The improve-

ment of existing software by optimizing its non-functional properties was first

addressed by White et al. [38]. Eight different target functions were considered in

the paper. The authors showed that GP was able to discover code optimization tricks

that are probably unreachable by current compilers. These tricks enabled slight

improvements in the execution time of the chosen functions. Recently, Cody-Kenny

et al. [3] demonstrated that GP was able to reduce the number of instructions for

various manually constructed off-the-shelf implementations of a sort and prefix-

code programs written in Java. Genetic Improvement has also been used to evolve

an improved version of C?? code using automated code transplantation [22]. The

authors evolved a faster version of Boolean satisfiability solver MiniSAT which is

specialized for solving a particular problem known as Combinatorial interaction

testing. Finally, the reduction of energy consumption of non-trivial programs was

addressed in [26]. The authors introduced a system which can further optimize the

low level Intel X86 code generated by optimizing compilers. While the previous

examples have dealt with non-functional improvements, Langdon and Harman

showed that GP can, in addition to non-functional parameters, improve the

functionality of existing code [15]. The authors demonstrated that GP was able to

46 Genet Program Evolvable Mach (2017) 18:45–82

123

http://www.fit.vutbr.cz/research/groups/ehw/median

automatically improve behaviour (i.e. accuracy) of a widely-used DNA sequencing

system consisting of 50,000 lines of C?? code.

A similar research direction has been explored in the field of approximate

computing which is a promising approach to obtain energy-efficient computer

systems. In constrast to Genetic improvements that preserve the code functionality,

approximate computing exploits the fact that many applications are error resilient

and do not require a perfect output to be produced. Hence a suitable compromise is

sought between the error (quality), power consumption and performance. The

approximations can be introduced at the level of hardware as well as software. An

approximate solution is typically obtained by a heuristic procedure that modifies the

original implementation. For instance, artificial neural networks were used to

approximate software modules [7] in order to accelerate computations and reduce

power consumption. In addition, search-based methods were allowed to approxi-

mate hardware components [21, 36]. Using GP in the context of approximate

computing has been reported for digital circuit approximation [29, 34].

In this paper, we deal with GP-based improvements of non-functional properties

of programs (C functions) that are intended for low-cost microcontrollers. As we

seek significant improvements mainly of power consumption and execution time,

we consider the approximate computing scenario and accept some errors in the

outputs. The function to be approximated is the median filter which is crucial in

signal processing, image processing and sensor data processing. The goal of the GP-

based search strategy is to improve the existing, in most cases even functionaly

optimal, median implementations and find programs showing suitable compromises

between the accuracy, execution time and power consumption for various median

functions when implemented on a microcontroller. This paper develops our previous

results that were presented at the first GI workshop [20]. In contrast to our

previously published work, a more efficient GI method based on a two-stage

optimization process is introduced. The quality of the candidate solutions is

measured as a distance between the candidate program and a fully-working median

implementation. A generalized version of the zero–one principle [14] denoted as

permutation principle is used to determine this distance. The permutation principle,

first introduced in this paper, is formally proven in Sect. 4.2. Compared to the

previous results, the quality of the obtained solutions is improved significantly. In

addition, the benefit of GI approach is demonstrated using two real-world problems

that are typically handled by embedded systems—sensor data processing and image

processing. The obtained results are evaluated using data sets and by physical

measurements on physical microcontrollers.

In the context of this work, one can observe that the evolutionary design and/or

optimization of an (accurate) median outputting program has been carried out by GP

only rarely [27]. However, a considerable number of research papers were devoted

to the design and optimization of sorting algorithms (e.g., [1, 38]) and sorting

networks (e.g. [11, 12, 28, 33]), which are useful structures when the median value

has to be obtained. As checking whether a specification (i.e. an original code) and a

candidate solution are semantically equivalent is time consuming, exact equivalence

checking is not performed in the fitness function. The fitness is usually based on

evaluating candidate solutions using a training data set and subsequent testing at the

Genet Program Evolvable Mach (2017) 18:45–82 47

123

end of evolution using other data sets. According to the zero–one principle, the

training data are typically restricted to binary input vectors. A genetic improvement

of two different implementations of Bubble-Sort algorithm was demonstrated in

[38], where GP enabled the discovery of code optimization tricks probably

unreachable by current compilers. These tricks enabled slightly improved execution

time of the chosen sorting functions.

The rest of the paper is organized as follows. Section 2 briefly surveys genetic

improvement and its relation to the approximate computing. Then an overview of

the key areas related to this paper is given in Sect. 3. In particular, the median

function and possibilities for the improvement are discussed. In Sect. 4, the

permutation principle is introduced. The proposed method is described in Sect. 5.

Section 6 introduces the experimental setup. The results are presented and analyzed

in Sect. 7. Then, the obtained medians are applied to solve real-world problems. A

detailed discussion is given in Sect. 8. Finally, Sect. 9 concludes the paper.

2 From genetic improvement to approximate computing

In contrast to approximate computing that has been developed to improve energy

efficiency and performance for the cost of accuracy, GI has always kept the code

functionality identical with the original software. In approximate computing,

software and hardware is approximated (i.e. simplified with respect to fully accurate

implementations) in order to reduce power consumption or increase performance.

As a consequence, errors can emerge during computations. In many cases errors can

be tolerated because human perception capabilities are limited, no golden solution is

available for validation of results, or users are willing to accept some inaccuracies.

Therefore, the error (accuracy of computations) can be used as a design metric and

traded for area on a chip, delay, throughput, or power consumption.

One way to reduce energy consumption is by allowing timing errors by voltage

over scaling or frequency over clocking. Another approximation technique, which is

relevant for this paper, is functional approximation. The idea of functional

approximation is to implement a slightly different function to the original one,

provided that the error is acceptable and the non-functional parameters are improved

adequately. Functional approximation can be conducted at the level of software as

well as hardware.

After introducing several approximate circuits that were created manually [9],

researchers started to develop more efficient systematic semi-automatic and fully-

automatic methods. EnerJ [24], an extension of Java that adds approximate data

types, represents one of the semi-automatic methods. Using these types, the system

automatically maps approximate variables to low-power storage, uses low-power

operations, and even applies more energy-efficient algorithms provided by the

programmer. Axilog is a set of language annotations that provide the necessary

syntax and semantics for an approximate hardware design and reuse in Verilog [39].

Axilog enables the designer to relax the accuracy requirements in certain parts of

the design, while keeping the critical parts strictly precise. In contrast to fully-

automatic methods, an approximate solution is typically obtained by a heuristic

48 Genet Program Evolvable Mach (2017) 18:45–82

123

procedure that modifies the original implementation. For example, artificial neural

networks were proposed in [7] to learn to behave like a general-purpose code

written in an imperative language. The trained network then replaced the original

code. There are also general search-based methods that allows us to approximate

hardware components [21, 36].

While the approximate problem has already been addressed by GP community

[30, 34], GI has been used to improve functional and non-functional properties of

software so far. However, by having the fitness function of GP-based GI permit

errors, one can easily obtain approximate solutions. Applying the GI methodology

for approximate computing (particularly for approximate software) seems to be

straightforward. The main outcomes would be to obtain better trade-offs among key

system parameters (note that the search-based methods are not constrained by

various assumptions of mathematically rigorous methodologies) and reducing the

optimization time with respect to commonly used solvers such as ILP. The key

advantage is that the GI systems can be constructed as multi-objective (i.e. they

provide a Pareto front showing the best trade-offs among the error, speed, memory

usage, energy consumption, network loading, etc.) at the end of each run.

3 Background

In this section, we give an overview of the key areas related to this paper, especially

the median function, construction of median networks and possibilities for the

improvement of median functions. The section is concluded with problem

formulation.

3.1 Median of a data set

Given a finite sequence of data samples, the median is defined as a value separating

the higher half of data samples from the lower half. The median is of central

importance in robust statistics [16], as it is the statistic that is the most resistant to

outliers that could be presented in a given sequence. Contrasted to the mean, the

median is a robust measure of central tendency. The main feature of the robust

methods is their high efficiency in a neighbourhood of the assumed statistical model

which is widely exploited in signal processing where the median is usually

employed to filter the measured data.

There exists two basic approaches to determine the median of a given sequence.

A straightforward and naı̈ve approach is to employ a generic sorting algorithm, for

example, the most popular and efficient quicksort algorithm. Implementations of

sorting algorithms are very compact and robust, however, the execution time needed

to determine the median value may vary with the values of the elements in a

particular input sequence. This kind of nondeterminism may be problematic in real-

time applications intended for microcontrollers having limited computing power. In

addition, the sorting of the whole input sequence generates an substantial overhead.

In order to eliminate the overhead, a more efficient in-place algorithm known as

Quick select can be applied [14].

Genet Program Evolvable Mach (2017) 18:45–82 49

123

An alternative way of calculating the median value is to use a median network.

The median network is a kind of sorting network whose concept is deeply

elaborated in [14]. A sorting network is defined as a sequence of elementary

compare-swap operations that sorts all input sequences. The sequence of compara-

tors is fixed and depends only on the number of elements to be sorted, not on the

values of the elements. Similarly, a median network is a sequence of elementary

compare-swap operations that calculates the median for all input sequences. A

compare-swap operation of two elements (a, b) compares a and b and exchanges (if

it is necessary) the elements in order to obtain a sorted sequence.

3.2 Construction of median networks

A sorting network with n inputs and n outputs can be constructed using an instance

of the sorting algorithm which is operating over a sequence of n items. The only

condition is that the algorithm must be data independent. Bitonic-sorting and

Batcher’s odd-even merge sorting are examples of such algorithms.

A median network can be constructed from a sorting network by removing the

useless compare-swap operations (i.e. operations that do not contribute to the output

value). Aside from this, an optimal sequence of compare-swap operations is known

for some median networks [4, 31]. Generally, the direct design of the median and

sorting networks is a nontrivial task, especially for larger values of N.

In order to illustrate the difference among the results produced by various

algorithms, let us suppose that we need to construct a 9-median network (i.e. a

median network for n ¼ 9 inputs). When Bitonic-sorting algoritm is used, we obtain

a sequence of 23 operations. The Batcher’s odd-even merge sorting produces the

median network consisting of 22 operations (see Fig. 1a). The optimal 9-median

dtype median9_22(dtype *din)
{

CS(0 ,1); CS(3,4); CS(5,6);
CS(7 ,8); CS(0,2); CS(5,7);
CS(6 ,8); CS(0,3); CS(1,2);
CS(6 ,7); CS(0,5); CS(1,4);
CS(2 ,3); CS(1,2); CS(3,4);
CS(1 ,6); CS(2,7); CS(3,8);
CS(4 ,5); CS(2,4); CS(3,6);
CS(3,4)
return din [4];

}

dtype median9_19(dtype *din)
{

CS(1,2); CS(4,5); CS(7 ,8);
CS(0,1); CS(3,4); CS(6 ,7);
CS(0,3); CS(1,2); CS(4 ,5);
CS(7,8); CS(3,6); CS(4 ,7);
CS(5,8); CS(1,4); CS(2 ,5);
CS(4,7); CS(4,2); CS(6 ,4);
CS(4,2)

return din [4];
}

(a) (b)

Fig. 1 Two instances of a median network for 9 inputs. The compare-swap operation is implemented
using macro CS(a, b) which assigns the lower value to din[a] and higher value to din[b]. One of the
possible implementations of CS is the following one:

if (z din[b] − din[a]) < 0 then din[a] ← din[a] + z;

din[b] ← din[b] − z; end

a Median constructed using Batcher’s odd-even merge sorting. b Optimal implementation of 9-input
median [4]

50 Genet Program Evolvable Mach (2017) 18:45–82

123

network consists, however, of 19 operations (see Fig. 1b). The corresponding codes

in C language are shown in Fig. 1. Note that various implementations can be

utilized. If there is a requirement to preserve the input data samples (i.e. to avoid the

usage of in-place computations), two temporary variables have to be associated with

each output of the CS operation.

Alternativelly, each compare-swap operation can be replaced by two basic

operations—minimum and maximum. This allows us to furthermore decrease the

total number of required instructions because not every output value calculated by

the compare-swap element is subsequently utilized. For example, the last operation

shown in Fig. 1b calculates din[2] and din[4]. It is evident that it makes no sense to

determine the value of din[2] because only din[4] is returned at the end. The

representation based on the minimum/maximum operations enables us to reduce the

code size of the 9-median shown in Fig. 1b by 21 % provided that the minimum and

maximum macros share the code required to determine the relation between both

input values.

3.3 Power-aware improvement of median networks

It is clear that the performance as well as power consumption of a particular median

network implementation directly depends on the number of operations a given

median network consists of. The higher number of operations results in a higher

power consumption as well as a longer execution time. This relation can easily be

revealed, for example, by inspecting the implementations shown in Fig. 1. The

median networks shown consist of a fixed number of operations. Each operation is

executed in the same number of clock cycles on average if it is measured at the level

of machine code instructions.

Decreasing the number of operations represents the only way to improve the

performance and power consumption. Unfortunately, a reduction of the number of

operations is not possible without accepting some errors in the outputs produced by

a median function. In other words, we have to search for a sequence of compare-

swap operations that are capable of approximating the median. Let us call such a

sequence a comparator network.

Two possible approaches can be applied to achieve our goal. One way to obtain

an improved median network with a reduced number of operations is to construct a

comparator network completely from scratch. It means to employ a variant of GP

(e.g. linear GP, cartesian GP, etc.) and evolve programs satisfying the required

quality as well as target size constraints (i.e. consisting of the required number of

operations). The other possibility is to apply evolutionary techniques to reduce the

number of operations of already existing median networks provided that the quality

is maximized. In this scenario, a fully working median network used as a starting

point is gradually modified according to the genetic improvement methodology. At

the end of this process, a comparator network of the highest possible quality

consisting of the required number of operations is expected. The question is which

of these approaches performs better.

It seems to be natural to employ the first approach, however, due to the limited

scalability of the evolutionary design, this approach seems to be extremely

Genet Program Evolvable Mach (2017) 18:45–82 51

123

inefficient. As shown in [34], randomly seeded GP discovered fully functional

solutions for the 9-median, however, no correct solution was discovered for the

25-median. While the evolutionary design of a 9-median is a relatively simple

problem, a 25-median consisting of more than 200 operations seems to be outside of

the range of possibilities of the evolutionary design approach. If a median consisting

of more than 100 operations is required, then direct evolution is unable to

accomplish the goal. The authors claimed that solving the larger instances from

scratch seems to be impossible for any evolutionary algorithm based on direct

encoding.

3.4 Problem formulation

Given an existing median network N, i.e. a sequence of compare-swap operations of

length n, and the target number of compare-swap operations m, find an alternative

sequence of compare-swap operations M of length m s that this sequence maximizes

the functional objective (quality) and minimizes the non-functional objectives.

In general, the problem can be understood as a single-objective as well as a

multiple-objective optimization problem. The number of operations and time of

execution and power consumption represent the typical software-related non-

functional objectives. In addition, the number of stages required to determine the

output value can be considered. This parameter is, however, important only when

the comparator networks are intended for hardware implementation.

4 The quality of the improved median networks

In this section, we give an overview of approaches that enable us to assess the

quality of partially working software and hardware. Then we discuss how to

determine the quality of the improved median networks. We introduce and prove the

permutation principle which gives a clue on how to determine the quality of median

functions efficiently. In order to measure the distance between an original and

improved version of the median, a problem-specific quality metric is proposed.

4.1 Common quality metrics

Various approaches to evaluate the quality of partially working software and

hardware have been proposed in the literature.

The error probability (error rate) and Hamming distance represent metrics

typically used to measure the quality of digital circuits. The error rate (Hamming

distance) is defined as the percentage of input vectors (bits of output) for which the

approximate output differs from the original one. In general, 2wn input combinations

exist for an n-input median network operating with elements encoded using w-bit

integers. Clearly, it is intractable to evaluate all possible input combinations,

however, the number of input combinations can substantially be reduced by

applying the zero–one principle. The zero–one principle states that if a sorting

network with n inputs sorts all 2n input sequences of 0’s and 1’s into a

52 Genet Program Evolvable Mach (2017) 18:45–82

123

nondecreasing order, it will sort any arbitrary sequence of n elements into a

nondecreasing order [14]. As a consequence, 2n input combinations are sufficient to

determine the error rate. Unfortunately, it seems to be difficult to apply this metric

in practice. For example, there can exist a candidate implementation slightly

modifying one half of the output values, but still providing good performance if

used, for example, in image filtering.

The average error magnitude is another metric which is used for determining the

quality of arithmetic circuits, not only in the field of evolutionary design, but also in

the approximate computing. The average error magnitude is defined as the sum of

absolute differences in magnitude between the original and approximate circuits,

averaged over all inputs. Two complex issues are, however, connected with this

parameter when used to evaluate the quality of a median network. Firstly, it is not

possible to apply the zero–one principle in this case. As a consequence, we are

unable to determine the exact value of this metric. In practice, we have to use a

subset of all possible input combinations which helps us to estimate the value of the

average error magnitude. The selection of the input vectors must be done carefully

because it influences the precision of the estimate. Secondly, the averaging may

hide situations in which completely wrong results are returned.

The common problem of the previously discussed generic metrics is that they do not

reflect the quality of selecting the median value. In order to investigate the impact of the

approximations on the quality of obtained results, regardless of the values of the input

items, we introduce a new problem-specific metric. Let us recall that the median of a

finite list of numbers can be found by arranging all the numbers from the lowest value to

the highest value and picking themiddle one. In otherwords, themedian of a finite list of

numbers consisting of 2k þ 1 items is equal to the ðk þ 1Þth lowest value. The most

important property of the median functions implemented in accordance with Sect. 3.2

is that the output always equals one of the input values. Let the output value equal to the

jth lowest value. To describe the quality of an approximate median function, we can

introduce distance error defined as the distance of the item chosen as the output value

(i.e. jth lowest value) from the median (i.e. ðk þ 1Þth lowest value) calculated as

jj� k þ 1j. Two additional metrics can be inferred from the distance error: average

distance error defined as the sum of error distances averaged over all input

combinations producing an invalid output value andworst case distance error defined

as the maximal distance error calculated over all input combinations.

Note that it is not necessary to investigate all possible input combinations in

practice. The permutation principle introduced in Sect. 4.2 permits one to

substantially reduce the total number of input combinations that has to be

investigated for a given comparator network in order to precisely determine the

properties of the network. According to the permutation principle, the aforemen-

tioned distance errors can be determined using the permutations of a set S consisting

of 2k þ 1 different values. To determine the quality, we propose to use a set

S ¼ f�k;�k þ 1; . . .; 0; . . .; k � 1; kg. The set S consists of 2k þ 1 successive

integers starting at the value �k. This particular arrangements enable to calculate

the average distance error in the same way as the average error magnitude. This is

possible because the median of S is equal to zero and the distance between jth

lowest item (i.e. the value j� ðk þ 1Þ) and ðk þ 1Þth lowest item (i.e. median of S)

Genet Program Evolvable Mach (2017) 18:45–82 53

123

is equal to j� ðk þ 1Þ. Compared to the process of determining the average error

magnitude, however, a substantially lower number of input combinations is required

to be processed by a candidate median implementation.

4.2 The permutation principle

Definition 1 Let R be an ordered alphabet. A comparator network is a directed

acyclic graph with n inputs and n outputs (n� 2), where each node has two inputs

ðx1; x2Þ and two outputs ðy1; y2Þ. The function of a node is defined as

y1 ¼ minðx1; x2Þ ^ y2 ¼ maxðx1; x2Þ, where x1; x2 2 R.

Definition 2 A sorting network is a comparator network that monotically sorts

every input sequence.

Definition 3 Let A ¼ ða1; . . .; anÞ be a sequence of n different elements, A 2 R�.
Let dA: R� ! N be a mapping which assigns each element ai 2 A the position of

this element in the sorted variant of A. Let dA be defined as follows:

dAðxÞ ¼ 0 , 8a 2 A:x\a

dAðxÞ ¼ jAj � 1 , 8a 2 A:x[a

8 1� i; j� n:ai\aj , dAðaÞ\dAðbÞ

For simplicity, let dðAÞ denote the sequence ðdAða1Þ; dAða2Þ; . . .; dAðanÞÞ.

Lemma 1 ([14]) Let N be a sorting network with n inputs that transforms a

sequence A ¼ ða1; a2; a3; . . .; anÞ to a sequence B ¼ ðb1; b2; b3; . . .; bnÞ. If a

monotonic mapping f is applied to the sequence A, the network N transforms a

sequence A0 ¼ ðf ða1Þ; f ða2Þ; f ða3Þ; . . .; f ðanÞ) to B0 ¼ ðf ðb1Þ; f ðb2Þ; f ðb3Þ; . . .;
f ðbnÞÞ.

Theorem 1 Let N be a comparator network with n inputs. Let S be a set consisting

of n distinct values. If every permutation of a set S is sorted by N, then every

arbitrary sequence is sorted by N.

Proof Suppose A ¼ ða1; . . .; anÞ is an arbitrary sequence which is not sorted by N.

This means NðAÞ ¼ B ¼ ðb1; . . .; bnÞ is unsorted, i.e. there is a position k such that

bkþ1\bk. Clearly, mapping dA is monotonic. By applying Lemma 1 and dA, the
following holds dAðbkþ1Þ\dAðbkÞ, i.e. dðBÞ ¼ dðNðAÞÞ is unsorted. This means that

NðdðAÞÞ is unsorted or, in other words, that the sequence dðAÞ is not sorted by the

comparator network N.

We have shown that, if there is an arbitrary sequence A that is not sorted by N,

then there is a sequence dðAÞ, i.e. a sequence of ð0; . . .; n� 1Þ values, that is not

sorted by N. Equivalently, if there is no ð0; . . .; n� 1Þ-sequence that is not sorted by

N, then there can be no sequence A whatsoever that is not sorted by N. Equivalently

again, if all ð0; . . .; n� 1Þ-sequences are sorted by N, then all arbitrary sequences

are sorted by N.

Clearly, there exists a bijection between all permutations of S and all

ð0; . . .; n� 1Þ-sequences as follows from the definition of S. In particular, dS

54 Genet Program Evolvable Mach (2017) 18:45–82

123

ensures the bijective mapping. This means that if all permutations of S are sorted by

N, then all arbitrary sequences are sorted by N. h

4.3 The permutation principle and distance error

The permutation principle introduced in the previous section can be employed to

determine the distance between an arbitrary comparator network (e.g. partially

working sorting network) and a sorting network as follows.

Theorem 2 Let C be a comparator network, and N be a sorting network, both with

n inputs. Let A be an arbitrary sequence A ¼ ða1; . . .; anÞ. Let D ¼ CðdðAÞÞ �
NðdðAÞÞ ¼ ðd1; . . .; dnÞ be a mapping which assigns each element ai a number di.

Then, di is error expressed as the number of positions that are required to shift ai to

the right in sequence CðdðAÞÞ to obtain sorted variant of sequence A.

Proof Let B ¼ NðAÞ and B0 ¼ CðAÞ. For each element b0k 2 B0 holds that

difference between a correct position and position of b0k in a sorted variant of

sequence A is equal to dk ¼ dAðb0kÞ � k. As N is a sorting network, it holds that

dAðbkÞ ¼ k which implies that dk can be expressed as dk ¼ dAðb0kÞ � k ¼
dAðb0kÞ � dAðbkÞ. By applying Lemma 1, it holds that D ¼ CðdðAÞÞ � NðdðAÞÞ: h

Definition 4 Let A and B be two sequences of elements. Let � d denote an

equivalence relation on the set of all sequences defined as follows:

A� dB , jAj ¼ jBj ^ dðAÞ ¼ dðBÞ

To conclude this part, let us give a simple example which illustrates the principle

of determining the position error for a comparator network with 4 inputs and 4

outputs and two chosen sequences A and B.

Example 1 Let A and B be two sequences consisting of 4 items defined as

A ¼ ð25; 14; 36; 8Þ, B ¼ ð16; 12; 20; 2Þ. Let N denotes the sorting network and C be

a comparator network both with 4 inputs and 4 outputs, where C is defined as

follows: Cða1; a2; a3; a4Þ ¼ ðminða1; a2Þ;maxða1; a2Þ; a3; a4Þ:
According to the Definition 3, dðAÞ ¼ ð2; 1; 3; 0Þ and NðdAðAÞÞ ¼ ð0; 1; 2; 3Þ

which follows fromNðAÞ ¼ ð8; 14; 25; 36ÞwhereN(A) denotes the sorted sequenceA.
As the output of C is equal to CðAÞ ¼ ð14; 25; 36; 8Þ, the CðdðAÞÞ ¼ dðCðAÞÞ ¼
ð1; 2; 3; 0Þ. To calculate the positional differencesDCðAÞ, we apply Theorem 2 which

yields the following resultDCðAÞ ¼ CðdðAÞÞ � NðdðAÞÞ ¼ ð1; 2; 3; 0Þ�ð0; 1; 2; 3Þ ¼
ð1; 1; 1;�3Þ. The result can be interpreted in such a way that each of the first three

elements of the partially sorted sequence C(A) should be shifted one position to the

right and the last element should be shifted three positions to the left. If all the shifts are

applied, we obtain a sorted sequence.

The same sequence of steps applied to B yields DCðBÞ ¼ CðdðBÞÞ � NðdðBÞÞ ¼
ð1; 2; 3; 0Þ �ð0; 1; 2; 3Þ ¼ ð1; 1; 1;�3Þ. It reveals that DCðBÞ ¼ DCðAÞ, i.e. the same

Genet Program Evolvable Mach (2017) 18:45–82 55

123

sequence as for Awas obtained. It means that we have applied the sequence within the

same equivalence class, i.e. A� dB. This fact can be easily checked by comparing the

output of dðAÞ and dðBÞ. It holds that dðBÞ ¼ dðAÞ.

4.4 Final remarks

In general, there exist 2wn input combinations that can be processed by an n-input

comparator network operating at w-bits. We have shown that it is sufficient to

reduce the number of the possible input combinations to n! to prove the validity of a

sorting network due to the existence of permutation principle (see Theorem 1).

According to the zero–one principle, the validity of a sorting network can, however,

be checked using 2n binary vectors. As it can easily be checked, the 2n is for n� 4

lower than n!, hence it seems that the proposed permutation principle does not offer

an advantage. However, the problem of zero–one principle is that the binary vectors

cannot probably be used to evaluate the quality of a comparator network. The reason

is that we are not able to distinguish which value comes from what input (there are

only two values—0’s and 1’s). To address this problem, Theorem 2 helps to

determine the so called position error (distance error) which can be used as a basis

of an error metric.

The impact of the introduced permutation principle can be seen from theoretical

as well as practical point of view. From the theoretical point of view, it was proven

that we can use this principle to evaluate the quality of candidate solutions without

loss of generality (i.e. it is not necessary to evaluate responses for all w-bit input

combinations). The permutation principle significantly reduces the number input

vectors that have to be applied to obtain the fitness. In particular, 362, 880 vectors

instead of 2569 vectors are sufficient to precisely determine quality of a 9-input

comparator network operating at 8-bits. From the practical point of view, the

permutation principle (if properly applied) extremely simplifies the evaluation of

candidate solutions because the response of a comparison network (i.e. output

value) is equal to the distance from the median value. It means that we can avoid

precomputing and storing of a training dataset.

Example 1 illustrates that no additional information about an investigated

network is obtained when we try to check some property of a comparator network

using sequences belonging to the same equivalence classes. This may happen when

randomly generated test cases are used to determine this property. In fact, the

randomly generated input sequenced may introduce a bias when used to evaluate

quality of a comparison network. The probability of occurrence such cases is

relatively high, because only the relation among the values within a generated

sequence is important (i.e. not values themselves). Let us give an example. We

created 106 test vectors consisting of nine randomly generated 8-bit values. Then,

we calculated the number of covered equivalence classes according to Definition 4.

It revealed that only 337,751 out of 362,880 (i.e. 93 %) of all possible equivalence

classes were covered despite the fact that we generated approximately three times

more test vectors than the number of equivalence classes. It means that there is

many test vectors belonging to the same equivalence class.

56 Genet Program Evolvable Mach (2017) 18:45–82

123

The permutation principle and the obtained conclusions can directly be applied

not only to comparator networks discussed in this section but also to comparator

networks with a single output. In other words, the permutation principle can be used

to assess the quality of partially working median as well as sorting networks.

5 The proposed method

In order to search for solutions with some improved level of a non-functional

property, we must be able to quantify that property. In our case, the execution time

and power consumption are considered. To estimate these non-functional properties,

we can use the number of operations of which the median function consists of. This

is a fairly reliable high-level estimate not only of execution time but also of power

consumption. A more detailed simulation employing an accurate simulator would

be necessary in general, however, our programs are designed as a sequence of min

and max operations. It is supposed that each operation is transformed by compiler to

a sequence of instructions that requires exactly the same number of clock cycles to

perform this operation. In addition to that it also reflects the nature of modern

embedded systems (e.g. ARM) whose instruction set predominantly consists of

instructions that can be executed within one clock cycle.

In this paper, the task is formulated as a single objective optimization problem

where the number of operations en represents a constraint specified by designer.

Because both considered non-fuctional objectives linearly depend on this constraint,

it is not necessary to include these objectives in the fitness function. This represents

the main advantage of the constraint-oriented approach. In addition to this, the

constrain-oriented approach is relevant to practice where the designers usually

wants to achieve a particular power reduction in order to improve the performance

of the whole embedded system.

To achieve our goal, we propose to use cartesian GP (CGP) in its linear form

[18]. The linear form seems to be preferred approach compared to the traditional

form of CGP representing the solved problems using two-dimensional array of

nodes.

5.1 Representation of comparator networks

Each comparator network with n inputs can be represented using a directed acyclic

graph consisting of k nodes. In order to encode such a graph, we can map the nodes

to a 1D array of N nodes (N � k) that can be encoded using cartesian GP

representation as follows. The number of rows, which is one of CGP parameters, is

set to nr ¼ 1. The number of columns nc is equal to the number of nodes, i.e.

nc ¼ N.

The 1D array of nodes can be encoded using a string of integers, the so-called

chromosome. The inputs are labelled ð0; 1; . . .; n� 1Þ and the nodes are labelled

ðn; nþ 1; . . .; nþ nc � 1Þ. Each node has two inputs and is encoded in the

chromosome using three integers—two labels specifying where the node inputs are

connected to and a single label specifying the function of the node. Finally, the

Genet Program Evolvable Mach (2017) 18:45–82 57

123

chromosome contains a single integer specifying the label of a node where the

output is connected. The chromosome consists of 3nc þ 1 integers (i.e. genes).

The main feature of CGP is that nc as well as nr (i.e. the total number of nodes N)

are constant during evolution. It means that the size of the chromosome is constant

because it depends only on nc. On the other hand, the size of graph represented by

this chromosome is variable as some nodes may become inactive. The nodes which

do not contribute to the output value are called the inactive nodes. Example is given

in Fig. 2 where only 4 out of 5 nodes are active.

Each node can act as minimum or maximum function. The inputs of a node can

be connected either to the output of a node placed in previous l columns or to one of

the input variables. This restriction ensures that no feedbacks are allowed. The

output can be connected to output of any node. The l-back parameter will be

unrestricted, i.e. l ¼ nc.

5.2 Quality of candidate solutions

The computational effort of EA directly depends on the number of test cases that are

used for fitness evaluation of the GP individuals. Even if we apply the permutation

principle which substantially reduces the number of all possible test cases that have

to be investigated, we cannot run all of these due to time constraints. Thus, the

number of test cases is fixed and specified at the beginning of the evolution. Based

on the preliminary experiments and in accordance with observations related to the

minimum number of test vectors required to evaluate candidate solutions [34], we

determine the number of test cases as T ¼ 103 � n2, where n is the number of input

variables. The number of test cases is chosen in such a way that we are able to

relatively precisely estimate the quality of the individuals while the time of fitness

evaluation remains reasonable. Surprisingly, this simplification does not have any

significant effect in practice provided that a reasonable number of unique

permutations is used. The example given in Fig. 3 demonstrates how the number

of test cases influences the shape of distribution of distance error for an approximate

version of 25-input median. If more than 104 test vectors are used, the distributions

are almost identical.

The first generated test case is the sequence S ¼ ð�k;�k þ 1; . . .; 0; . . .; k � 1; kÞ
where n ¼ 2k þ 1. The next test case is obtained by swapping two randomly chosen

items. This step ensures that a permutation of S is obtained. Note that the process of

MIN

2

3
5 MAX

1

4
6

0

5
7

7

6
8

7

4
9

i0

i1

i2

i3

o (8)

i4

MAX MAXMIN

0

1

2

3

4

Fig. 2 Example of a 5-input comparator network encoded using cartesian GP with parameters: k ¼ 5,
nc ¼ 5, l ¼ 4. Chromosome: 2, 3, min; 1, 4, max; 0, 5, max; 7, 6, min; 7, 4, max; 8. Node 9 is not used.
The behaviour of the encoded comparator network is defined as:
o ¼ minðmaxði0;minði2; i3ÞÞ;maxði1; i4ÞÞ

58 Genet Program Evolvable Mach (2017) 18:45–82

123

generating the test cases have to be deterministic because we have to guarantee that

exactly the same fitness score is obtained for individuals that represent the same

behaviour. In order to satisfy this requirement, a separate random generator is used

to perform the random exchanges. This generator is reinitialized with the same seed

whenever we begin to generate the permutations.

The quality of the GP individuals is determined as follows. For each test case, the

chromosome is interpreted. This step requires to successively determine the value at

the output of each node. Finally, the response of a comparator network encoded by

the individual is calculated. Because the permutations of a set proposed in Sect. 4.1

are applied to the inputs, the obtained response equals to the distance error

determined for a given test case. In order to prefer the implementations with the

lowest worst case distance error, we propose to calculate a histogram of distance

errors and summarize the obtained results as follows:

qðCÞ ¼ hðC; 0Þ �
X

k

i¼�k

hðC; iÞi2; ð1Þ

where q(C) denotes the quality of a comparator network C and h(C, i) represents the

number of occurrences of a case for which the distance error equals to i, formally:

hðC; iÞ ¼
X

t2T

1; ifCðtÞ ¼ i:

0; otherwise:

�

ð2Þ

where C(t) denotes the response of the comparator network C obtained for a test

case t 2 T and T is a set of considered permutations of S. There are two reasons for

including i2. Firstly, only positive numbers are summed. Secondly, a natural weight

is provided in order to emphasize the most important part of the histogram.

5.3 Search method

The search method follows the standard CGP approach [18], i.e. the evolutionary

strategy 1þ k is applied. The initial population is seeded by an existing median

−12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

Distance error

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
R

el
at

iv
e

fre
qu

en
cy

T= 103

T= 104

T= 105

T= 108

Fig. 3 Distribution of distance error for an approximate version of 25-input median as a function of the
number of test cases T

Genet Program Evolvable Mach (2017) 18:45–82 59

123

network. In order to generate a new population, k offspring individuals are created

by a point mutation operator modifying h genes of the parent individual. The best

individual of the current population (i.e. the parent individual together with k
offspring) serves as the parent of new population. The process is repeated until a

given number of generations is not exhausted.

One mutation can alter either the function of a node, node input connection, or

output connection. If a mutation hits a non-active node, this is detected and the

candidate solution is not evaluated in terms of functionality because it has the same

fitness as its parent. Mutations that do not affect the fitness score are called neutral

and seem to be important in CGP because a series of neutral mutations can

accumulate useful structures in the part of the chromosome which is not currently

active (see detailed analysis in [8, 19]). In order to support this kind of neutrality,

neutral mutants always replace their parent in CGP. One adaptive mutation can then

connect these structures with active nodes which could lead to discovering new

useful implementations.

In order to obtain an approximate version of median function M, we propose to

apply a two-stage procedure. At the beginning, the designer specifies the target

reduction that should be achieved, e.g. 15 %. The specified value is internally

understood as the number of operations L of the approximate median function. In

our example, L is equal to 85 % of the number of operations in the original median

function.

The first stage starts with a fully functional solution. As has been discussed in

Sect. 3.2, the initial solution can always be obtained in practice. In this stage, the

goal is to gradually modify the initial sequence consisting of minimum and

maximum operations and produce a reduced sequence of length L providing that a

5 % difference is tolerated with respect to L (tolerating a small deviance in the

number of operations is acceptable; otherwise the search could easily stuck in a

local extreme). The fitness function fit1 used in the first stage is thus solely based on

the number of operations

fit1ðCÞ ¼ jCj; ð3Þ

where C denotes a candidate solution implemented using |C| operations.

In the second stage, which begins after obtaining an implementation consisting of

the target number of operations, the fitness function reflects not only the size, but

also the quality:

fit2ðCÞ ¼
qðCÞ; if 0:95L� jCj � 1:05L:

�1; otherwise:

�

ð4Þ

It is requested that the number of operations remains within 5 % tolerance with

respect to L. Candidate circuits violating this hard constraint are discarded.

The proposed two-stage method eliminates the problem with seeding of initial

population which may be considered as a limitation of the resource-oriented method

[20]. The advantage of our method is that we do not need to implement a heuristics

for generating the initial solution consisting of L operations. Instead, a fully working

median function obtained by pruning a sorting-network is used as the start point. In

60 Genet Program Evolvable Mach (2017) 18:45–82

123

addition to this, it was demonstrated that the randomly seeded CGP was unable to

produce reasonable solutions when the complexity of the problem to be solved

increases. The role of seeding was investigated for example in [34]. The benefits of

the two-stage method are not only in improving the quality of evolved circuits, but

also in reducing the time of evolution.

6 Experimental setup

In order to evaluate the performance of the proposed approach, i.e. the ability to

improve the considered non-functional parameters of the existing median functions,

namely time of execution and power consumption, we have chosen four instances of

the median filter that are common in practice. The results of optimization for

9-median, 11-median, 13-median, and 25-median will be reported. While the

9-input and 25-input medians are typically employed in image processing, the

9-input, 11-input and 13-input medians represent instances used to filter data

coming from sensors. We did not consider the lower number of inputs because there

is nearly no potential for improvement due to the small code complexity.

As previously mentioned, the designer has to specify the target reduction that

ought to be achieved by reducing the number of instructions. Eight to eleven design

points (i.e. different values of L) were considered for each problem. We carried out

100 repetitions of CGP at each design point to evaluate the variation in the output

caused by the random seed. In total, 4000 experimental runs were performed. To be

able to evaluate all runs in a reasonable time, the number of generations was limited

to gmax ¼ 1� 104. The number of generations is based on the initial experiments

and represents a compromise between the ability to demonstrate the advantage of

the genetic improvement in the solving of the chosen problem and the amount of

required computational resources. If the objective is to find the best possible

implementation for a certain design point, we recommend to increase the number of

generations. In order to improve the efficiency of the fitness function, approach

proposed in [35] was employed.

The following settings was used for the search strategy: Twenty offspring

individuals are generated from the parent (i.e. k ¼ 20) using the mutation operator

that modifies up to 5 % of the chromosome genes. The number of columns nc is

fixed for each design point and is initialized according to the number of operations

of the original median function. In the case of 9-input and 25-input median, the

optimal implementations consisting of the minimal number of compare-swap

elements were used from [4]. Each compare-swap element was replaced by

minimum and maximum operation and the worthless operations were removed as

mentioned in Sect. 3.2. The obtained sequence of minimum and maximum

operations was used as a starting point for seeding the evolutionary algorithm. In

remaining cases, the initial fully working median networks were derived from a

25-input median network by reducing the number of inputs and removing redundant

operations. We have verified that this approach produces more compact median

networks compared to the results obtained using the approach employing a sorting

algorithm. The parameters of the initial networks are summarized in Table 1.

Genet Program Evolvable Mach (2017) 18:45–82 61

123

7 Results

The results of the evolution are summarized in Fig. 4. For each problem and each

design point, the normalized fitness score is given. This score is calculated

according to Eq. 4, however, the results are normalized by the total number of test

Table 1 Parameters of the fully working median functions used to seed the evolution and the range in

which the design points are sampled

Parameter 9-Median 11-Median 13-Median 25-Median

Number of compare-swaps elements 19 33 43 99

Number of min/max operations 30 56 74 174

Number of min operations 15 (50 %) 28 (50 %) 37 (50 %) 87 (50 %)

Number of max operations 15 (50 %) 28 (50 %) 37 (50 %) 87 (50 %)

Minimum value of L 8 8 10 50

Maximum value of L 30 56 74 174

Number of design points 11 8 8 13

9 11 13 15 17 19 21 23 25 27 29

Size limit L

−6

−5

−4

−3

−2

−1

0

1

N
or

m
al

iz
ed

 fi
tn

es
s

9 input median

11 17 23 29 35 41 47 53

Size limit L

−8

−6

−4

−2

0

N
or

m
al

iz
ed

 fi
tn

es
s

11 input median

14 22 30 38 46 54 62 70

Size limit L

−10

−8

−6

−4

−2

0

N
or

m
al

iz
ed

 fi
tn

es
s

13 input median

55 65 75 85 95 105 115 125 135 145 155 165 175

Size limit L

−20

−15

−10

−5

0

N
or

m
al

iz
ed

 fi
tn

es
s

25 input median

Fig. 4 The fitness score of the evolved comparator networks (approximate median function) based on
100 experimental runs performed for each design point. The dash line represents target Pareto frontier

62 Genet Program Evolvable Mach (2017) 18:45–82

123

cases. The interpretation of the y-axis is as follows. While the fully working median

functions represented by the fittest solutions have their fitness score equal to one, the

solutions of lower quality have assigned the fitness score lower than one.

For each problem, we sampled the design space equidistantly to be able to

construct the Pareto frontier which helps us to discuss the performance of the

method. As mentioned earlier, the maximum value of L is bounded by the size of the

initial solution. Conversely, it makes no sense to explore situations where L is lower

than the number of input variables because it means that some inputs will not be

involved in computation. In the case of 25-input median, we restricted the lower

bound even more because it would be computationally expensive to perform

evolution for all cases. According to the measurements, 8.8 ms are required in

average to calculate fit2 for 9-input median. This time, however, increases up to

368.3 ms in the case of 25-input median. The experiments were conducted on a

64-bit Linux machine running on Intel Xeon X5670 CPU (2.93 GHz, 12 MB cache)

equipped with 32 GB RAM.

Interestingly, compared to the resource-oriented method [34], our method is

extremely efficient if the time required to obtain an implementation consisting of

L operations is considered. According to the experiment, the average duration of the

first stage is less than 10 ms in the case of 9-median and less than 373 ms in the case

of 25-median.

The obtained results given in Fig. 4 are presented using boxplots which illustrate

distribution of the normalized fitness calculated independently for each considered

design point. As it can be seen, the variance of the fitness score is quite low for each

design point. Taking into account that the number of generations was relatively low,

these results demonstrate the robustness and stability of our method. The only

exception is the 25-input median where we can see higher variance primarily at both

extremes of L. In order to analyse this situation more thoroughly, we created a target

pareto frontier (see dashed lines in Fig. 4) representing the goal of evolution. This

Pareto frontier was obtained by interpolation of the fittest implementations obtained

for 9-input, 11-input and 13-input median. The obtained regression models were

generalized and projected backward to the plots. In most cases, we were able to find

solutions that are very close to this imaginary pareto frontier. Unfortunately, in the

case of 25-median (see Fig. 4, bottom right), we can see that there are cases in

which the fitness score of the obtained results is far from the expected one. This is

evident especially for cases where L is between 125 and 155. To investigate the

reason of this gap, we tried to prolong the time of evolution for few of these cases

and we discovered that this problem is caused by the insufficient number of

generations. In order to obtain better results, it would be necessary to increase ng
adequately (at least by two orders of magnitude).

Whilst the initial implementations of 9-input and 25-input median networks

remained unchanged, which was in fact expected as it is believed that the

corresponding sequences of compare-swap elements are optimal, the evolution

discovered improved versions of 11-input fully functional median function

consisting of 50 operations and improved version of 13-input fully functional

median counting 66 operations which yields 11 % reduction in both cases.

Genet Program Evolvable Mach (2017) 18:45–82 63

123

A more detailed analysis of the quality of discovered solutions is shown in Fig. 5

where we present histograms of the error distribution for each problem. The

histograms are created using the best solutions obtained from all experimental runs.

It means that for each design point, the fittest solution was identified and chosen.

The quality is expressed in terms of the distance error. The histogram of distance

errors are calculated for each discovered solution using 1000 times more

permutations compared to the number of permutations utilized to determine fit2;

this enables to obtain precise results exhibiting the error in the order of 10�3.

Let us discuss, for example, the results for 11-input median (see Fig. 5, top right).

If we reduce the number of operations by 12 % (i.e. to 44 operations), the output

value is determined correctly in more than 93 % all possible cases. In the rest of the

cases (i.e. 6 %), the output value is determined incorrectly as the 4th lowest item of

a sorted list of numbers. In less than 0.9 % of cases, the 6th lowest item is returned.

Because the median value corresponds with 5th lowest item, the distance between

median and output value is equal to 1 in both cases. If the number of operations is

reduced to 20 (60 %), the worst case error increases to 2. According to the

distribution of errors, this error, which is caused by outputting 3th or 7th lowest

item, occurs in 3.6 % of all input cases only. The remaining 47.2 % erroneous

outputs are caused by selecting 4th or 6th lowest item.

An interesting feature of the discovered solutions is the asymmetric distribution

of the errors. This is more evident if we look at the histogram for 25-input

-4 -3 -2 -1 0 1 2 3 4

Distance error

30 %

33 %

47 %

53 %

67 %

73 %

87 %

100 %

op

er
at

io
ns

9-input median

-5 -4 -3 -2 -1 0 1 2 3 4 5

Distance error

28 %

40 %

50 %

60 %

64 %

76 %

88 %

100 %

op

er
at

io
ns

11-input median

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Distance error

26 %

39 %

52 %

58 %

62 %

73 %

88 %

100 %

op

er
at

io
ns

13-input median

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

Distance error

34 %

40 %

51 %

61 %

86 %

92 %

94 %

100 %

op

er
at

io
ns

25-input median

0.5 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

Fig. 5 The quality of the best discovered solutions consisting of a different number of operations
expressed in terms of the distance error. The zero error means that the 5th, 6th, 7th, and 13th lowest item
of input sequence was returned for 9-input, 11-input, 13-input, and 25-input median respectively

64 Genet Program Evolvable Mach (2017) 18:45–82

123

comparator network consisting of 150, i.e. 86 %, operations (see Fig. 5, bottom

right). While the 4th lowest item is returned in 20 % of cases, the 6th lowest item is

returned in more than 29 % of cases. We have not investigated the exact reason

because it does not represent a real problem, however, it is worth noting that we

have obtained many solutions with the same fitness score and it may happen that

there is a solution with the same or slightly lower fitness score having a symmetric

distribution of errors.

We can conclude that the obtained reduced median networks are of high quality.

Even in the extreme case, where approximately 50 % of operations are removed, the

error is not worse than one position for 9-input median, 2 positions for 11-input

median, and 3 positions for 13-input and 25-input median respectively. The 25-input

median consisting of more than 170 operations offers the largest possibilities for

improvement. We can remove more than 25 % operations without a significant

decrease in the quality. For more than 75 % of all possible input combinations, the

median value or the values next to the median are returned.

To have a notion of properties of the discussed error metrics, Table 2 reports the

error probability, mean distance error, and left and right worst case distance error for

9-input median. It can be seen that as the number of operations decreases, the error

probability as well as the distance error are increasing. The mean value increases,

however, it is not easy to a priori specify the required target value. The same is valid

even for the error probability which gives the number of invalid output values, i.e.

the amount of cases in which a value different from median was returned. Looking

at the results shown in Fig. 5, it can easily be revealed that the issue with the mean

value is that the distribution of errors is not the Gaussian distribution, especially for

cases with a small reduction of the number of operations.

8 Improved medians in real embedded systems

Because the medians are typically employed to solve some real problem, we take

the best discovered approximated median filters whose quality was discussed in the

previous section and evaluated their performance in two different real-world

Table 2 Parameters of the improved implementations of 9-input median

No. of

operations

Achieved

improvement (%)

Error

probability(%)

Distance error

Mean Left/right Worst-case

9 70.00 68.11 0:871	 0:702 �2 2

10 66.67 63.36 0:776	 0:677 �2 2

14 53.33 53.12 0:591	 0:601 �2 2

16 46.67 42.85 0:428	 0:495 �1 1

20 33.33 30.93 0:321	 0:491 �1 2

22 26.67 25.26 0:253	 0:434 �1 1

26 13.33 21.53 0:215	 0:411 �1 1

Genet Program Evolvable Mach (2017) 18:45–82 65

123

problems—processing of data acquired by sensor devices, and removing of noise in

image data.

For each case study, the problem is briefly introduced first. Then, non-functional

parameters of evolved as well as commonly used implementations are analysed and

discussed. Finally, the impact of the approximate medians on quality and

performance is evaluated providing that the approximate medians are employed

as the main component which process data.

Four microcontrollers were chosen to evaluate the non-functional parameters of

the evolved median functions. The microcontrollers were programmed using the

complied C codes of discovered implementations discussed in the previous sections.

Two non-functional parameters were measured: (a) the time that each microcon-

troller spends in a routine which computes the median value, and (b) energy

consumed by the microcontroller to execute this routine.

A specific program was implemented, compiled and executed by the microcon-

trollers to perform the measurements. The program is designed as follows. Firstly,

an input vector consisting of n integers is randomly initialized and fed to the

routines calculating the median. Note that n is equal to the number of inputs of

median. Then, an infinite loop is executed, which contains calling of the routine

calculating the median value followed by a code modifying a randomly chosen

value of the input vector to another value. Passing one iteration of the loop is

indicated by inverting the logic value on a given pin. The execution time is then

obtained using an oscilloscope by monitoring the period of the signal on the pin.

The average execution time is reported.

In order to precisely determine an average energy needed to calculate the median

value, all unused peripheral devices are switched off. Only those external

components remain used which are necessary for program execution. Energy

consumption was measured using Agilent N6705B DC Power Analyzer displaying

the error lower than 0.025 % for voltage as well as current measurements.

8.1 Microcontrollers used for testing

In order to evaluate the non-functional parameters, we have chosen the following

common-off-the-shelf microcontrollers available in our lab: 8-bit microcontroller of

Microchip PIC family with code name PIC16F628A, 16-bit PIC24F08KA102, low-

power 16-bit microcontroller MSP430F2617 from Texas Instruments and 32-bit

ARM-based microcontroller STM32F100RB produced by STMicroelectronics. The

goal is to present results for various architectures because there typically exist

variations in the performance caused by different instruction sets on the one side and

different internal architecture on the other side. To be able to interpret the obtained

results, the main features of the microcontrollers are briefly discussed in this section.

The 8-bit PIC equipped with 3.5 kB of FLASH and 224 B of RAM is optimized

for low-cost applications. Hence, a simple accumulator architecture without a stack

is used. The instruction set consists of 35 instructions encoded using a 14-bit wide

instruction word. The two-stage instruction pipeline allows all instructions to be

executed in a single cycle, except for program branches. The chosen chip has an

internal oscillator running at 4 MHz and consuming about 10 nA in the sleep mode

66 Genet Program Evolvable Mach (2017) 18:45–82

123

and about 565 lA in the active mode. Note that these values were measured when

all the peripherals were deactivated.

The 16-bit PIC represents a class of microcontrollers with a register architecture

consisting of 16 general-purpose 16-bit registers and 7 special registers. The

instructions are encoded using a 24-bit instruction word with a variable length of the

opcode field. The chosen chip contains 8 kB of FLASH memory, 1.5 kB of RAM

memory and employs an internal oscillator running at 8 MHz. The instructions

require from 1 to 3 clock cycles and are executed at 4 MHz. Our chip consumes

about 4 mA in the active mode and 25 nA in the sleep mode.

The MSP430F2 is a 16-bit ultralow-power RISC microcontroller with register

architecture optimized for processing data from sensor devices. The chosen CPU

consists of 16 registers, is equipped with 92 kB of FLASH memory and 4kB of

RAM, and can operate at 16 MHz. The calibrated digitally controlled internal

oscillator can be configured to generate up to 8 MHz signal for system clock. The

instruction set consists of 51 instructions with three formats and seven address

modes. In contrast with PIC, there are instructions that enable to access two memory

operands. The instructions require from 1 to 6 cycles to be executed. The

instructions working with registers require a single clock cycle, the instructions

addressing memory require 3 or 6 (when two memory accesses are required) cycles.

The chip consumes 365 lA in the active mode at 1 MHz and 500 nA in the standby

mode. In order to exploit the low-power capabilities, we configure the internal

oscillator to operate at 1 MHz.

The STM32F100RB incorporates a high-performance RISC ARM Cortex M3

core offering twelve 32-bit general-purpose registers. This core builds on the

ARMv7-M architecture and shows higher computational power compared to the

aforementioned chips. For example, a single-cycle multiplication and a hardware

division are supported. STM32 is equipped with 128 kB of FLASH memory, 8 kB

of RAM and operates at 24 MHz. The maximum current consumption in the sleep

mode is approx. 3.8 mA. When the peripherals are enabled, the current increases to

9.6 mA. The current in active mode ranges from 10 to 150 mA depending on the

state of peripherals.

8.2 Evolved code on different microcontrollers

The process of obtaining C code from a chromosome is straightforward. Every

active node, starting from one with the lowest index, corresponds with a single line

of code containing a call of min or max function whose operands are taken from the

input sequence or the outputs of preceding operations.

The min and max functions are defined as two macros outputting the minimal and

maximal value for two operands. The compiler is then able to unroll the code and

optimize it in terms of register assignment and overall performance.

8.3 Processing data from sensor devices with approximated median filters

When we look at signals coming from various devices such as A/D converters,

temperature sensors, or accelerometers, the data are noisy even in a perfect

Genet Program Evolvable Mach (2017) 18:45–82 67

123

environment. In a real situation, where the accelerometers are, for example, used to

stabilize various flight vehicles, the situation is even worse because of various

vibrations caused by motors or propellers that are for example out of balance. When

such a sensor acts as a central element controlling a process, it is necessary to

remove the noise so as to prevent unwanted behaviour.

There are many filters that can be applied to smooth the measured data, for

example, a variant of low-pass filter. The filter tries to keep the low frequency data

while removing the high frequency noise (i.e. spikes). A low-pass filter usually is

implemented in a situation where a limited number of computational resources are

available because its implementation is simple. It can be implemented as an

exponentially weighted moving average xtþ1 ¼ ayt þ ð1� aÞxt where yt represents

data measured at time t and xt the output value obtained at time t. Alternatively, a

more robust Kalman filter may be used [13]. In contrast to the low-pass filter which

has a fixed parameter a, Kalman filter is an adaptive estimator which minimizes the

mean square error of the estimated parameters according to the previous state and

actual measured value. Given only the mean and standard deviation of noise, the

Kalman filter is the best linear estimator.

Unfortunately, there are two issues connected with the usage of linear filters. The

first problem is that the data is being delayed by the filter which is a feature of linear

filters when they are set to have a strong filtering effect. The second issue is that the

filtered signal does not seem to follow the original measured data very well. To

avoid the delay and provide results of high quality, we can employ an instance of

median filter to smooth the measured data.

A relatively small number of samples are sufficient to be able to filter the

measured data and remove the outliers. To demonstrate the benefits of the

discovered approximations, we will apply the evolved 11-input and 13-input

medians to filter the outliers presented in a signal captured by an accelerometer

sensor. The obtained non-functional parameters are summarized in Tables 3 and 4.

As the non-functional parameters are manually evaluated on real systems, only

some of the Pareto dominant discovered solutions are investigated. It should be

noted that only the number of operations and the quality defined by Eq. 1 was

considered during construction of the Pareto set. We have implemented and

measured not only the evolved solutions, but also three common approaches to

determine median value—the quicksort algorithm, quickselect algorithm and the so

called running median. While quicksort represents a sorting algorithm, the

quickselect is a selection algorithm which is able to find the kth smallest element

in an unordered list [4]. The quickselect uses the same overall approach as

quicksort, however, it only recurses into one side of the input sequence which

reduces the average complexity. The running median attempts to minimize

processing time by maintaining a data list that is sorted from the smallest value to

the largest value [25]. When a new sample is submitted, it replaces the oldest

sample. The new sample is then shifted in the sorted list to bring it to the correct

location.

Firstly, let us discuss size of the machine code of the complied C codes. If we

compare the amount of bytes occupied by median networks and common

approaches such as quicksort, quickselect and running median, we can easily

68 Genet Program Evolvable Mach (2017) 18:45–82

123

T
a
b
le

3
N
o
n
-f
u
n
ct
io
n
al

p
ar
am

et
er
s
o
f
ac
cu
ra
te

(e
m
p
h
as
iz
ed
)
an
d
ap
p
ro
x
im

at
ed

im
p
le
m
en
ta
ti
o
n
s
o
f
1
1
-i
n
p
u
t
m
ed
ia
n
fu
n
ct
io
n
m
ea
su
re
d
o
n
d
if
fe
re
n
t
M
C
U
s

Im
p
l.

M
ac
h
in
e
co
d
e
si
ze

[B
]

E
x
ec
u
ti
o
n
ti
m
e
[l
s]

C
o
n
su
m
ed

en
er
g
y
[n
W
s]

S
T
M
3
2

P
IC
2
4

P
IC
1
6

T
I4
3
0

S
T
M
3
2

P
IC
2
4

P
IC
1
6

T
I4
3
0

S
T
M
3
2

P
IC
2
4

P
IC
1
6

T
I4
3
0

1
4
-o
p
s

1
1
8

3
2
4

3
2
8

1
5
6

4
.0

8
8

3
4
1

3
1
0

1
2
0

6
0
4

6
8
2

2
4
9

2
0
-o
p
s

1
5
8

4
4
1

4
5
2

2
2
4

4
.6

1
0
8

4
5
0

3
5
6

1
4
0

7
4
5

9
0
0

2
8
6

2
5
-o
p
s

2
0
6

5
4
9

5
6
7

2
7
6

5
.5

1
2
7

5
5
2

3
7
5

1
6
9

8
7
8

1
1
0
5

3
0
1

3
0
-o
p
s

2
3
2

6
4
8

6
8
4

3
1
8

5
.9

1
4
4

6
5
9

4
1
0

1
7
9

9
9
5

1
3
1
8

3
2
9

3
2
-o
p
s

2
5
4

6
9
6

8
4
5

3
4
2

6
.2

1
5
3

7
9
1

4
2
0

1
8
8

1
0
5
7

1
5
8
2

3
3
7

3
8
-o
p
s

2
9
4

8
1
9

1
0
6
5

4
0
0

6
.8

1
7
5

9
8
2

4
5
0

2
0
7

1
2
0
8

1
9
6
4

3
6
1

4
4
-o
p
s

3
2
8

9
0
0

1
2
0
0

4
3
4

7
.5

1
8
7

1
1
0
5

4
6
5

2
3
0

1
2
9
0

2
2
1
0

3
7
3

5
0
-o
p
s

3
7
8

1
0
3
2

1
3
2
0

4
7
2

8
.6

2
1
0

1
2
2
0

4
8
0

2
6
1

1
4
4
9

2
4
4
0

3
8
5

q
so
rt

1
2
8

3
3
3

–
1
9
6

4
0
.5

9
5
8

–
1
5
1
5

1
2
3
5

6
6
1
0

–
1
2
1
7

q
se
le
ct

2
1
2

8
4
9

6
0
7

2
7
6

1
7
.5

4
8
8

2
9
1
0

7
0
5

5
3
5

3
3
6
7

5
8
2
0

5
6
6

ru
n
n
in
g

2
3
6

7
2
9

4
1
2

3
4
4

1
4
.2

2
7
4

7
8
5

6
9
0

4
3
5

1
8
8
7

1
5
7
0

5
5
4

A
n
im

p
le
m
en
ta
ti
o
n
la
b
el
le
d
as

n
-o
p
s
d
en
o
te
s
ev
o
lv
ed

co
m
p
ar
at
o
r
n
et
w
o
rk

co
n
si
st
in
g
o
f
n
o
p
er
at
io
n
s

Genet Program Evolvable Mach (2017) 18:45–82 69

123

T
a
b
le

4
N
o
n
-f
u
n
ct
io
n
al

p
ar
am

et
er
s
o
f
ac
cu
ra
te

(e
m
p
h
as
iz
ed
)
an
d
ap
p
ro
x
im

at
ed

im
p
le
m
en
ta
ti
o
n
s
o
f
1
3
-i
n
p
u
t
m
ed
ia
n
fu
n
ct
io
n
m
ea
su
re
d
o
n
d
if
fe
re
n
t
M
C
U
s

Im
p
l.

M
ac
h
in
e
co
d
e
si
ze

[B
]

E
x
ec
u
ti
o
n
ti
m
e
[l
s]

C
o
n
su
m
ed

en
er
g
y
[n
W
s]

S
T
M
3
2

P
IC
2
4

P
IC
1
6

T
I4
3
0

S
T
M
3
2

P
IC
2
4

P
IC
1
6

T
I4
3
0

S
T
M
3
2

P
IC
2
4

P
IC
1
6

T
I4
3
0

1
7
-o
p
s

1
3
8

3
7
8

3
8
7

1
9
2

4
.4

9
6

3
7
5

3
3
5

1
3
5

6
6
6

7
5
0

2
6
9

2
6
-o
p
s

2
1
4

5
8
8

5
9
4

2
8
8

5
.6

1
3
6

5
8
7

3
9
0

1
7
2

9
3
5

1
1
7
4

3
1
3

3
4
-o
p
s

2
8
8

7
4
7

9
2
2

4
0
2

7
.0

1
6
3

8
8
0

4
7
0

2
1
5

1
1
2
5

1
7
6
0

3
7
7

3
8
-o
p
s

3
3
0

8
2
5

1
0
5
4

4
3
4

8
.0

1
7
6

9
8
0

4
8
0

2
4
4

1
2
1
8

1
9
6
0

3
8
5

4
1
-o
p
s

3
3
2

8
9
4

1
1
4
4

5
1
6

8
.0

1
9
0

1
0
5
8

5
3
0

2
4
5

1
3
0
9

2
1
1
5

4
2
6

4
8
-o
p
s

3
9
8

1
0
2
0

1
3
0
6

5
7
4

8
.8

2
1
0

1
2
0
5

5
6
5

2
7
0

1
4
5
2

2
4
1
0

4
5
4

5
8
-o
p
s

4
7
8

1
2
0
9

1
5
9
0

6
4
2

9
.5

2
4
2

1
6
9
0

5
8
5

2
9
0

1
6
7
2

3
3
8
0

4
7
0

6
6
-o
p
s

4
9
6

1
3
5
3

1
8
5
4

6
6
6

1
0
.2

2
6
6

1
6
9
0

5
6
0

3
1
1

1
8
3
5

3
3
8
0

4
5
0

q
so
rt

1
2
8

3
3
3

–
1
9
6

5
1
.6

1
1
7
8

–
1
8
0
0

1
5
7
4

8
1
2
8

–
1
4
4
5

q
se
le
ct

2
1
2

8
4
9

6
0
7

2
7
6

2
1
.4

6
1
0

4
0
6
0

8
0
0

6
5
2

4
2
1
2

8
1
2
0

6
4
2

ru
n
n
in
g

2
3
6

7
3
2

3
9
4

3
4
4

1
3
.1

5
5
2

1
1
0
0

7
5
0

4
0
0

3
8
0
9

2
2
0
0

6
0
2

70 Genet Program Evolvable Mach (2017) 18:45–82

123

determine that these implementations are more compact compared to the accurate

median filter implemented using the median network consisting of 50 min/max

operations for the 11-input median and 66 operations for the 13-input median. The

size of the quicksort routine is equal to the size of the 11-input approximate median

consisting of 14 operations. To sum up, quicksort is the most compact algorithm.

Nevertheless, it is interesting to note that PIC16 does not allow one to execute the

quicksort algorithm because its implementation relies on the recursion which cannot

fit the in-memory emulated stack. The implementation of the running median

occupies approximately a 1.8 times higher number of bytes on average compared to

the quicksort. Quickselect consumes a bit more except for STM32 and MSP430

where the algorithm requires a lower number of bytes to be implemented.

The number of operations of the approximate median functions correlates with

the machine code size. There is only one exception. The 13-input comparator

network consisting of 38 operations implemented on STM32 exhibits nearly no

reduction compared to the code consisting of 41 operations. It seems that some

optimization tricks were discovered by the ARM compiler.

If we compare the size of machine code across all considered microcontrollers,

the ARM architecture has an extremely efficient mechanism of instruction

encoding. In addition, it revealed that the ARM compiler contains a very effective

optimization engine. Similarly, the code generated by the MSP430 GCC compiler is

very compact compared to the code for PIC microcontrollers. It is worth noting that

it is extremely important to enable GCC optimizations. Otherwise, not only the size

of the machine code, but also computation time increases by 60 % on average

without changing a line of C code. When we take into account the fact that MSP430

is equipped with an exceptionally large FLASH memory (see Sect. 8.1), it seems to

be a very powerful low-cost microcontroller.

The average execution time and average energy consumption measured for

various implementations of 11-input and 13-input accurate as well as approximate

median functions are given in the second and third part of Tables 3 and 4. Let us

first discuss the parameters of the accurate implementations. During the measure-

ments, it turned out that the energy consumption pattern remains almost invariant

because all approximations use identical sequences of instructions. Consumed

energy thus mainly depends on the execution time which is shorter when more

aggressive approximations are applied. The average power consumption, when an

accurate median is calculated, is 0.8 mW for MSP430, 2 mW for PIC16, 6.9 mW

for PIC24 and 30.5 mW for ARM. In the case of the 11-input median function

implemented on PIC24, the median network is 4.5 times faster than the quicksort

algorithm and the consumed energy was reduced from 6610 to 1449 nWs (i.e. by

78 %). The median network is 4.7 times faster than quicksort on the STM32 and the

energy was also reduced by 78 %. A little bit worse situation is at MSP430. The

median network is 3.1 times faster than quicksort, but its energy consumption

decreases by 68 %. Similar results were obtained for the 13-input median. The

median network implemented on PIC24 is 4.4 times faster than the quicksort

algorithm and the consumed energy was reduced by 77 %. At STM32, the quicksort

algorithm exhibits 5 times worse execution time and an 80 % higher energy

consumption compared to the median calculated using 66 min/max operations. At

Genet Program Evolvable Mach (2017) 18:45–82 71

123

MSP430, the median network is executed 3.2 times faster than quicksort. While

there is a relative large performance gain of median networks compared to the

quicksort algorithm, the execution time of running median is comparable with the

median networks. The best improvement is achieved at STM32 where the

implementations of median networks are executed 1.7 times faster than running

median. For the rest, the gain varies around 1.4 on average.

Let us now move on to the execution time and energy consumption of the

evolved approximate median functions. At first glance, it is evident that the

execution time decreases with the decreasing number of operations. The situation is,

however, a little bit complicated here. Let us compare the execution time of, for

example, an 11-input accurate median network consisting of 50 operations and an

11-input reduced network consisting of 25 operations. While the number of

operations is reduced by 50 %, the execution time is adequately decreased only at

PIC16, where a 54 % improvement was achieved. STM32 and PIC microcontrollers

exhibit improvement which is less than 39 %. In the case of MSP430, only a 22 %

reduction was achieved. In order to better understand this phenomenon, we have to

firstly investigate the dependence between the number of min/max operations and

the number of generated instructions for MSP430. The implementation of an

accurate median network consists of 219 instructions and the reduced median

network consists of 122 instructions which leads to a 44 % improvement.

Unfortunately, the difference between the improvement at the level of instructions

(44 %) and improvement at the level of operations (50 %) is relatively small. In

order to determine the root source of such a discrepancy, it is necessary to perform

an analysis at the level of a machine code. It has been revealed that two different

mechanisms were used to implement the min/max operations. Some operations are

implemented using indirect addressing, other operations are optimized and consists

of instructions only manipulated with registers. This makes a huge difference in the

number of clock cycles required to execute a single min/max operation. Some

operations are evaluated within 5 cycles, others require up to 11 clock cycles.

Despite this finding, there is linear dependence between the energy consumption and

time of execution and longer times imply a higher energy demand.

Despite the fact that STM32 has the largest current consumption in active mode,

it provides the best results from the perspective of energy consumption. Even if the

MSP430 is declared as an ultralow-power microcontroller, it requires about a 1.7

times higher amount of energy to execute the same code. It is necessary to note,

however, that higher energy consumption is in close relation with the time of

execution which is more than 60 times higher compared to STM32. Compared to

PIC16 and PIC24, MSP430 consumes from 3 to 6 times lower energy to accomplish

the same task. On the other hand, PIC24 is able to produce about five times more

results within the same period of time at the cost of 30 % higher energy

consumption compared to MSP430. In order to avoid misinterpretation, it is worth

noting that MSP430 operates at 1 MHz while PIC24 operates at 4 MHz. When we

increase the frequency to 4 MHz, the time of execution decreases four times with no

additional cost (the energy consumption remains at the same level).

Figure 6 gives an example of real data filtered by various implementations of

11-input and 13-input median filters. The data were obtained from an accelerometer

72 Genet Program Evolvable Mach (2017) 18:45–82

123

whose output signal was sampled at 8 kHz. Taking into account the sample rate, the

considered accurate median filters introduce a delay not worse than 1.7 ms which

represents a reasonable value. When six operations (12 %) are removed from the

11-input median network, the resulting approximate median produces an output that

is nearly similar to the output of accurate implementation. There are only neglible

differences that do not prevent us from applying this inaccurate implementation in

an embedded application to filter the outliers and save energy. In the case of

implementation at STM32, for example, we can reduce the consumed energy by

11.8 % by introducing the approximated median network consisting of 44

operations.

Interestingly, the median network which consists of 20 operations (60 %)

produces a signal which is very similar to the output of an accurate median, despite

the fact that the measured signal is very noisy. It seems that the output is of a better

visual quality compared to the output of a network having 30 operations. In contrast

to the output of an accurate median, there are some small oscillations around 1.7

seconds caused by the oscillations in a signal coming from the accelerometer.

Nevertheless, the trend in data is reliably followed. In case these small differences

do not represent a real problem for a target application, it is worth implementing the

improved median network which is able to offer a 40 % reduction of power

consumption on the one hand, its approximately 1.8 times faster execution time on

the other hand.

The approximate versions of the 13-input median also performs very well. Only

small differences are observable when a median network with 38 % removed

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

time [s]

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4
ac

ce
le

ra
tio

n
11-input median

20 ops (40 %) 30 ops (60 %) 44 ops (88 %) accurate median measured data

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

time [s]

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

ac
ce

le
ra

tio
n

13-input median

17 ops (25 %) 34 ops (51 %) 41 ops (62 %) 58 ops (87 %) accurate median

Fig. 6 Example of data filtered using accurate as well as approximate versions of 11-input and 13-input
median filter. Note that only some of the measured points are shown because of readability

Genet Program Evolvable Mach (2017) 18:45–82 73

123

operations is used. Compared to a commonly used running median, we obtain a

solution which has 38 % lower power consumption when implemented on a STM32

microcontroller. Interestingly, the approximate median networks which consists of

17 and 58 operations exhibit lower delay compared to the fully working 13-input

median. It can be seen that the filtered data appears to be shifted to the left when

these filters are used.

It can be concluded that the observations on real examples are consistent with

conclusions given in Sect. 7. As the quality of an approximate median defined by

Eq. 1 decreases, the amount of inaccuracies in the output signal increases. The

processing of the sensor data seems to be an application with great potential for

genetic improvement. As was previously shown, we are able to significantly

improve energy consumed by the filters for a cost of small differences in the output

data. In fact, any of the presented approximations can be used to filter the input

signal because no golden solution is available for the validation of the obtained

outputs. The filtration is typically used to avoid high variances in output signal (i.e.

to reduce sensitivity of the output signal to the outliers). In this sense, we can

employ approximate medians consisting of 50 % (or even less) operations to

accomplish this task because they are able to sufficiently remove the outliers.

8.4 Median in image processing

The processes of acquiring, transmitting and storing images in computer systems are

not always ideal and hence some pixels or groups of pixels can be corrupted. Hence,

noise elimination is a typical low level image processing task. In many applications,

the noise elimination has to be implemented by non-linear functions because the

noise contained in the images is inherently non-linear [6]. A typical representative

of non-linear noise is a shot noise which manifests itself by setting some individual

pixels to a random value. Median-based non-linear filters play a prominent role

among the filters utilized to suppress the shot noise [2]. Traditionally, a simple

median filter applied to every pixel of the input image is employed. In advanced

image filters (e.g. switching filters [32]) the filtering function is only applied if a

noise detector, implemented typically using a median, detects some noise.

The image filters operate with pixel values in the neighbourhood of the centre

pixel. The process of filtration is based on a sliding window, a square window of an

odd size (2k þ 1), that moves along the image. More formally, let I be an image

consisting of m� n pixels xði; jÞ 2 I, where 1� i�m; 1� j� n. Then, each pixel of

the filtered image I0 is calculated as yðm; nÞ ¼ medianðWIðm; nÞÞ, where WIðm; nÞ ¼
fxðmþ i; nþ jÞ 2 I j �k\i; j\kg is a sliding window function. It is evident that

the median value is calculated using ð2k þ 1Þ2 pixels. The typical sliding windows

employed in image processing consists of 3� 3 and 5� 5 pixels which corresponds

with 9-input and 25-input filtering functions.

The measured non-functional parameters of various implementations of 9-input

accurate as well as approximate median filters are summarized in Table 5. Apart

from the evolved implementations, two common approaches to determine a median

value are evaluated—the quicksort algorithm and the quickselect algorithm. The

74 Genet Program Evolvable Mach (2017) 18:45–82

123

T
a
b
le

5
N
o
n
-f
u
n
ct
io
n
al

p
ar
am

et
er
s
o
f
ac
cu
ra
te

(e
m
p
h
as
iz
ed
)
an
d
ap
p
ro
x
im

at
ed

im
p
le
m
en
ta
ti
o
n
s
o
f
9
-i
n
p
u
t
m
ed
ia
n
fu
n
ct
io
n
m
ea
su
re
d
o
n
d
if
fe
re
n
t
M
C
U
s

Im
p
l.

M
ac
h
in
e
co
d
e
si
ze

[B
]

E
x
ec
u
ti
o
n
ti
m
e
[l
s]

C
o
n
su
m
ed

en
er
g
y
[n
W
s]

S
T
M
3
2

P
IC
2
4

P
IC
1
6

T
I4
3
0

S
T
M
3
2

P
IC
2
4

P
IC
1
6

T
I4
3
0

S
T
M
3
2

P
IC
2
4

P
IC
1
6

T
I4
3
0

9
-o
p
s

7
8

2
0
4

2
0
7

9
6

3
.2

6
5

2
2
8

2
7
4

9
7

4
5
0

4
5
7

2
2
0

1
0
-o
p
s

8
4

2
3
4

2
3
8

1
0
8

3
.3

7
1

2
5
6

2
8
0

1
0
2

4
9
2

5
1
2

2
2
5

1
4
-o
p
s

1
1
2

3
1
5

3
2
4

1
5
6

3
.9

8
6

3
3
8

3
1
0

1
1
8

5
9
0

6
7
5

2
4
9

1
6
-o
p
s

1
2
6

3
7
2

3
7
6

1
7
6

4
.1

9
6

3
8
6

3
2
4

1
2
6

6
6
6

7
7
1

2
6
0

2
0
-o
p
s

1
5
8

4
4
1

4
5
4

2
0
8

4
.6

1
0
8

4
5
2

3
4
0

1
4
1

7
4
5

9
0
5

2
7
3

2
2
-o
p
s

1
8
0

4
9
5

5
0
2

2
3
4

5
.0

1
1
8

5
0
6

3
6
0

1
5
1

8
1
8

1
0
1
2

2
8
9

2
6
-o
p
s

2
0
8

5
7
3

5
8
6

2
8
0

5
.4

1
3
2

5
7
6

3
8
8

1
6
5

9
0
9

1
1
5
3

3
1
2

3
0
-o
p
s

2
4
0

6
4
5

6
7
6

3
3
0

6
.4

1
4
4

6
5
0

4
1
2

1
9
6

9
9
4

1
2
9
9

3
3
1

q
so
rt

1
2
8

3
3
3

–
1
9
6

2
6
.8

8
3
0

–
1
3
2
5

8
1
6

5
7
2
7

–
1
0
6
4

q
se
le
ct

2
1
2

8
4
9

6
0
7

2
7
2

1
5
.3

4
6
6

2
2
5
5

6
9
0

4
6
7

3
2
1
9

4
5
1
0

5
5
4

Genet Program Evolvable Mach (2017) 18:45–82 75

123

running median discussed in the previous section is not applicable in this case

because more than one value has to be removed/added between two subsequent

processing windows. The discussion that has been given for the implementation of

the 11-input median and its variants is also valid for the 9-input alternative whose

parameters are included in Table 5. There is nearly a linear dependency between the

number of operations used to approximate the median value and the execution time

as well as power consumption.

The results for the 25-input median and its alternative implementations are given

in Table 6. In contrast with the 13-input approximate medians, the difference

between the improvement achieved at the level of operations and improvement at

the level of instructions does not exceed 5 %. Similarly, the time of execution

decreases linearly with a decreasing number of operations with one exception—

implementation compiled for MSP430 which suffers from issues observed also for

13-input approximate medians. There is an 18 % difference between the reduction

at the level of instructions and the reduction of execution time (see the execution

time for 174-ops and 60-ops implementations). Since the response of other

architectures to a reduced number of operations is as expected, it may suggest that

there may be a problem with the quality of the compiled code. We did not analyse

this problem in detail as it is outside the scope of this paper.

The chosen problem nicely demonstrates the overhead of median networks

implemented in the software. The accurate median function implemented using 174

operations occupies ten times more bytes than the quicksort algorithm. Even if we

remove half of the operations, the machine code is more than six times larger. This

is the price that must be sacrificed for greater speed of the algorithm based on a

median network. As regards the execution time, the median can be calculated 70 %

faster when the median network which consists of 174 operations is used instead of

the quicksort algorithm and 31 % faster when compared to the quickselect

Table 6 Non-functional parameters of accurate (emphasized) and approximated implementations of

25-input median function measured on different MCUs

Impl. Machine code size [B] Execution time [ls] Consumed energy [nWs]

STM32 PIC24 TI430 STM32 PIC24 TI430 STM32 PIC24 TI430

60-ops 502 1302 742 10.9 262 665 333 1808 534

70-ops 596 1527 912 12.3 303 785 375 2091 630

88-ops 796 1887 1180 16.4 366 955 501 2525 767

107-ops 920 2250 1438 18.4 428 1100 562 2953 883

150-ops 1264 3015 1688 23.9 554 1130 727 3823 907

160-ops 1378 3195 1818 24.6 584 1200 751 4030 964

164-ops 1454 3255 1826 26.0 596 1240 793 4109 996

174-ops 1524 3423 1864 27.6 619 1270 841 4271 1020

qsort 128 333 196 104.0 2430 2610 3172 16,767 2096

qselect 212 849 276 39.1 1040 1685 1194 7176 1353

Note that PIC16 is not included in this table due to small amount of available RAM memory

76 Genet Program Evolvable Mach (2017) 18:45–82

123

algorithm. The 25-median implemented using 150 operations enables us to reduce

the energy by more than 10 %. According to the distribution of errors shown in

Fig. 5, this implementation provides an output of high quality with a low percentage

of erroneous outputs that are close to the median value.

In order to evaluate the filtering quality as well as robustness of the evolved

approximate medians, the medians were employed as median filters and evaluated

using 25 randomly selected test images (384x256 pixels) from [17] that were

corrupted by random valued shot noise. Because the removal of random valued shot

noise represents a difficult problem, it usually is used to compare the performance of

various median filters [5]. Considering the fact that a sliding window is used, more

than two million test cases were in fact used for quality assessment. There exists

several approaches to measure the quality of filtered images. The structural

similarity index (SSIM) represents probably the most advanced approach which

attempts to quantify the visibility of errors (differences) between a distorted image

and a reference image[37].

Boxplots of the structural similarity index calculated for 9-input and 25-input

accurate as well as approximate median networks used as image filters are given in

Fig. 7. As is evident from the results, there is a relatively large variance in the

similarity index of accurate as well as inaccurate median filters. The index of

similarity for images produced by accurate an 9-input median filter is 88.6 % in

average. The average similarity index decreases with the decreasing number of

operations. Interestingly, it decreases very slightly without any radical change in

variance. When we reduce the number of operation to 16 (53 %), the average

similarity index decreases to 87.5 %. The results suggest that it is possible to use an

approximate median network consisting of half the number of operations instead of

an accurate median. The impact on quality of the filtered images is negligible.

Figure 8 illustrates filtering capabilities of various filters on an image corrupted

by random valued shot noise where 10 % of the pixels are affected. The output of

the median filter and approximate median filter is visually indistinguishable. Nearly

all of the noisy pixels were successfully detected and removed, even for a median

with 16 operations. When we reduce the number of operations to 14, a few noisy

pixels remain in the filtered image. This behaviour corresponds with the distribution

9 10 14 16 20 22 26 30

operations

60

65

70

75

80

85

90

95

100

S
S

IM
 [%

]

59 60 70 88 107 150 160 164 174

operations

60

65

70

75

80

85

90

95

100

(a) (b)

Fig. 7 Boxplots illustrating the distribution of structural similarity index for evolved median networks
calculated using a set of test images corrupted by 10 % random valued shot noise. a 9-input median. b 25-
Input median

Genet Program Evolvable Mach (2017) 18:45–82 77

123

of errors shown in Fig. 5 and a detailed analysis provided in Table 2. The 9-input

approximate median with 16 operations exhibits the worst-case distance error equal

to one, while the 14-ops implementation has the worst-case distance error equal to

two.

If we compare the distribution of the similarity index for a 9-input and 25-input

median filter, it is evident that the 25-input median filters provide results of lower

quality. The similarity index of the accurate implementation consisting of 174

operations is equal to 80.3 %. The reason is obvious. Increasing the size of the

filtering window allows for the common median filter to remove a great deal of

noisy pixels, however, because the standard median filters modify almost all pixels,

images become smudged and less detailed. Nevertheless, this fact does not prevent

the employment of the 25-input median filter as a robust noise detector.

Interestingly, there is only a small degradation in quality of the reduced 25-input

median filters. When we remove 50 % of operations, the similarity index decreases

to 79.4 % on average. This approximation yields a 40 % reduction in power

consumption when implemented on STM32 microcontroller.

Similar conclusions may be inferred even if we use the peak signal-to-noise ratio

(PSNR) which represents another commonly used quality metric. In contrast to

structural similarity, PSNR does not respect a psycho-visual model of the human

optical system. While PSNR of the images filtered by the accurate 9-input median

filter is equal to 29.4 dB in average, PSNR of the images obtained by the 14-ops (9-

ops) filter drops by 1.3 dB (3.5 dB). The PSNR of the images filtered by the accurate

25-input median filter is equal to 25.9 dB. When the number of operations is

reduced to 59, the PSNR only decreases by 0.7 dB.

The results demonstrate how robust the evolved implementations are and that

there is great space for improvement of the non-functional parameters in practice. In

Fig. 8 Detail of an image a corrupted by 10% random valued shot noise filtered by b 9-input accurate
median filter and approximated median filters consisting of c 22 (73 %) operations, d 16 (53 %), e 14
(46 %) and f 10 (33 %) operations

78 Genet Program Evolvable Mach (2017) 18:45–82

123

most cases, it is not even necessary to exactly determine the median value which

helps us to reduce the power consumption or increase the performance (i.e. speed)

of a given piece of software.

9 Conclusions

In this paper, we presented a new approach to improve non-functional properties of

software. In particular, we concentrated on improvements in the execution time and

power consumption of various instances of the median function. In general, it is

impossible to improve non-functional parameters of the median function without

accepting occasional errors in results since optimal implementations of typical

instances are available. In order to address this problem, we adopted the

approximate computing scenario which allows us to accept some errors in the

outputs.

In approximate computing, software and hardware is approximated, i.e.

simplified with respect to fully accurate implementations, in order to reduce power

consumption or increase performance. As a consequence, errors can emerge during

computations which is tolerable in many real applications. When an approximation

should be introduced, the common approach is to remove the less significant bits

and reduce data widths. This paper shows that the approximation conducted at the

level of function (algorithm) that are based on EA is able to deliver significantly

better results.

The median is implemented using a sequence of elementary operations that forms

a median network. The task is formulated as a single objective optimization problem

where the number of operations represents constraints specified by the designer. The

constrains-oriented approach is relevant to practice where the designers usually

wants to achieve a particular power reduction in order to improve the performance

of the whole embedded system. The method is based on cartesian GP and exploits

the fact that GP is able to find a good trade-off between the error and number of

operations, even if the number of operations is intentionally constrained.

In order to avoid problem with seeding (only fully functional implementations of

various instances of median filter exist), we proposed to apply a two-stage

procedure. The first stage starts with a fully functional median network and

gradually reduces the number of employed operations in order to satisfy constraints

given by a designer. As soon as a satisfactory candidate solution is found, the

second stage responsible for maximizing the quality of partially working

implementations is used.

The accuracy of determining a median value is measured by means of a problem-

specific quality metric. The proposed metric is based on the positional error

calculated using the permutation principle introduced in this paper. The impact of

the permutation principle was discussed from a theoretical as well as a practical

point of view. Firstly, the permutation principle helps us to reduce the computa-

tional complexity of the fitness evaluation. Secondly, the permutation principle

enables one to construct a metric approaching the quality of selecting the median

value and, what is important, which can be efficiently calculated. Finally, the

Genet Program Evolvable Mach (2017) 18:45–82 79

123

permutation principle helps to understand how to avoid biased solutions that may be

produced when we generate test vectors used to determine the fitness score

inappropriately (randomly). In order to understand this phenomenon, it is necessary

to realize that the median value is determined according to a set of values (i.e. the

ordering of input values is completely ignored). It was illustrated and discussed that

it is necessary to generate test vectors from different equivalence classes so as to

avoid any bias.

The problem of trading between quality and non-functional parameters was

demonstrated in four different instances of the median function that are typically

employed in practice. The performance of the best discovered approximated median

filters was evaluated in two real-world problems—sensor data processing and image

processing. The non-functional parameters were measured for four microcontrollers

so as to avoid misleading conclusions. The results confirmed that median functions

are very good examples of functions for which it makes sense to introduce their

approximate versions. When the approximate medians are employed in a particular

application, the output quality remains relatively high, even for significant

reductions of the number of operations. Hence significant improvements in energy

consumption can be obtained.

Even though the permutation principle as well as the proposed error metric are

problem specific, this paper demonstrated the ability of GI to provide competitive

solutions for a chosen real-world problem from the area of approximate computing.

This opens a complete new application area for GI. The ability to deliver partially

working solutions seems to be natural for evolutionary techniques. Hence the

approximate computing seems to have a great potential for these techniques.

There are several directions for future research. Execution time and power

consumption are two possible non-functional criteria that can be optimized. There

are additional criteria such as delay that need to be considered, especially if median

networks would be implemented in the hardware. Despite the fact that the proposed

permutation principle helps to significantly improve the time required to determine

the fitness value, the test based approach used to calculate the fitness score

represents a bottleneck of the whole framework. Unfortunately, this is a general

problem of all generate-and-test-based evolutionary approaches. As a consequence

of that, only a subset of all possible permutations was used for quality assessment.

This simplification introduces two issues. Firstly, it means that we are not able to

guarantee the worst-case error unless all the input permutations are tested. Secondly,

it may happen that the quality of a given network is worse than determined.

Suprisingly, the experiments revealed that our simplification does not have any

significant effect in practice. We are convinced, however, that these issues can be

completely eliminated by introducing a formal method based on BDDs to the fitness

function.

Acknowledgments This work was supported by the Czech science foundation project 14-04197S—

Advanced Methods for Evolutionary Design of Complex Digital Circuits.

80 Genet Program Evolvable Mach (2017) 18:45–82

123

References

1. A. Agapitos, S.M. Lucas, Evolving efficient recursive sorting algorithms, in IEEE Congress on

Evolutionary Computation, pp. 2677–2684 (2006)

2. R.H. Chan, C.W. Ho, M. Nikolova, Salt-and-pepper noise removal by median-type noise detectors

and edge-preserving regularization. IEEE Trans. Image Process. 14, 1479–1485 (2005)

3. B. Cody-Kenny, E.G. Lopez, S. Barrett, locoGP: improving performance by genetic programming

java source code, in Genetic Improvement 2015 Workshop, ed. by W.B. Langdon, J. Petke, D.R.

White (ACM, Madrid, 2015), pp. 811–818

4. N. Devillard, Fast Median Search: An ANSI C Implementation (1998). http://ndevilla.free.fr/median/

median.pdf

5. Y. Dong, A new directional weighted median filter for removal of random-valued impulse noise.

IEEE Signal Process. Lett. 14(3), 193–196 (2007)

6. E.R. Dougherty, J.T. Astola, (eds.) Nonlinear Filters for Image Processing. SPIE/IEEE Series on

Imaging Science and Engineering. SPIE/IEEE (1999)

7. H. Esmaeilzadeh, A. Sampson, L. Ceze, D. Burger, Neural acceleration for general-purpose

approximate programs. Commun. ACM 58(1), 105–115 (2014)

8. B.W. Goldman, W.F. Punch, Analysis of cartesian genetic programming’s evolutionary mechanisms.

IEEE Trans. Evol. Comput. 19(3), 359–373 (2015)

9. J. Han, M. Orshansky, Approximate computing: An emerging paradigm for energy-efficient design,

in Proceedings of the 18th IEEE European Test Symposium, pp. 1–6. IEEE (2013)

10. M. Harman, B.J. Jones, Search-based software engineering. Inf. Softw. Technol. 43, 833–839 (2001)

11. W.D. Hillis, Co-evolving parasites improve simulated evolution as an optimization procedure. Phys.

D 42(1–3), 228–234 (1990)

12. H. Juille, Evolution of non-deterministic incremental algorithms as a new approach for search in state

spaces, in Genetic Algorithms: Proceedings of the 6th International Conference (ICGA95), ed. by L.

Eshelman (Morgan Kaufmann, Pittsburgh, PA, USA, 1995), pp. 351–358

13. R.E. Kalman, A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng.

82(Series D), 35–45 (1960)

14. D.E. Knuth, The Art of Computer Programming, vol. 3, 2nd edn. (Sorting and Searching. Addison

Wesley Longman Publishing Co., Inc, Redwood City, 1998)

15. W.B. Langdon, M. Harman, Optimizing existing software with genetic programming. IEEE Trans.

Evol. Comput. 19(1), 118–135 (2015)

16. R. Maronna, D. Martin, V. Yohai, Robust Statistics: Theory and Methods, Wiley Series in Probability

and Statistics (Wiley, New Jersey, 2006)

17. D. Martin, C. Fowlkes, D. Tal, J. Malik, A database of human segmented natural images and its

application to evaluating segmentation algorithms and measuring ecological statistics, in Proceedings

of the 8th International Conference Computer Vision, vol. 2, pp. 416–423 (2001)

18. J.F. Miller, Cartesian Genetic Programming (Springer, Berlin, 2011)

19. J.F. Miller, S.L. Smith, Redundancy and computational efficiency in cartesian genetic programming.

IEEE Trans. Evol. Comput. 10(2), 167–174 (2006)

20. V. Mrazek, Z. Vasicek, L. Sekanina, Evolutionary approximation of software for embedded systems:

Median function, in Genetic Improvement 2015 Workshop, ed. by W.B. Langdon, J. Petke, D.R.

White (ACM, Madrid, 2015), pp. 795–801

21. K. Nepal, Y. Li, R.I. Bahar, S. Reda, Abacus: A technique for automated behavioral synthesis of

approximate computing circuits, in Proceedings of the Conference on Design, Automation and Test

in Europe, DATE ’14, pp. 1–6. EDA Consortium (2014)

22. J. Petke, M. Harman, W.B. Langdon, W. Weimer, Using genetic improvement and code transplants

to specialise a C?? program to a problem class, in 17th European Conference on Genetic Pro-

gramming, LNCS, vol. 8599, ed. by Miguel Nicolau, et al. (Springer, Granada, Spain, 2014),

pp. 137–149

23. R. Poli, W.B. Langdon, N.F. McPhee, A Field Guide to Genetic Programming.Published via http://

lulu.com and http://www.gp-field-guide.org.uk (2008)

24. A. Sampson, W. Dietl, E. Fortuna, Gnanapragasam, D., Ceze, L., Grossman, D.: Enerj: Approximate

data types for safe and general low-power computation, in Proceedings of the 32nd ACM SIGPLAN

Conference on Programming Language Design and Implementation, pp. 164–174. ACM (2011)

Genet Program Evolvable Mach (2017) 18:45–82 81

123

http://ndevilla.free.fr/median/median.pdf
http://ndevilla.free.fr/median/median.pdf
http://lulu.com
http://lulu.com
http://www.gp-field-guide.org.uk

25. P. Schmidt, Simple median filter library designed for the arduino platform (2014). https://github.com/

daPhoosa/MedianFilter

26. E. Schulte, J. Dorn, S. Harding, S. Forrest, W. Weimer, Post-compiler software optimization for

reducing energy, in Proceedings of the 19th International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS’14 (ACM, Salt Lake City, 2014),

pp. 639–652

27. L. Sekanina, Evolutionary design space exploration for median circuits, in Applications of Evolu-

tionary Computing, LNCS 3005, pp. 240–249. Springer (2004)

28. L. Sekanina, M. Bidlo, Evolutionary design of arbitrarily large sorting networks using development.

Genet. Progr. Evolv. Mach. 6(3), 319–347 (2005)

29. L. Sekanina, Z. Vasicek, Approximate circuits by means of evolvable hardware. in Proceedings of

the 2013 IEEE Symposium Series on Computational Intelligence (SSCI), 2013 IEEE International

Conference on Evolvable Systems, pp. 21–28. IEEE CIS (2013)

30. P. Sitthi-Amorn, N. Modly, W. Weimer, J. Lawrence, Genetic programming for shader simplifica-

tion. ACM Trans. Gr. 30(6), 152:1–152:12 (2011)

31. J.L. Smith, Implementing median filters in xc4000e fpgas. XCell 23(1), 16 (1996)

32. T. Sun, Y. Neuvo, Detail-preserving median based filters in image processing. Pattern Recognit. Lett.

16, 341–347 (1994)

33. V.K. Valsalam, R. Miikkulainen, Using symmetry and evolutionary search to minimize sorting

networks. J. Mach. Learn. Res. 14(1), 303–331 (2013)

34. Z. Vasicek, L. Sekanina, Evolutionary approach to approximate digital circuits design. IEEE Trans.

Evol. Comput. 19(3), 432–444 (2015)

35. Z. Vasicek, K. Slany, Efficient phenotype evaluation in cartesian genetic programming, in Pro-

ceedings of the 15th European Conference on Genetic Programming, LNCS 7244, pp. 266–278.

Springer Verlag (2012)

36. S. Venkataramani, A. Sabne, V.J. Kozhikkottu, K. Roy, A. Raghunathan, Salsa: systematic logic

synthesis of approximate circuits, in The 49th Annual Design Automation Conference 2012, DAC

’12, pp. 796–801. ACM (2012)

37. Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli, Image quality assessment: from error visibility to

structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

38. D.R. White, A. Arcuri, A. John, Evolutionary improvement of programs. IEEE Trans. Evol. Comput.

15(4), 515–538 (2011)

39. A. Yazdanbakhsh, D. Mahajan, B. Thwaites, J. Park, A. Nagendrakumar, S. Sethuraman, K.

Ramkrishnan, N. Ravindran, R. Jariwala, A. Rahimi, H. Esmailzadeh, K. Bazargan, Axilog: Lan-

guage support for approximate hardware design, in Design, Automation and Test in Europe,

DATE’15, pp. 1–6. EDA Consortium (2015)

82 Genet Program Evolvable Mach (2017) 18:45–82

123

https://github.com/daPhoosa/MedianFilter
https://github.com/daPhoosa/MedianFilter

	Trading between quality and non-functional properties of median filter in embedded systems
	Abstract
	Introduction
	From genetic improvement to approximate computing
	Background
	Median of a data set
	Construction of median networks
	Power-aware improvement of median networks
	Problem formulation

	The quality of the improved median networks
	Common quality metrics
	The permutation principle
	The permutation principle and distance error
	Final remarks

	The proposed method
	Representation of comparator networks
	Quality of candidate solutions
	Search method

	Experimental setup
	Results
	Improved medians in real embedded systems
	Microcontrollers used for testing
	Evolved code on different microcontrollers
	Processing data from sensor devices with approximated median filters

	Conclusions
	Acknowledgments
	References

