
Submitted to:
AFL 2017

Rule-Homogeneous CD Grammar Systems

Radim Kocman Zbyněk Křivka Alexander Meduna
Centre of Excellence IT4Innovations
Faculty of Information Technology

Brno University of Technology
Božetěchova 2, Brno 612 66, Czech Republic
{ikocman,krivka,meduna}@fit.vutbr.cz

A homogeneous rule has its left-hand side formed by a string of identical symbols. Consider two-
component CD grammar systems that work under the ∗mode or the t mode. This paper demonstrates
that the family of recursively enumerable languages is characterized by these systems in which one
component is context-free and the other has two evenly homogeneous rules—11→ 00 and 0000→
2222, where 0, 1, and 2 are nonterminals. Furthermore, this characterization also holds in terms
of two-component CD grammar systems in which one component is context-free and the other has
two homogeneous rules—11→ 00 and 0000→ ε . Several properties concerning these systems are
formulated and studied.

1 Introduction

The present paper, which assumes a familiarity with formal language theory (see [5, 10]), concerns
grammar systems (see [2]). It concentrates its attention on two-component CD grammar systems working
under the ∗ and t modes. Under the former mode, these systems obviously generate the family of context-
free languages. More surprisingly, under the latter mode, they are also as powerful as ordinary context-
free grammars, too. These results give rise to an idea of changing one of the context-free components
with a simple non-context-free component so this change results into an increase of the generative power.
An investigation of this idea represents the principal subject of the present study.

Before sketching this study and its achievement, we recall that a grammatical rule of the form x→ y,
where x and y are strings, is homogeneous if x is formed by a string of identical symbols (see [6]). A
homogeneous rule x→ y is evenly homogeneous if y is also formed by a string of identical symbols
and |x| = |y|. In a CD grammar system, a component is homogeneous if all its rules are homoge-
neous, and it is evenly homogeneous if all its rules are evenly homogeneous. A CD grammar system
is rule-homogeneous if all its components are homogeneous. Observe that any CD grammar system
with context-free components is rule-homogeneous. As obvious, if a CD grammar system contains only
evenly homogeneous rules, its language is a subset of the terminal alphabet in the system.

To give an insight into the present study, take any grammar G in Kuroda normal form—that is,
a grammar in which every rule is of the form AB → CD, A → BC, A → a, or A → ε , where A, B,
C, D are nonterminals, a is a terminal, and ε denotes the empty string (see Section 8.3.3. in [5]).
This paper demonstrates two transformations that turn G to a two-component rule-homogeneous CD
grammar system with a context-free component H and a homogeneous non-context-free component I.
One transformation produces I = {11→ 00, 0000→ 2222}, so I is evenly homogeneous. The other
transformation produces I = {11→ 00, 0000→ ε}, which is thus homogeneous. The paper proves
that working under the ∗ and t modes, both systems resulting from these transformations are equivalent
to G. Thus, more generally speaking, CD grammar systems of these two forms are computationally

2 Rule-Homogeneous CD Grammar Systems

complete—that is, they characterize the family of recursively enumerable languages—because so are the
Kuroda normal form grammars.

Apart from the computational completeness, it is worth mentioning two other properties, (i) and (ii),
concerning the t mode and the ∗ mode, respectively.

(i) Consider the system with I = {11→ 00, 0000→ ε}. The paper demonstrates that working under
the t mode, during every generation of a sentence, it changes its components no more than once.
Furthermore, if the system simulates at least one non-context-free rule, it changes its components
precisely once.

(ii) From a general and intuitive viewpoint, taking a closer look at language-generating rewriting sys-
tems, we intuitively see that some of them generate the language in a more similar way than others.
More precisely, consider models X and Y . If there is a constant k such that for every derivation of
the form

x0⇒ x1⇒ . . .⇒ xn

in X , where x0 is its start symbol, there is a derivation of the form

x0⇒k1 x1⇒k2 . . .⇒kn xn

in Y , where ki ≤ k for each 1≤ i≤ n, we tend to say that Y closely simulates X . In this sense, the
paper demonstrates that under the ∗ mode, the system with I = {11→ 00, 0000→ 2222} closely
simulates G, and so does the system with I = {11→ 00, 0000→ ε} under this mode.

The rest of the paper is organized as follows. Section 2 recalls all the terminology needed in this
paper and introduces the notion of rule-homogeneous CD grammar systems. Section 3 then presents all
fundamental results achieved in this study as sketched above.

2 Preliminaries and Definitions

This paper assumes that the reader is familiar with the theory of automata and formal languages (see
[5, 10]). This section recalls only the crucial notions used in this paper.

For an alphabet (finite nonempty set), V , V ∗ represents the free monoid generated by V under the
operation of concatenation. The unit of V ∗ is denoted by ε . Members of V ∗ are called strings. Set
V+ = V ∗−{ε}; algebraically, V+ is thus the free semigroup generated by V under the operation of
concatenation. For x∈V ∗, |x| denotes the length of x, rev(x) denotes the reversal of x, and alph(x) denotes
the set of all symbols occurring in x; for instance, alph(0010) = {0,1}. Let CF, CS, and RE denote the
families of context-free, context-sensitive, and recursively enumerable languages, respectively.

A phrase-structure grammar or, more simply, a grammar is a quadruple, G = (N,T,P,S), whose
components are defined as follows. N and T are alphabets such that N ∩ T = /0. Symbols in N are
referred to as nonterminals, while symbols in T are referred to as terminals. S ∈ N is the start symbol of
G. P is a finite set of productions (rules) such that every p ∈ P has the form x→ y, where x,y ∈ (N∪T)∗

and alph(x)∩N 6= /0; the left-hand side x and the right-hand side y of p are denoted by lhs(p) and rhs(p),
respectively. The rule p ∈ P is considered context-free if | lhs(p)|= 1; otherwise, it is a non-context-free
rule. If x→ y ∈ P and u,w ∈ (N ∪ T)∗, then uxw⇒ uyw. In the standard manner, extend ⇒ to ⇒n,
where n≥ 0; then, based on⇒n, define⇒+ and⇒∗. The language generated by G, L(G), is defined as
L(G) = {w ∈ T ∗ | S⇒∗ w}.

Radim Kocman, Zbyněk Křivka, Alexander Meduna 3

Let G= (N,T,P,S) be a grammar. G is in Kuroda normal form (see Section 8.3.3. in [5]) if every rule
p ∈ P has one of these three forms: (1) AB→CD, where A,B,C,D ∈ N, (2) A→ BC, where A,B,C ∈ N,
or (3) A→ a, where A ∈N and a ∈ (T ∪{ε}). If x→ y ∈ P and x ∈ {A}+ for some A ∈N, then x→ y is a
homogeneous rule (see [6]). Furthermore, if also y∈ {B}+ for some B∈ (N∪T) and |x|= |y|, then x→ y
is an evenly homogeneous rule. G represents a homogeneous grammar if every p ∈ P is homogeneous.
Lastly, set ContextFree(P) = {p ∈ P | | lhs(p)|= 1} and NonContextFree(P) = {p ∈ P | | lhs(p)| ≥ 2}.

A phrase-structure cooperating distributed grammar system (a phrase-structure CD grammar system
for short) is a construct Γ = (N,T,P1,P2, . . . ,Pn,S), n ≥ 1, where N is the alphabet of nonterminals, T
is the alphabet of terminals, N ∩T = /0, S ∈ N is the start symbol, and for 1≤ i≤ n, each component Pi

is a finite set of phrase-structure rules. (For the original context-free definition see [2].) For u,v ∈ V ∗,
V =N∪T , and 1≤ k≤ n, let u⇒Pk

v denote a derivation step performed by the application of a rule from
Pk. As usual, extend the relation⇒Pk

to⇒m
Pk

(the m-step derivation), m≥ 0,⇒+
Pk

, and⇒∗Pk
. In addition,

we define the relation u⇒t
Pk

v so that u⇒∗Pk
v and there is no w ∈ V ∗ such that v⇒Pk

w. The language
generated by Γ working in the f mode, f ∈ {∗, t}, denoted by L f (Γ), is defined as L f (Γ) = {w ∈ T ∗ |
S⇒ f

Pk1
w1⇒ f

Pk2
. . .⇒ f

Pkl
wl = w, l ≥ 1, 1 ≤ ki ≤ n, 1 ≤ i ≤ l}. Γ is referred to as rule-homogeneous,

evenly rule-homogeneous, or context-free (instead of phrase-structure) if all its rules are homogeneous,
evenly homogeneous, or context-free, respectively.

Language families generated by context-free CD grammar systems with n components working in
the f mode and allowing ε-rules are denoted by CDε

n(f). When the number of components is not limited,
we replace n by ∞. The following results are well-known (see Theorem 3.1 in [8]):

(i) CDε
∞(∗) = CF,

(ii) CF =CDε
1(t) =CDε

2(t)⊂CDε
3(t) =CDε

∞(t) = ET0L,

where ET0L denotes the family of languages generated by extended tabled interactionless Lindenmayer
systems (see [7]).

The definition of phrase-structure CD grammar systems can be easily modified so that the compo-
nents are sets of rules of any arbitrary type. Recall that for CD grammar systems having regular, linear,
context-sensitive, or phrase-structure components, the generative power does not change (see [2, 8]),
i.e., they generate the families of regular, linear, context-sensitive, or recursively enumerable languages,
respectively. Nonetheless, different results have been obtained by studying some other non-classical
components—e.g., permitting, left-forbidding, and random context components (see [1, 3, 4])—where
the number of components affects the resulting generative power.

It is clear that if we require a significant increase in the generative power, we need components that
use a stronger mechanism than basic context-free rules. In general, components with homogeneous rules
have the similar effect as phrase-structure components—a single homogeneous component can define
RE by itself (see [6]). The same, however, does not hold for components with evenly homogeneous
rules, which can clearly generate only single symbol results on their own. Therefore, one may wonder, if
we combine several components of different types, how simple the additional non-context-free part can
be so it still significantly increases the generative power of context-free CD grammar systems.

The rest of the paper studies two-component rule-homogeneous CD grammar systems where the first
component is context-free and the second component contains either evenly homogeneous or homoge-
neous rules. Furthermore, we limit the non-context-free component so it contains only two rules.

4 Rule-Homogeneous CD Grammar Systems

3 Results

First, let us start with the most straightforward variant of a two-component rule-homogeneous CD gram-
mar system that works in the ∗ mode and has the second component homogeneous. The following proof
will also serve as a framework for the later proofs since quite a few parts of the reasoning are shared
throughout the variants.

Theorem 1. Let G = (N,T,P,S) be a grammar. Then, there exists a two-component rule-homogeneous
CD grammar system, Γ = (N′,T,H, I,S), such that I = {11→ 00, 0000→ ε} and L∗(Γ) = L(G).

Proof.
Construction. Let G = (N,T,P,S) be a grammar. Without any loss of generality, assume that G satis-
fies the Kuroda normal form and (N ∪ T)∩{0,1} = /0. For some m ≥ 3, define an injection, g, from
NonContextFree(P) to ({01}+{00}{01}+∩{01,00}m).

From G, we construct the two-component rule-homogeneous CD grammar system, Γ=(N′,T,H, I,S),
where N′ = N∪{0,1}, I = {11→ 00, 0000→ ε}, and H is defined as follows:

(I) For every AB→CD ∈ P where A,B,C,D ∈ N,
add A→Cg(AB→CD) and B→ rev(g(AB→CD))D to H.

(II) For every A→ x ∈ P where A ∈ N and x ∈ ({ε}∪T ∪N2), add A→ x to H.

The construction of Γ is completed.

Basic idea.

(a) The rules of (I) and I simulate the derivation steps made by NonContextFree(P) in G. That is,
xABy⇒ xCDy according to AB→CD ∈ P, where x,y ∈ (N∪T)∗, in G is simulated in Γ as

xABy⇒H xCg(AB→CD)By

⇒H xCg(AB→CD) rev(g(AB→CD))Dy

⇒2m−1
I xCDy.

Γ makes the (2m−1)-step derivation xCg(AB→CD) rev(g(AB→CD))Dy⇒2m−1
I xCDy by using

only rules from I = {11→ 00, 0000→ ε}. During this (2m−1)-step derivation, the string between
C and D always contains exactly one occurrence of consecutive identical symbols that can be
rewritten, so Γ actually verifies that the simulation of xABy⇒ xCDy is made properly.

(b) The rules of (II) simulate the use of ContextFree(P) in G.

The reader may notice that the simulation of non-context-free rules resembles similar techniques
used in phrase-structure grammars (see [9, 6]). However, this is traditionally done by using several types
of matching parentheses (see [9]), which is not a suitable form for homogeneous rules, or it requires a
significant non-local change in the generation flow of the grammar (see [6]).

Formal proof (sketch). We prove L∗(Γ) = L(G). First, we prove that the verification process of the
simulation is valid and cannot be disturbed.

Claim 2. The verification process of simulated NonContextFree(P) in Γ is valid and cannot be disturbed
by other rules.

Radim Kocman, Zbyněk Křivka, Alexander Meduna 5

Proof. Consider any AB→ CD ∈ P and any derivation step xABy⇒ xCDy in G, where A,B,C,D ∈ N
and x,y ∈ (N ∪ T)∗. For some m ≥ 3, this is simulated in Γ with rules A→ C01(01)k00(01)l01 and
B→ 10(10)l00(10)k10D, where k, l ≥ 0 and k+ l + 3 = m. The result of their correct application can
generally be in the form uC01(01)k00(01)l01w10(10)l00(10)k10Dv, where u,v,w ∈ (N′∪T)∗. Observe
that parts u, v, w, C, and D can potentially contain and generate some additional nonterminals 0 and 1.
Nonetheless, these nonterminals can be generated only from the previous two rules or from the other
simulated rules in the forms 01(01)p00(01)q01 and 10(10)q00(10)p10, where p,q ≥ 0, p+ q+ 3 = m,
and p 6= k. We show that, in any situation, the verification process holds.

(1) Consider the simplest case where all parts u, v, w, C, and D ended as ε . We begin the process
with 01(01)k00(01)l0110(10)l00(10)k10. First, we use l +1 times rules 11→ 00 and 0000→ ε ,
respectively, and get 01(01)k0000(10)k10. Next, we use the rule 0000→ ε , which in fact verifies
the match of both parts. And lastly, we use k+1 times both rules again to erase the rest. Observe
that these nonterminals cannot be processed in any other way, and that this process can start only
if the verification parts from both rules meet each other.

(2) Now consider cases where the simulation is done incorrectly. Without a loss of generality, assume
only the sequences of nonterminals 0 and 1. Other symbols can only further block the process.

(2.1) If there is only one part 01(01)k00(01)l01 or 10(10)l00(10)k10 alone, it cannot be erased.
(2.2) If two parts 10(10)l00(10)k10 and 01(01)k00(01)l01 meet in the wrong order, the verification

process cannot start since there are no possible derivation steps. The same holds if two parts
from different rules meet in the wrong order.

(2.3) If two different parts 01(01)k00(01)l01 and 10(10)q00(10)p10 meet in the proper order, the
process gets stuck. Assume that l > q. We begin with 01(01)k00(01)l0110(10)q00(10)p10
and use q+1 times rules 11→ 00 and 0000→ ε , respectively. This ends with the sequence
01(01)k00(01)l−q00(10)p10 which cannot be processed any further. Note that for l < q
the result is analogical. Observe that if the verification process gets stuck in this way, the
resulting sequence begins and ends with 0. Therefore, in the same way as in (2.2), it cannot
interact with other verification sequences anymore.

(2.4) Any other case is a combination of (2.1), (2.2), and (2.3).

(3) Finally, consider the full case of the form uC01(01)k00(01)l01w10(10)l00(10)k10Dv where parts
u, v, w, C, and D can contain and generate additional symbols. Observe that parts u, v, C, and D
cannot affect the process, since no result of (1) and (2) or another verification part can interact with
a sequence that begins/ends with 0. Lastly, part w has to always end as ε; otherwise, either the
simulation is done incorrectly, and it is in fact some case of (2); or both parts get correctly matched
with some different parts in the end, and the same is also possible in G (e.g., if w generates BA, it
can simulate some xABABy⇒∗ xCDCDy in G).

Thus, Claim 2 holds. �

Next, we prove L(G)⊆ L∗(Γ); more precisely, by induction on i≥ 0, we demonstrate Claim 3.

Claim 3. For every w ∈ (N ∪T)∗ and i ≥ 0, S⇒i w in G implies S⇒∗k1
w1⇒∗k2

. . .⇒∗kl
wl = w, l ≥ 1,

k j ∈ {H, I}, 1≤ j ≤ l, in Γ.

Proof. This proof by induction on i≥ 0 is very simple. Therefore we omit its basis and only sketch the
rest. Assume that the implication of Claim 3 holds for every i ≤ o, where o is a non-negative integer.
Consider any derivation of the form S⇒o+1 β , where β ∈ (N∪T)∗. Express S⇒o+1 β as S⇒o α⇒ β ,

6 Rule-Homogeneous CD Grammar Systems

where α ∈ (N ∪ T)∗. By the induction hypothesis, S⇒∗k1
w1 ⇒∗k2

. . .⇒∗kl
wl = α , l ≥ 1, k j ∈ {H, I},

1≤ j ≤ l, in Γ. There are the following two possibilities how G can make α ⇒ β :
(1) Let AB→CD ∈ P, α = xABy, β = xCDy, x,y ∈ (N∪T)∗, A,B,C,D ∈ N. From (a) and Claim 2,

xABy⇒H xCg(AB→CD)By

⇒H xCg(AB→CD) rev(g(AB→CD))Dy

⇒2m−1
I xCDy

in Γ. Consequently, S⇒∗k1
w1⇒∗k2

. . .⇒∗kl
wl = xCDy = β , l ≥ 1, k j ∈ {H, I}, 1≤ j ≤ l, in Γ.

(2) Let A→ z ∈ P, α = xAy, β = xzy, x,y ∈ (N∪T)∗, A ∈ N, z ∈ ({ε}∪T ∪N2).
This case is left to the reader.

The induction step is completed, so Claim 3 holds. �

Lastly, we prove L∗(Γ)⊆ L(G). Based on Claim 2, it is rather easy to demonstrate (a rigorous version
of this demonstration is left to the reader) that Γ can generate every y ∈ L∗(Γ) as

S = v03 ⇒∗H v10 ⇒H v11 ⇒H v12 ⇒2m−1
I v13

⇒∗H v20 ⇒H v21 ⇒H v22 ⇒2m−1
I v23

...

⇒∗H vk0 ⇒H vk1 ⇒H vk2 ⇒
2m−1
I vk3 ⇒

∗
H v(k+1)0 = y

where for i = 0,1, . . . ,k in vi3 ⇒∗H v(i+1)0 every sentential form is over (N ∪T)∗; and for j = 1, . . . ,k the
derivation v j0 ⇒H v j1 ⇒H v j2 ⇒2m−1

I v j3 has the following form:

v j0 = u jA jB jw j,

v j1 = u jC jg(A jB j→C jD j)B jw j,

v j2 = u jC jg(A jB j→C jD j) rev(g(A jB j→C jD j))D jw j,

v j2 ⇒2m−1
I v j3 is made by using 11→ 00 and 0000→ ε ,

v j3 = u jC jD jw j

for some A jB j→C jD j ∈ P, u j,w j ∈ (N∪T)∗.

From the derivation of the above form in Γ and from (I) and (II), we see that v03 ⇒∗ v(k+1)0 in G.
Therefore, y ∈ L∗(Γ) implies y ∈ L(G). Thus, L∗(Γ)⊆ L(G).

As L(G)⊆ L∗(Γ) and L∗(Γ)⊆ L(G), L∗(Γ) = L(G). Thus, Theorem 1 holds.

Corollary 4. The resulting two-component rule-homogeneous CD grammar system Γ from the proof of
Theorem 1 closely simulates the original grammar G in Kuroda normal form.

Proof. For any resulting Γ, we can find a bounded constant k such that for every possible derivation
u⇒ v in G there is a ki-step derivation in Γ that gives the same result and ki ≤ k. Furthermore, for a given
Γ, we can easily determine the minimal possible k.

Consider the proof of Claim 3 and the mentioned possibilities how G can make α ⇒ β . Clearly,
any context-free rule can be simulated in one derivation step. The remaining non-context-free rules
require two initial derivation steps and the following verification process. The length of the verification
is dependent on the selected size m for the verification code, and it takes 2m−1 steps to complete. The
minimal possible k for a given Γ is therefore 2m+1.

Radim Kocman, Zbyněk Křivka, Alexander Meduna 7

Next, we consider a CD grammar system with the same structure but working in the t mode.

Theorem 5. Let G = (N,T,P,S) be a grammar. Then, there exists a two-component rule-homogeneous
CD grammar system, Γ = (N′,T,H, I,S), such that I = {11→ 00, 0000→ ε} and Lt(Γ) = L(G).

Proof.
Construction. The process of construction remains identical to Theorem 1. For a grammar G = (N,T,P,
S), some m ≥ 3, and injection g, we construct the two-component rule-homogeneous CD grammar sys-
tem, Γ = (N′,T,H, I,S), where N′ = N∪{0,1}, and H and I contain the rules as described previously.

Basic idea.
Recall that, during the generation of a sentence, a CD grammar system working in the t mode switches
its components only if the process is not finished and there are no possible derivations with the previous
component. Consider the general behavior of Γ. It starts the generation with S. For the first derivation,
applicable rules can be found only in H, so this component has to be used. However, H also contains all
rules simulating the original rules of G. Consequently, the first derivation in the t mode has to simulate
all rules in G without completing the verification process for non-context-free rules. Nonetheless, we
prove that the verification process can be done successfully afterwards for all simulated rules at once.

Formal proof (sketch).
We prove Lt(Γ) = L(G). First, let us prove the statement introduced above. For convenience, consider
the homomorphism ϕ : (N′ ∪ T)∗ → (N ∪ T)∗ where ϕ(a) = a and ϕ(b) = ε , for all a ∈ (N ∪ T) and
b ∈ {0,1}.

Claim 6. For every u ∈ (N∪T)∗ and i≥ 0, S⇒i u in G implies S⇒∗H w⇒t
I u in Γ, where w ∈ (N′∪T)∗

and ϕ(w) = u. Furthermore, we consider w to be generally in the form w = p1q1 . . . pnqn, where n ≥ 1,
p j ∈ (N ∪T)∗, q j ∈ {0,1}∗, 1≤ j ≤ n, and every q j represents a string that can be successfully verified
and erased by the verification process.

Proof. Basis: Let i = 0. Then, u = S. Clearly, S⇒0
H S⇒t

I S, and the required form also holds.
Induction hypothesis: Assume that Claim 6 holds for every i= 0, . . . ,o, where o is a non-negative integer.

Induction step: Consider any derivation of the form S⇒o+1 β , where β ∈ (N∪T)∗. Express S⇒o+1

β as S⇒o α ⇒ β , where α ∈ (N ∪T)∗. By the induction hypothesis, S⇒∗H w⇒t
I α , where ϕ(w) = α ,

in Γ. There are the following two possibilities how G can make α ⇒ β :

(1) Let AB→ CD ∈ P, α = xABy, β = xCDy, x,y ∈ (N ∪ T)∗, A,B,C,D ∈ N. Consider w in the
required form. Let w = p1q1 . . . pkAqkBpk+1qk+1 . . . pnqn, where n≥ 1, 1≤ k ≤ n, p j ∈ (N ∪T)∗,
q j ∈ {0,1}∗, 1≤ j ≤ n, and also p1 . . . pk = x and pk+1 . . . pn = y. Then

w = p1q1 . . . pkAqkBpk+1qk+1 . . . pnqn

⇒H p1q1 . . . pkCg(AB→CD)qkBpk+1qk+1 . . . pnqn

⇒H p1q1 . . . pkCg(AB→CD)qk rev(g(AB→CD))Dpk+1qk+1 . . . pnqn = w′

in Γ, and there are two possible situations regarding these steps:

(a) If qk = ε , the steps add a new sequence of verification symbols. However, by Claim 2, such
a sequence can be successfully verified and cleared on its own, so the required form holds.
Consequently, S⇒∗H w′⇒t

I β in Γ.

8 Rule-Homogeneous CD Grammar Systems

(b) If qk 6= ε , the steps prolong some existing sequence of verification symbols. However, by
Claim 2, observe that this creates a properly nested structure of verification codes that can
also be completely verified and erased on its own, so the required form holds. Consequently,
S⇒∗H w′⇒t

I β in Γ.

(2) Let A→ z ∈ P, α = xAy, β = xzy, x,y ∈ (N∪T)∗, A ∈ N, z ∈ ({ε}∪T ∪N2).
This case is left to the reader.

The induction step is completed, so Claim 6 holds. �

Consider S⇒∗ y, where y∈ T ∗, in G. By Claim 6, this implies S⇒∗H w⇒t
I y, where w∈ (T ∪{0,1})∗,

in Γ. It is obvious that, in such a case, ⇒∗H behaves exactly the same as ⇒t
H . Thus, L(G) ⊆ Lt(Γ).

Nonetheless, it is clear that Γ working in the t mode can no longer closely simulate G.
The proof for Lt(Γ) ⊆ L(G) is just a variation of the proof for L∗(Γ) ⊆ L(G) from Theorem 1 with

the modified derivation order and required string forms from Claim 6; thus, it is left to the reader.
As L(G)⊆ Lt(Γ) and Lt(Γ)⊆ L(G), Lt(Γ) = L(G). Thus, Theorem 5 holds.

Corollary 7. The resulting two-component rule-homogeneous CD grammar system Γ from the proof of
Theorem 5 changes its components, during every generation of a sentence, no more than once.

Proof. This proof directly follows the basic idea of Theorem 5 and Claim 6. Γ starts the process with
symbol S and component H, since it is the only component that can generate something from S. If the
first derivation does not use any simulated non-context-free rules, Γ never switches components, because
the result of such a derivation is already a final sentence. If the verification process is required, then,
at the end, Γ switches to component I that finishes the generation. Since I cannot introduce any new
nonterminals of the original grammar, Γ is not able to switch again.

For the remaining results, we change the second component of the two-component rule-homogeneous
CD grammar system so it is evenly homogeneous. As previously, the first theorem describes a variant
that works in the ∗ mode.
Theorem 8. Let G = (N,T,P,S) be a grammar. Then, there exists a two-component rule-homogeneous
CD grammar system, Γ = (N′,T,H, I,S), such that I = {11→ 00, 0000→ 2222} and L∗(Γ) = L(G).

Proof.
Construction. Let G = (N,T,P,S) be a grammar. Without any loss of generality, assume that G satisfies
the Kuroda normal form and (N ∪ T)∩ {0,1,2} = /0. For some m ≥ 3, define an injection, g, from
NonContextFree(P) to ({01}+{00}{01}+∩{01,00}m).

From G, we construct the two-component rule-homogeneous CD grammar system, Γ=(N′,T,H, I,S),
where N′ = N∪{0,1,2}, I = {11→ 00, 0000→ 2222}, and H is defined as follows:

(I) For every AB→CD ∈ P where A,B,C,D ∈ N,
add A→Cg(AB→CD) and B→ rev(g(AB→CD))D to H.

(II) For every A→ x ∈ P where A ∈ N and x ∈ ({ε}∪T ∪N2), add A→ x to H.

(III) Add 2→ ε to H.
The construction of Γ is completed.

Note that this resembles the construction from Theorem 1. We only add one additional nonterminal
and a rule that can erase it. Also the basic idea for the simulation process remains the same.

Formal proof (sketch). We prove L∗(Γ) = L(G). First, we prove that the verification process of the
simulation is valid and cannot be disturbed.

Radim Kocman, Zbyněk Křivka, Alexander Meduna 9

Claim 9. The verification process of simulated NonContextFree(P) in Γ is valid and cannot be disturbed
by other rules.

Proof. This proof is based on Claim 2. Observe that the modified verification process requires a different
sequence of rules. Consider two matching parts 01(01)k00(01)l01 and 10(10)l00(10)k10, where k, l ≥ 0
and k+ l+3 = m. The process starts with 01(01)k00(01)l0110(10)l00(10)k10. First, we use l+1 times
the following sequence of rules: once 11→ 00, once 0000→ 2222, and four times 2→ ε , respectively.
Next, we use rule 0000→ 2222 and four times rule 2→ ε , which verify the match of both parts. And
lastly, we repeat k+1 times the first sequence of rules again to erase the rest.

It can be easily seen that the new nonterminal 2 cannot disturb the verification process in any way
since it cannot generate anything new. It only further blocks the verification process until it is erased.

Thus, Claim 9 holds. �

Next, we prove L(G)⊆ L∗(Γ); more precisely, by induction on i≥ 0, we demonstrate Claim 10. For
brevity, let u =⇒l v denote the sequence u⇒k1

v1⇒k2
. . .⇒kl

vl = v, k j ∈ {H, I}, 1≤ j ≤ l.

Claim 10. For every w ∈ (N ∪T)∗ and i≥ 0, S⇒i w in G implies S⇒∗k1
w1⇒∗k2

. . .⇒∗kl
wl = w, l ≥ 1,

k j ∈ {H, I}, 1≤ j ≤ l, in Γ.

Proof. This proof by induction is almost identical to the proof of Claim 3. Therefore, we omit the
similar parts and only present the different simulation for the non-context-free derivation step α ⇒ β in
G. By the induction hypothesis, S⇒∗k1

w1⇒∗k2
. . .⇒∗kl

wl = α , l ≥ 1, k j ∈ {H, I}, 1 ≤ j ≤ l, in Γ. Let
AB→CD ∈ P, α = xABy, β = xCDy, x,y ∈ (N∪T)∗, A,B,C,D ∈ N. From Claim 9,

xABy⇒H xCg(AB→CD)By

⇒H xCg(AB→CD) rev(g(AB→CD))Dy

=⇒6m−1 xCDy

in Γ. Consequently, S⇒∗k1
w1⇒∗k2

. . .⇒∗kl
wl = xCDy = β , l ≥ 1, k j ∈ {H, I}, 1≤ j ≤ l, in Γ.

Thus, Claim 10 holds. �

Lastly, we prove L∗(Γ)⊆ L(G). Based on Claim 9, it is rather easy to demonstrate (again, a rigorous
version of this demonstration is left to the reader) that Γ can generate every y ∈ L∗(Γ) as

S = v03 ⇒∗H v10 ⇒H v11 ⇒H v12 =⇒6m−1 v13

⇒∗H v20 ⇒H v21 ⇒H v22 =⇒6m−1 v23

...

⇒∗H vk0 ⇒H vk1 ⇒H vk2 =⇒
6m−1 vk3 ⇒

∗
H v(k+1)0 = y

where for i = 0,1, . . . ,k in vi3 ⇒∗H v(i+1)0 every sentential form is over (N ∪T)∗; and for j = 1, . . . ,k the
derivation v j0 ⇒H v j1 ⇒H v j2 =⇒6m−1 v j3 has the following form:

v j0 = u jA jB jw j,

v j1 = u jC jg(A jB j→C jD j)B jw j,

v j2 = u jC jg(A jB j→C jD j) rev(g(A jB j→C jD j))D jw j,

v j2 =⇒6m−1 v j3 is made by using 11→ 00, 0000→ 2222, and 2→ ε ,

10 Rule-Homogeneous CD Grammar Systems

v j3 = u jC jD jw j

for some A jB j→C jD j ∈ P, u j,w j ∈ (N∪T)∗.

From the derivation of the above form in Γ, we see that v03 ⇒∗ v(k+1)0 in G. Therefore, y ∈ L∗(Γ)
implies y ∈ L(G). Thus, L∗(Γ)⊆ L(G), so L∗(Γ) = L(G) and Theorem 8 holds.

Corollary 11. The resulting two-component rule-homogeneous CD grammar system Γ from the proof of
Theorem 8 closely simulates the original grammar G in Kuroda normal form.

Proof. The reasoning is the same as for Corollary 4. For any resulting Γ, we can find a bounded constant
k such that for every possible derivation u⇒ v in G there is a ki-step derivation in Γ that gives the same
result and ki ≤ k. Furthermore, for a given Γ, we can easily determine the minimal possible k.

Again, any context-free rule can be simulated in one derivation step. The non-context-free rules
require two initial derivation steps and the following verification process. The length of the verification
is dependent on the selected size m for the verification code, and in this case it takes 6m− 1 steps to
complete. The minimal possible k for a given Γ is therefore 6m+1.

Lastly, we show that this more restricted variant also properly works in the t mode.

Theorem 12. Let G = (N,T,P,S) be a grammar. Then, there exists a two-component rule-homogeneous
CD grammar system, Γ = (N′,T,H, I,S), such that I = {11→ 00, 0000→ 2222} and Lt(Γ) = L(G).

Proof.
Construction. The process of construction remains identical to Theorem 8. For a grammar G = (N,T,P,
S), some m ≥ 3, and injection g, we construct the two-component rule-homogeneous CD grammar sys-
tem, Γ = (N′,T,H, I,S), where N′ = N∪{0,1,2}, and H and I contain the rules as described previously.

The basic idea behind the proof remains the same as in Theorem 5. However, we have to adapt our
claims for the different verification process.

Formal proof (sketch). We prove Lt(Γ) = L(G). For convenience and brevity, consider the homomor-
phism ϕ : (N′∪T)∗→ (N∪T)∗ where ϕ(a) = a and ϕ(b) = ε , for all a ∈ (N∪T) and b ∈ {0,1,2}; and
let u =⇒t v denote the sequence u⇒t

k1
v1⇒t

k2
. . .⇒t

kl
vl = v, l ≥ 1, k j ∈ {H, I}, 1≤ j ≤ l.

Claim 13. For every u∈ (N∪T)∗ and i≥ 0, S⇒i u in G implies S⇒∗H w=⇒t u in Γ, where w∈ (N′∪T)∗

and ϕ(w) = u. Furthermore, we consider w to be generally in the form w = p1q1 . . . pnqn, where n ≥ 1,
p j ∈ (N∪T)∗, q j ∈ {0,1,2}∗, 1≤ j≤ n, and every q j represents a string that can be successfully verified
and erased by the verification process.

Proof. The proof by induction is analogical to Claim 6. �

Consider S⇒∗ y, where y ∈ T ∗, in G. By Claim 13, this implies S⇒∗H w =⇒t y, where w ∈ (T ∪
{0,1,2})∗, in Γ. It is again obvious that, in such a case, ⇒∗H behaves exactly the same as ⇒t

H . Thus,
L(G) ⊆ Lt(Γ). It is clear that Γ working in the t mode can no longer closely simulate G. Furthermore,
we even cannot bound the number how many times Γ changes its components during the generation of a
sentence, since verification sequences can be arbitrarily nested and the verification process requires the
constant switching of components.

The proof for Lt(Γ) ⊆ L(G) is just a variation of the proof for L∗(Γ) ⊆ L(G) from Theorem 8 with
the modified derivation order and required string forms from Claim 13; thus, it is left to the reader.

As L(G)⊆ Lt(Γ) and Lt(Γ)⊆ L(G), Lt(Γ) = L(G). Thus, Theorem 12 holds.

Radim Kocman, Zbyněk Křivka, Alexander Meduna 11

Acknowledgment

This work was supported by The Ministry of Education, Youth and Sports of the Czech Republic from the
National Programme of Sustainability (NPU II); project IT4Innovations excellence in science - LQ1602;
the TAČR grant TE01020415; and the BUT grant FIT-S-17-3964.

References
[1] Erzsébet Csuhaj-Varjú, Tomáš Masopust & György Vaszil (2009): Cooperating distributed grammar systems

with permitting grammars as components. Romanian Journal of Information Science and Technology 12(2),
pp. 175–189.

[2] Erzsebet Csuhaj-Varju, Josef Kelemen, Gheorghe Paun & Jurgen Dassow (1994): Grammar Systems: A
Grammatical Approach to Distribution and Cooperation. Gordon and Breach Science Publishers, Inc.

[3] Filip Goldefus, Tomáš Masopust & Alexander Meduna (2010): Left-forbidding Cooperating
Distributed Grammar Systems. Theoretical Computer Science 411(40–42), pp. 3661–3667,
doi:10.1016/j.tcs.2010.06.010.

[4] Zbyněk Křivka & Tomáš Masopust (2011): Cooperating Distributed Grammar Systems with Random Context
Grammars as Components. Acta Cybernetica 20, pp. 269–283, doi:10.14232/actacyb.20.2.2011.4.

[5] Alexander Meduna (2000): Automata and Languages: Theory and Applications. Springer, London.
[6] Alexander Meduna & Dušan Kolář (2002): Homogenous Grammars with a Reduced Number of Non-Context-

Free Productions. Information Processing Letters 81(5), pp. 253–257, doi:10.1016/s0020-0190(01)00224-1.
[7] Grzegorz Rozenberg & Arto Salomaa (1997): Handbook of Formal Languages, Vol. 1: Word, Language,

Grammar. Springer-Verlag.
[8] Grzegorz Rozenberg & Arto Salomaa (1997): Handbook of Formal Languages, Vol. 2: Linear Modeling:

Background and Application. Springer-Verlag.
[9] Walter J. Savitch (1973): How to Make Arbitrary Grammars Look Like Context-Free Grammars. SIAM

Journal on Computing 2(3), pp. 174–182, doi:10.1137/0202014.
[10] Derick Wood (1987): Theory of Computation: A Primer. Addison-Wesley, Boston.

http://dx.doi.org/10.1016/j.tcs.2010.06.010
http://dx.doi.org/10.14232/actacyb.20.2.2011.4
http://dx.doi.org/10.1016/s0020-0190(01)00224-1
http://dx.doi.org/10.1137/0202014

	Introduction
	Preliminaries and Definitions
	Results

