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TheL (PSCG) =L (CS) problem asks whether propagating scattered context grammars and context
sensitive grammars are equivalent. the presented paper reformulates and answers this problem in
terms of CD grammar systems. More specifically, it characterizes the family of context sensitive
languages by two-component CD grammar systems with propagating scattered context rules.

1 Introduction

Are propagating context sensitive grammars as powerful as context sensitive grammars? This question
customarily reffered to as the L (PSCG) =L (CS) (see [4]) problem, represents a long standing open
problem in formal language theory. The present paper reformulates and answers this question in terms
of CD grammar systems.

More precisely, the paper introduces CD grammar systems whose components are propagating scat-
tered context grammars. Then, it demonstrates that two-component grammar systems of this kind gen-
erate the family of context-sensitive languages, thus the answer to this problem is in affirmation if the
problem is reformulated in the above way.

2 Preliminaries

We assume that the reader is familiar with formal language theory (see [3, 6, 8, 9] for details). For an
alphabet (finite nonempty set) V , V � represents the free monoid generated by V under the operation of
concatenation. The unit of V � is denoted by ε . The length of string is denoted as jx0x1 : : :xnj. Simi-
larly by jx0x1 : : :xnjN , the lenght of string when counting only symbols of N is denoted. The function
al ph(x0x1 : : :xn) is defined as al ph(α) = fx : x 2 αg.

A scattered context grammar (SCG) is a quadruple G = (N;T;P;S), where N and T are alphabets
of nonterminal and terminal symbols respectively, where N \ T = /0, further let V = N [ T . S 2 N
is starting symbol. P is a nonempty finite set of rules of the form (A1; : : : ;An)! (α1; : : :αn), where
Ai 2 N, αi 2 V �;1 � i � n, for some n � 1. Let u;v 2 V �, where u = u1A1u2A2u3 : : :unAnun+1 and
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v = u1α1u2α2u3 : : :unαnun+1, (A1;A2;A3; : : : ;An)! (α1;α2;α3; : : : ;αn) 2 P, where ui 2 V � for all 1 �
i� n+1; then u) v in G.

The language generated by SCG G is defined as L(G) = fx : S )� x;x 2 T �g, where )� and )+

denote the transitive-reflexive closure and the transitive closure of ), respectively. A SCG grammar
is said to be propagating (PSCG) iff each (A1; : : : ;An) ! (α1; : : :αn) 2 P satisfies αi 6= ε;1 � i � n.
L (SCG) andL (PSCG) denote the families of languages generated by SCGs and PSCGs respectively.

A context-sensitive grammar (CSG) is a quadruple G = (N;T;P;S), where N and T are the alphabets
of nonterminal and terminal symbols respectively, where N\T = /0. Set V = N[T . S 2 N is the starting
symbol. P is a nonempty finite set of rules of the form αAβ ! αγβ , where A 2 N, α;β ;γ 2 V � and
γ 6= ε . Let u;v 2 V �, u = u1αAβu2, v = u1αγβu2, αAβ ! αγβ 2 P where u1;u2;α;β ;γ 2 V �;A 2 N,
γ 6= ε , then u) v in G.

The language generated by CSG G is defined as L(G) = fx : S )� x;x 2 T �g, where )� and )+

denote the transitive-reflexive closure and the transitive closure of ) respectively. Language generated
by CSG G = (N;T;P;S) is defind as L(G) = fx : S )� x;x 2 T �g. By L (CS) the family of languages
generated by CSGs is denoted.

A CSG G = (N;T;P;S) is in Kuroda Normal form if every rule in P has one of the following forms:

1. AB!CD

2. A!CD

3. A!C

4. A! a

where A;B;C;D 2 N and a 2 T . Recall that every CSG can be transformed into an equivalent grammar
in Kuroda normal form (see [5,6]). Without any loss of generality, we assume that CSGs are in this form
in what follows.

A cooperating distributed grammar system (CDGS) (see [1, 2, 9]) of degree n is n+3 tuple G =
(N;T;S;P1;P2; : : : ;Pn), where N and T are alphabets of nonterminal and terminal symbols respectively,
where N \T = /0, further let V = N [T . S 2 N is starting symbol. Pi;1 � i � n are nonempty finite sets
(called components) of rewriting rules over V . For a CDGS G = (N;T;S;P1;P2; : : : ;Pn), the terminating
(t) derivation by the i-th component, denoted as )t

Pi
is defined as u)t

Pi
v iff u)�

Pi
v and there is no z 2V �

such that v )Pi z. The language generated by CDGS G = (N;T;S;P1;P2; : : : ;Pn) working in t mode is
defined as L(G) = fx : S)t

Pi1
x1 )

t
Pi2

x2 : : : )
t
Pim

x;m� 1;1� i j � n;1� j � m;x 2 T �g.
In this paper, CDGS with propagating scattered context rules (SCGS) and CDGS with context-

sensitive rules will be considered.

3 Main Results

In this section, the identity ofL (SCGS) andL (CS) will be demonstrated.

Lemma 1. L (SCGS)�L (CS)

Proof. Recall that [3] shows that any scattered context grammar can be simulated by context-sensitive
grammar. Similarly, [2] shows that any CDGS with context-sensitive components working in t mode can
be transformed to equivalent CSG. Based on those two facts, it is easy to show that any SCGS can be
simulated by CSG.

Lemma 2. L (CS)�L (SCGS)
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Take any CSG G = (N;T;P;S) satisfying Kuroda normal form. An equivalent SCGS Γ = (NGS;T;
4S;P1;P2) can be constructed using the following constructions. Set NGS = N[f!g[NT [N f irst [NCF [
NCS[Ncur (! =2 N[T ). Where:

NT =fa
0
: 8a 2 Tg

N4 =f4X : 8X 2 N[NTg

NO =fOX : 8X 2 N[NTg

N� =f�X : 8X 2 N[NTg

N f irst =N4[NO[N�

NCF4 =fjX j : 8N4g

NCFO =fjX j : 8NOg

NCF� =fjX j : 8N�g

NCF =fjX j : 8X 2 Ng[NCF4[NCFO[NCF�

NCS =fjX< : 8X 2 N[N f irstg[f>X j : 8X 2 Ng

Ncur =fX^
<

: 8X 2 N[N f irstg[fX^
j : 8X 2 N[N f irstg:

Analogically to sets NCF4;NCFO and NCF�, we call subsets of NCS and Ncur constructed using the set
N4 as NCS4, and Ncur4, respectively. We use similar naming convention for subsets constructed using
the NO and N�.

Set P1 to the union of the following sets:

P1
T =f(4X )! (�X ) : 8X 2 N[NTg

[f(�X ; a
0

)! (�X ;a) :

8X 2 N[NT ;8 a
0

2 NTg

[f(�a
0

)! (a) : 8 a
0

2 NTg

P1
AtoBC =f(4X ;A)! (OX j; jBj jCj) :

8X 2 NT [N;8p 2 P; p = A! BCg

[f(4A)! (OBj jCj) : 8p 2 P; p = A! BCg

P1
AtoB =f(4X ;A)! (OX j; jBj) :

8X 2 NT [N;8p 2 P; p = A! Bg

[f(4A)! (OBj) : 8p 2 P; p = A! Bg
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P1
Atoa =f(

4X ;A)! (OX j; ja
0

j) :

8X 2 NT [N;8p 2 P; p = A! ag

[f(4A)! (Oja
0

j) : 8p 2 P; p = A! Bg

P1
ABtoCD =f(4X ;A;B)! (OX j; jC<;>Dj) :

8X 2 NT [N;8p 2 P; p = AB!CDg

[f(4A;B)! (OC<;>Dj) :

8p 2 P; p = AB!CDg

P1
phase2 =f(X ;B)! (X ; jBj) :

8B 2 N[NT ;X 2 NCSO[NCFOg

set P2 to the union of these subsets:

P2
init =f(

OX j)! (4X^j ) : 8X 2 NT [Ng

[f(OX<)! (4X^<) : 8X 2 NT [Ng

P2
check =f(A^j ; jBj)! (A;B^j ) : 8X ;A;B 2 NT [Ng

[f(A^<;>Bj)! (A;B^j ) : 8X ;A;B 2 NT [Ng

P2
check f =f(

4A^j ; jBj)! (4A;B^j ) : 8A;B 2 NT [Ng

[f(4A^<;>Bj)! (4A;B^j ) : 8A;B 2 NT [Ng

P2
end =f(4A^)! (4A) : 8A 2 NT [Ng

[f(4A;B^j )! (4A;B) : 8A;B 2 NT [Ng

[f(4A^j )! (4A) : 8A 2 NT [Ng

P2
block =f(jX j)! (!) : 8X 2 NT [Ng

Basic Idea 1. We will now briefly describe how the resulting SCGS Γ simulates the input CSG G. The
system consists of two components, both working in t mode. The computation of Γ consists of two phases.
During the first one, all terminals are represented by a nonterminal variant of themselves. During the
second phase, all nonterminals are rewritten to their terminal variant. The simulation itself takes place
during the first phase.

The simulation in Γ of each application of one rule of G consists of two parts. Firstly, the first
component applies the selected rule using the modified nonterminals contained in the sets NCS and NCF .
Symbols of the type jX< denote that the rewriting is done in a context-sensitive way and that the remain-
ing symbol on the right hand side of the rule should appear immediately right of the symbol. Similarly
>X j denotes that the rest of the right hand side of the rule should appear immediately left of the symbol.
Symbols of the form jX j then represent cotext free rewriting. After the application of the rule, the first
component rewrites all remaining symbols to their context-free variant and then deactivates. This is
done using the rules of the set P1

phase2. The fact that only one of the rules was applied is checked using
the first symbol of the sentential form. This symbol is of the form 4X or OX (plus the context-sensitive
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and context-free versions), where the marks 4 and O indicate, whether input rule should be applied, or
remaining symbols should be rewritten.

The second component then checks, whether the first component applied the rule correctly. This is
done using the special ^ mark. This symbol indicates, which symbol is currently checked, we will call
this symbol current symbol. Symbols are checked in pairs, where the first symbol of the pair is the current
symbol and the second symbol is some symbol right of the first one. During this check, the special marks
(j;<;>) on the adjacent sides of those symbols are checked and removed and the ^ mark is moved to
the other symbol of the pair. Since the first symbol of the pair is always the current symbol, the ^ moves
from the left side of the sentential form to the right, with no way of returning back left. When all of the
symbols are checked, the second component is deactivated and the first one simulates new rule. Since the
components have scattered context rules, it is not guaranteed that adjacent symbols are always checked
by the second component. Because of this, set of rules P2

block is created. When some of the symbols is
skipped during the checking phase, these rules will block the generation of sentence by Γ.

The final phase, which rewrites all nonterminals to terminals, is started by rewriting of the first
symbol 4X to �X . Then for each symbol a

0
, there is a rule of the form (�X ; a

0
)! (�X ;a), where a

is corresponding terminal symbol. Finally, the leftmost symbol itself is rewritten to its terminal form.
Since all the rules of all components always check the first symbol, after this step no further rewriting
can be done and all nonterminals that remain in the sentential form cannot be removed. This phase is
represented by set P1

T .

Next, we sketch a formal proof that L(G) = L(Γ). Its fully rigorous version is left to the reader.

Claim 1. In any sentential form, there is always at most one symbol marked with any of 4;O;�.

Proof. Observe that no rule contains more than one symbol marked with any of �;O;4 on the right hand
side. Furthermore observe that if any marked symbol does appear on the right hand side of a rule, there
is also a marked symbol on the left hand side of the same rule. Thus no new marked symbols can be
introduced into the sentential form.

Claim 2. Any derivation that generates a sentence ends with a sequence of rules of the form p1 p21 : : : p2n p3,
where p1; p2i ; p3 2 P1

T ;1 � i � n;n � 0, where p1, p2i and p3 are from the first, second and third subset
of P1

T , respectively. No rule from P1
T is applied before this sequence.

Proof. Recall that only rules which have terminals on the right hand side are in set P1
T which is defined

as follows (in this proof, we named each of its subsets for the sake of simplicity):

P1
T =1P1

T [ 2P1
T [ 3P1

T

1P1
T =f(4X )! (�X ) : 8X 2 N[NTg

2P1
T =f(�X ; a

0

)! (�X ;a) : 8X 2 N[NT ;8 a
0

2 NTg

3P1
T =f(�a

0

)! (a) : 8 a
0

2 NTg

Suppose any sentential form χ such that χ = 4x
0

0 x
0

1 : : : x
0

n, where x
0

i 2 NT 0 � i � n and 4x
0

0 2 N�.
Observe that all rules that do rewriting to terminals check the existence of a symbol �X in the sentential
form. This symbol is created in a following way:

4x
0

0 x
0

1 : : : x
0

n )
�x

0

0 x
0

1 : : : x
0

n[p]; p 2 1P1
T
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Carefull examination of sets P1 and P2 shows that only rules with �x
0

0 on its left hand side are in sets
2P1

T and 3P1
T . Suppose the following derivation

�x
0

0 x
0

1 : : : x
0

n[p]; p 2 1P1
T ) x0 x

0

1 : : : x
0

n[p]; p 2 3P1
T ;x0 2 T

Based on the claim 1, al ph(x
0

1 : : : x
0

n)\(N4[NO[N�)= /0. Each rule p2P1 contains some symbol from
N4[NO[N� on its left hand side. There is thus no χ

0
6= χ;χ = x0 x

0

1 : : : x
0

n such that χ ) χ
0
[p]; p 2 P1.

Further no rule from P2 can be used (see claim 5). For any successful derivation p 2 3P1
T must thus be

used as a last rule of this derivation.
Suppose 4x

0

0 x
0

1 : : : x
0

n )
�x

0

0 x
0

1 : : : x
0

n[p]; p 2 1P1
T , and further let χ1 =

�x
0

0 x
0

1 : : : x
0

n where jχ1j> 1.
Based on the previous paragraph, in any successful derivation, the following sequnce of rules has to be
applied

χ1 ) χ2[p1]) ��� ) χn[pn]

where χn =
�x

0

0x1 : : :xn[pn], pi 2 2P1
T . For each χi and χi+1 following holds jχijT = jχi+1jT �1.

We have just shown that the rules from P1
T are only applied right before the end of the succesful

simulation. Consequently, we do not mention this subset in any of the following proofs.

Claim 3. The first component of Γ rewrites sentential forms of the form 4X α to a string of one of the
following forms

1. OY jβ

2. OY<γ

where X ;Y 2 N [NT , α 2 (N [NT )
�, β ;γ 2 (NCS[NCF)

� (such that Claim 1 holds) where either (a) or
(b) given next is true:

(a) β 2 (NCF)
�

(b) β = Y0 : : : jU< : : :>V j : : :Yn, where Yi 2 NCF ;0� i� n and jU<;>V j 2 NCS

and γ = Y0 : : :>V j : : :Yn, where Yi 2 NCF ;0� i� n and >V j 2 NCS.

Proof. Consider sentential form 4X α defined as above, where α = X0 : : :Xn. Since there is no symbol
from the alphabet Ncur [NO only rules of the first component can be used.

From 4X α , Γ makes a derivtion step in one of the following eight ways (each derivation corresponds
to one subset of the rules of the first component of Γ):

1. 4X X0 : : :Xi�1AXi+1 : : :Xn

) OX jX0 : : :Xi�1 jBj jCjXi+1 : : :Xn

2. 4AX0 : : :Xn

) OBj jCjX0 : : :Xn

3. 4X X0 : : :Xi�1AXi+1 : : :Xn

) OX jX0 : : :Xi�1 jBjXi+1 : : :Xn

4. 4AX0 : : :Xn

) OBjX0 : : :Xn

5. 4X X0 : : :Xi�1AXi+1 : : :Xn

) OX jX0 : : :Xi�1 ja
0

jXi+1 : : :Xn
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6. 4AX0 : : :Xn

) O

ja
0

jX0 : : :Xn

7. 4X X0 : : :Xi�1AδBXi+1 : : :Xn

) OX jX0 : : :Xi�1 jC<δ >DjXi+1 : : :Xn

8. 4AδBX0 : : :Xn

) OC<δ >DjX0 : : :Xn

where δ 2 (N[NT )
�. Observe that each of the generated strings is in one of the following forms:

� OX jδ1Bδ2Cδ3 (1-7)

� OX<δ1>Djδ2 (8)

where δ1;δ2;δ3 2 (N[NT )
�, D 2 NCS (the second subset) and either B;C 2 NCF or B 2 NCS (first subset)

and C 2 NCS (the second subset).
After this first rule is applied, the sentential form contains symbol marked with O. Since the com-

ponents of Γ work in t mode, rules of the first component have to be applied as long as there are some
symbols that can be rewritten. This means that the rules from the set P1

phase2 have to be used now. Be-
cause δ1;δ2;δ3 2 (N [NT )

� and the left hand sides of the rules from P1
phase2 are defined for all symbols

in N [NT . Substring δ1 = Z0 : : :Zn, Zi 2 N [NT is rewritten to δ
0

1 = jZ0j : : : jZnj, Zi 2 N [NT ;0 � i � n.
The same applies to δ2;δ3. By using P1

phase2 we obtain one of the following sentential forms:
OX jδ1Bδ2Cδ3 )

� OY jβ

OX<δ1>Djδ2 )
� OY<γ

Claim 4. During its activation, the first component applies no more than one rule of the simulated CSG.
This follows from Claim 3 and its proof.

Claim 5. The second component of Γ rewrites any sentential form of the form OX j jX0j : : : jXnj to a string
of the form 4X X1 : : :Xn, where Xi 2 N[NT ;0� i� n .

Proof. Suppose sentential form1 χ = OX j jX0j : : : jXnj where Xi 2N[NT ;0� i� n. Observe that jχjNcur =

0. Only rules2 that can be used are thus from the first subset of P2
init . This leads to

χ = OX j jX0j : : : jXnj) χ0 =
4X^j jX0j : : : jXnj

The only rule applicable to χ0 must be from the set P2
check f . This leads to:

χ0 =
4X^j jX0j : : : jXnj) χ1 =

4X α1 X^i1jα2

where α1;α2 2 N�
CF . Again, careful observation of rules of the set P2 shows that only rules from the set

P2
check and P2

end may be used. The first option leads to following derivations:

4X α
1
1 X^i1jα

2
1 )

4X α
1
1 Xi1α

1
2 X^i2jα

2
2 ) ��� ) 4X α

1
1 Xi1α

1
2 Xi2 : : :α

1
n X^injα

2
n

1The case where jχj=1 is trivial and is left to the reader.
2We ignore the set of blocking rules P2

block for now.
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where α
j

k 2 N�
CF ;1� k � n; j 2 f1;2g. Further, there is no rule p such that:

4X α
1
1 Xi1α

1
2 Xi2 : : :α

1
n X^injα

2
n )

4X α
1
1 Xi1α

1
2 Xi2 : : :Y

^
j : : :α

1
n Xinα

2
n [p]

Suppose 4X α1
1 Xi1α1

2 Xi2 : : :α
1
n X^injα

2
n and rule p 2 P2

end :

4X α
1
1 Xi1α

1
2 Xi2 : : :α

1
n X^injα

2
n )

4X α
1
1 Xi1α

1
2 Xi2 : : :α

1
n Xinα

2
n [p]

Suppose that adjacent symbols were always rewriten during the applicaiton of rules from the sets
P2

check f and P2
check. This would mean that α

j
k = ε;1 � k � n; j 2 f1;2g and we would thus obtain the

desire sentential form 4X X1 : : :Xn, where Xi 2 N[NT ;0� i� n.
If, on the other hand, there was some αm

l 6= ε;1� l � n;m 2 1;2 this would mean that

4X^j jX0j : : : jXnj)
� 4X α

where jαjNcur = 0 and jαjNCF > 0. Since both GS components work in the t-mode, and there is some
symbol from NCF , the blocking symbols have to be introduced by the rules of the P2

block set. Because
jαjNcur = 0, no other rules can be used on this form.

Claim 6. The second component of Γ rewrites any string of the form OX< jX0j : : : jX j�1j>X jj : : : jXnj to
a string of the form 4X X1 : : :Xn, where Xi 2 N[NT , for all i : 0� i� n if and only if jX0j : : : jX j�1j = ε;
otherwise, blocking symbols are introduced.

Proof. Proof of Claim 6 is similar to proof of Claim 5 and is left to the reader.

Claim 7. The second component of Γ rewrites any string of the form OX j jX0j : : : jX j< jX j+1j : : : jXk�1j>Xkj

: : : jXnj to a string of the form 4X X1 : : :Xn, where Xi 2 N [NT , for all i : 0 � i � n if and only if

jX j+1j : : : jXk�1j = ε; otherwise blocking symbols are introduced.

Proof. Proof of Claim 7 is similar to proof of Claim 5 and is left to the reader.

Based on the previous claims, it is easy to show that each simulation of a rule of G consists of a
single activation of the first component followed by a single activation of the second component of Γ. If
the simulated context-sensitive rule is applied in a scattered way, blocking symbols are introduced to the
sentential form; otherwise the sentential form is prepared for the simulation of another rule. In the end,
all nonblocking symbols are rewritten to terminals thus producing a sentence of the simulated language.
Therefore, L(G) = L(Γ).

Example 1. Suppose CSG G=(fA;B;C;D;Eg;fb;c; d; eg;P;A) with rules P= fA!BC;C!CD;BD!
DB;CD! ED;B! b;C! c;D! d;E ! eg. Observe that there is no sentential form that could be gen-
erated by grammar G where the rule BD! DB could be aplied.

Based on the described constructions, equivalent SCGS Γ can be created as Γ = (NGS;T;4A;P1;P2).
We will now try to show, how would Γ simulate G. Because the amount of rules and symbols created by
the transformation algorithm is quite large, we will not list elements of these sets.
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The only rule of G that has starting symbol on its left hand side is A ! BC. Similarly, only rule
applicable on BC (we will ignore rules with terminals) is rule C !CD Derivation A)� BCD would be
simulated using following sequence of derivation steps:

4A ) OBj jCj [(4A)! (OBj jCj) 2 P1
AtoBC]

) 4B^j jCj [(OBj)! (4B^j ) 2 P2
init ]

) 4B C^j [(4B^j ; jCj)! (4B;C^j ) 2 P2
check f ]

) 4BC [(4B;C^j )! (4B;C) 2 P2
end ]

This way, the first rule is simulated. It is important to note that since Γ works in t mode, rules from set
P2 are all applied together. The derivation would continue using the following rules:

4BC ) OBj jCj jDj [(4B;C)! (OBj; jCj jDj) 2 P1
AtoBC]

) 4B^
j jCj jDj [(OBj)! (4B^

j ) 2 P2
init ]

) 4B C^
j jDj [(4B^

j ; jCj)! (4B;C^
j ) 2 P2

check f ]

) 4BC D^
j [(C^

j ; jDj)! (C; D^
j ) 2 P2

check]

) 4BCD [(4B; D^
j )! (4B;D) 2 P2

end ]

As was mentioned before, rule BD ! DB can in fact never be applied by the grammar G. Suppose
sentential form 4BCD of the Γ. Simulation of this rule would lead to the following derivation:

4BCD) OD
<

C
>

Bj [(4B;D)! (OD
<

;
>

Bj) 2 P1
ABtoCD]

) OD
< jCj>Bj [(OD

<
;C)! (OD

<
; jCj) 2 P1

phase2]

) 4D^
< jCj>Bj [(OD

<
)! (4D^

<
) 2 P2

init ]

) 4D jCj B^j [(4D^
<

;
>

Bj)! (4D; B^j ) 2 P2
check f ]

) 4B jCjD [(4B; D^
j )! (4B;D) 2 P2

end ]

) 4B!D [(B)! (!) 2 P2
block]

Again, each component of Γ works in t mode. This ensures that any symbols skipped during the
checking phase, will be replaced by blocking symbols (!) before the second component of Γ deactivates.

On the other hand, rule CD! ED can be applied. The simulation of this rule works as follows:

4BCD) OBj jE<>Dj [(4B;C;D)! (OBj; jE<;>Dj) 2 P1
ABtoCD]

) 4B^
j jE<>Dj [(OBj)! (4B^

j ) 2 P2
init ]

) 4B E^
<>

Dj [(4B^
j ; jE<)! (4B;E^

<
) 2 P2

check f ]

) 4BE D^
j [(E^

<
;
>

Dj)! (E;D^
j ) 2 P2

check]

) 4BED [(4B;D^
j )! (4B;D) 2 P2

end ]

Theorem 1. L (SCGS) =L (CS)
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Proof. This is implied by Lemmas 1 and 2.

Theorem 2. Any context-sensitive language can be generated by SCGS, where each scattered context
rule has at most two components.
Proof (Basic Idea) 1. Obviously, only the first subset of P1

ABtoCD has more than two components in its
rules. Rules of this subset can be simulated by introduction of some auxiliary rules and symbols. Suppose
rule (4X ;A;B)! (OX j; jA<;>Bj) and sentential form 4X AB. This rule can be simulated by using those
auxiliary rules in a following way:

4X AB) �
jX j

1
jC<B) �

jX j jC<
2
>Dj)

OX j jC<>Dj;

where always pairs of symbols are rewritten during each derivation step. Formal proof is left to the
reader.

The modified version of L (PSCG) =L (CS) problem was discussed in this paper. This modifica-
tion deals with combination of CD grammar systems with propagating scattered context components and
compares their generative power with context-sensitive grammars. The algorithm that constructs gram-
mar system that simulates given context-sensitive grammar has been described. Based on this algorithm,
it is shown that those two models have the same generative power. Furthermore it is shown that this
property holds even for the most simple variant of these grammar systems—that is, those using only two
components, where each scattered context rule is of degree of at most two.
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