
Evaluation of the HPC Applications Dynamic
Behavior in Terms of Energy Consumption

O. Vysocky1, M. Beseda1, L. Riha1, J. Zapletal1, V. Nikl2, M. Lysaght3

and V. Kannan 3

1 IT4Innovations National Supercomputing Center, VSB-TUO, 17. listopadu 15/2172, 708 33,
Ostrava, Czech Republic

2 Faculty of Information Technology, Brno University of Technology, Bozetechova 1/2, 612 66, Brno,
Czech Republic

3 Irish Centre for High End Computing, Tower Building, Trinity Technology and Enterprise Campus,
Grand Canal Quay, Dublin 2, Ireland

Abstract

This paper introduces the READEX project tuning approach which exploits the dy-
namic application behavior and its potential for energy savings. The paper is focused
on the manual applications evaluation from the energy consumption optimisation point
of view. As an examples we have selected one complex application, the ESPRESO
library, and two simplified applications from the ProxyApps benchmark tool suite.

ESPRESO contains many types of operations including I/O, communication, sparse
BLAS and dense BLAS. The results show that static savings are 5.6–12.3 % and dy-
namic savings 4.7–9.1 %. The highest total savings for ESPRESO are 21.4 % as a com-
bination of 12.3 % static savings and 9.1 % dynamic savings.

The ProxyApp applications Kripke and Lulesh, were presented for two configu-
rations each. The first configuration of the Kripke saved 29.3 % energy, almost only
by static tuning. On the other hand, the second configuration shows us only 18.8 %
savings, but over a third of it was saved by dynamic switching CPU core and uncore
frequencies. The Lulesh test cases saved 28.9 %, respectively 26.7 %.

Keywords: READEX, energy efficient computing, runtime tuning, MERIC, RADAR,
HDEEM, RAPL, Haswell processor.

1

1 Introduction

The energy consumption of supercomputers is one of the critical problems for the up-
coming exascale supercomputing era. The awareness of power and energy consump-
tion is required on both software and hardware sides.

The Horizon 2020 project READEX (Runtime Exploitation of Application Dy-
namism for Energy-efficient eXascale computing) [1] faces the problem, and develops
a toolsuite that explores a potential of dynamic tuning of the hardware and software
parameters to increase the energy efficiency of High Performance Computing (HPC)
applications.

READEX has four key applications, the ScoreP tool suite for applications in-
strumentation and measurements, the DynDetect for dynamism behavior detection,
the Periscope Tuning Framework (PTF) for design time analysis and the READEX
Runtime Library (RRL) for tuning the environment settings during the runtime [2, 3].

This paper deals with manual evaluation of the applications dynamic behavior
and the respective energy savings. The the READEX toolsuite with automatic tuning
without any knowledge about the application is expected to achieve approximately
75% of the savings achieved by the manual tuning as presented in this paper. For the
manual evaluation other two tools were developed, the MERIC library to measure the
applications behavior and RADAR python tool to analyse and report the measurement
results.

The paper is divided into following sections. Section 2 introduces the static and dy-
namic tuning from the READEX point of view. Section 3 describes newly developed
tools designed to manually analyse the applications. Section 4 contains a detailed ex-
ample of the application analysis of the ESPRESO library running in four different
configurations. In addition we have analysed two applications from the ProxyApps
suite Kripke and Lulesh [4].

2 Static and Dynamic Tuning

There is a long list of parameters that can be tuned to reach energy savings. We di-
vide them into three categories: hardware parameters (CPU frequency, uncore fre-
quency1), system software parameters (number of OpenMP threads, thread placement)
and application-level parameters that depends on the specific application.

We distinguish between static and dynamic tuning. In case of static tuning the op-
timal parameters for whole application are set at the beginning of the application.
This settings brings static energy savings. By dynamic behavior we understand that
for different sections, such as functions calls, of the selected application there exists
a different optimal configuration. In the READEX terminology these code sections
are called significant regions. Basic factors that influence the application are floating

1Uncore frequency refers to frequency of subsystems in the physical processor package that are
shared by multiple processor cores. E.g., L3 cache or on-chip ring interconnect.

2

point computations, memory read and write access patterns, I/O operations and inter-
process communication. To detect the significant regions manually a profiling tools
such as Allinea MAP [5] are used.

The dynamism metrics that are currently measured and used in the READEX
project are execution time, energy consumed and computational intensity of each
region. The computational intensity, defined by the equation (1), is a metric that is
used to model the behavior of an application based on the workload imposed by it
on the CPU and the memory. Presently, computational intensity is calculated using
the following formula and is analogous to the operational intensity used in the roofline
model [6].

Computational Intensity =
Total number of instructions executed

Total number of L3 cache misses
(1)

In case of region time and energy consumption it is evident, that we follow the
highest values, but it does not stand in case of computation intensity. High compu-
tational intensity probably indicate computational intensive region that may benefit
when the frequency of CPU cores would increase, however low computational inten-
sity may occur in memory intensive regions with high amount of L3 cache misses.
Since this would cause increased traffic between the L3 cache and the main memory,
it will be desirable to increase the uncore frequency.

To exploit the dynamic behavior for optimal energy savings one can dynamically
tune these parameters during the runtime of the application to achieve lower power
consumption. This has to be done for all significant regions independently. Dynamic
savings we consider the amount of energy saved when each region tuned when appli-
cation has been run in static optimal settings.

In the context of the READEX project, an application is termed to exhibit the
following two types of dynamism:

• Inter-phase dynamism: This is when each phase of a phase region in the appli-
cation exhibits different characteristics. This results in different values for the
measured objective values and thus may require different configurations to be
applied for the tuning parameters.

• Intra-phase dynamism: This is when each run-time situation of the significant
regions in a phase region exhibits different characteristics and thus may need
different configurations to be applied for the tuning parameters.

Due to the different localities of dynamism in an application, the dynamism metrics
are measured and analysed from the respective of the entire run of the application
as well as for all phases of the phase region in the application (inter-phase dynamism)
and for all run-time situations of the significant regions in the application (intra-phase
dynamism).

3

3 Applications Analysis

For the manual evaluation we are developing two tools. The first one is a MERIC, that
allows us to manually instrument the code with probes in a way that we put probes
at the beginning and at the end of each significant region. Using the probes we measure
the application and store the results into output CSV files.

A RADAR report generator is the second tool, written in python, that evaluates
the application dynamic behavior to see what is the potential of the dynamic tuning
in terms of how much energy can be saved and what is the best parameters settings
for each region.

3.1 MERIC

The MERIC [7] is a C++ library (with an interface for Fortran applications) that was
developed for manual applications evaluation. It is able to measure the resource con-
sumption and make changes to environment and hardware settings through external
libraries. Every significant region must be annotated by MERIC MeasureStart() and
MERIC MeasureStop() functions to enable the dynamic tuning and resources mea-
surements per region. The list of measured resources contains the region runtime,
energy consumption and performance counters (measured via perf event or PAPI li-
brary). Counters are mainly used to evaluate the computational intensity of the re-
gions, which is the key metric for dynamism detection as defined in Section 2.

The most important metric is the consumed energy. Contemporary Intel proces-
sors has the Running Average Power Limit (RAPL) interface [8] to measure the con-
sumed Joules of each CPU and memory channels per compute node. MERIC uses
the RAPL counters as an alternative to the High Definition Energy Efficiency Moni-
toring (HDEEM) system [9]. This system measures not only the consumption of CPUs
and memory subsystem but also the energy consumed by the entire node (also called
blade). The node energy baseline (the node energy consumption without the consump-
tion of CPUs and memories) discriminates all cases where the energy significantly
drops, but also runtime is notably longer. This extra information is a key HDEEM
advantage when compared to the RAPL counters.

MERIC not only evaluate the regions, but it is also able to make changes to the
environment settings during the runtime at the beginning of every region. The CPU
core (CF) and CPU uncore (UCF) 2 frequencies are set using the cpufreq [10] and the
x86 adapt [11] libraries, respectively. The number of active cores is set using the API
to the OpenMP runtime by setting the number of threads per parallel region.

The measurement results are stored in CSV files for each region and settings sepa-
rately and analysed afterwards by the RADAR tool.

2Uncore frequency refers to frequency of subsystems in the physical processor package that are
shared by multiple processor cores. E.g., L3 cache or on-chip ring interconnect.

4

3.2 RADAR Report Generator

The RADAR report generator [7] is a tool for analysis of measurement results obtained
by the MERIC. It is implemented in Python3 and its output is a LATEX document and
configuration file.

Its main goal is not only to present the results themselves, but to evaluate them
and compute savings for both static and dynamic tuning. The savings can be com-
puted for an energy consumption and runtime. In MERIC, an energy consumption
can be measured via HDEEM or RAPL and an arithmetical intensity can be measured
by perf event or PAPI library. Both quantities can be evaluated with respect to both
libraries simultaneously, so the comparison of these libraries can be included in the
generated report.

The static tuning means, that we evaluate the energy consumption or the run-time
of the whole application for default configuration and then we compare it with all
the other configurations, so that we can find the optimal configuration for the entire
application (i.e. the configuration with the lowest energy consumption or the shortest
run-time). The dynamic tuning means, that we evaluate every nested significant region
separately and then we compute additional savings with respect to the static optimum.

Using READEX project terminology, savings are evaluated both as the intra-phase
and the inter-phase dynamism (see Section 2). The phase region can be given ex-
plicitly or the main region is automatically considered to be the phase region (and the
application runs are then considered single phases). If the phase region is not the main
region, all nested regions must be nested in the phase region.

The RADAR report itself consists of several elements. The first one is the Overall
application evaluation, which contains the default configuration of tuning parame-
ters, the optimal configuration for the entire application and both static and dynamic
savings. The Intra Phase Dynamic Tuning Evaluation contains the optimal config-
uration and savings for every significant region nested in the main one (except the
phase region). So, the best configuration for the main region (i.e. the static optimum)
is considered the default one here. The Inter-Phase Dynamic Tuning Evaluation con-
tains optimal configurations and computes savings for nested regions per phase of the
phase region (e.g. per iteration in Conjugate Gradients solver). Beside tables, results
are visualized in form of 2D plots and heatmaps.

4 Results

In this section we present selected applications from the ProxyApps benchmark suite
as well as full fledge complex application, the ESPRESO FEM tool which includes
FETI and Hybrid FETI solver. Only one of four experiments is described in more
details due to limited length of this paper.

All experiments were measured on Taurus cluster installed at TU Dresden, that
has nodes with two Intel(R) Xeon(R) CPU E5-E5-2680 v3 (12 cores) processors,

5

64 or 128 GB or RAM and the HDEEM system. The core and uncore CPU frequen-
cies ranged between 1.2 – 2.5 GHz and 1.2 – 3.0 GHz, respectively, with the step size
of 0.1 or 0.2 GHz. All tests were done on a single node and were ran several times
per configuration to reduce measurement oscillations caused mainly due to network
traffic. RADAR reports an average values across these measurements.

The test cases were run for all reachable environments settings to find the best
static settings, the dynamic savings are enumerated from best static configurations
of the regions, but without the switching overhead to demand settings.

4.1 ESPRESO Library

The ESPRESO library is a combination of Finite Element (FEM) and Boundary El-
ement (BEM) tools and TFETI/HTFETI solvers. It supports FEM and BEM (uses
BEM4I library) discretization for Advection-diffusion equation, Stokes flow and Struc-
tural mechanics. Real engineering problems are imported from Ansys Workbench
or OpenFOAM. The postprocessing and visualization is based on the VTK library
and Paraview including Paraview Catalyst for inSitu visualization.

In 2006 Dostál et al. [12] introduced a new variant of an algorithm called Total
FETI (or TFETI) in which Dirichlet boundary condition is enforced by Lagrange mul-
tipliers (LM).

The HTFETI method is a variant of hybrid FETI methods introduced by Klawonn
and Rheinbach [13] for FETI and FETI-DP. In the original approach a number of sub-
domains is gathered into clusters. This can be seen as a three-level domain decomposi-
tion approach. Each cluster consists of a number of subdomains and for these, a FETI-
DP system is set up. The clusters are then solved by a traditional FETI approach using
projections to treat the non trivial kernels. In contrast, in HTFETI, a TFETI approach
is used for the subdomains in each cluster and the FETI approach with projections
is used for clusters. The main advantage of HTFETI is its ability to solve problems
decomposed into a very large number of subdomains [14]. We have ran tests with over
21 million subdomains organized into 17,576 clusters.

ESPRESO includes a highly efficient MPI communication layer [15] designed for
massively parallel machines with thousands of compute nodes. The parallelization
inside a node is done using OpenMP. Three versions of the solver are being developed:

• ESPRESO CPU uses sparse matrices and sparse direct solvers to process the sys-
tem matrices.

• ESPRESO MIC is an Intel Xeon Phi accelerated version, which works with both
sparse and dense representation of system matrices.

• ESPRESO GPU is a GPU accelerated version, which supports dense structures
only [16]. Support for sparse structures using cuSolver is under development.

All versions can solve both symmetric (conjugate gradient (CG) solver) and non-
symmetric systems (GMRES and BiCGStab).

6

Hardware Tuning Parameters: The dynamism of the ESPRESO library has been
evaluated using the following hardware parameters:

• CPU Core frequency

• Number of OpenMP threads

• CPU Uncore frequency

4.1.1 Application Tuning Parameters

Preconditioners: The ESPRESO solver supports several preconditioners, that can
be dynamically switched during the runtime of the iterative solver. The evaluated
preconditioners are:

• Lumped preconditioner – uses sparse BLAS2 – matrix-vector multiplication,

• Dirichlet preconditioner – uses dense BLAS2 – matrix-vector multiplication.

Stiffness Matrix Processing: In FETI a stiffness matrix is a sparse matrix which
in a general approach is processed by a Sparse Direct Solver (SPDS). In particular each
stiffness matrix is factorized once during the preprocessing and then in each iteration
a forward and backward substitutions (the solve routine of the SPDS) are called.

ESPRESO contains an alternative method based on the Local Schur Complement
method (LSC) for stiffness matrix processing originally developed for GPGPU and
Intel Xeon Phi accelerators, see [16]. In this method the preprocessing is more ex-
pensive as we have to calculate the LSC for each subdomain using SPDS. However
the iterative FETI solver then uses dense matrix-vector multiplication using LSCs
instead of more expensive solve routine of the SPDS. So the following methods will
be evaluated:

• Sparse Direct Solver (SPDS) – is using the solve routine (in this case the Intel
MKL PARDISO solver is used),

• Local Schur Complement (LSC) – is using the dense BLAS2 matrix-vector mul-
tiplication.

FETI Method: As mentioned above (see sec. 4.1) the ESPRESO solver contains
two FETI methods: Total FETI (better numerical behavioral) and Hybrid Total FETI
(better parallel scalability). As of now the dynamic switching between these two meth-
ods is not implemented, however with certain effort this can be implemented into
ESPRESO. So the dynamism for the following FETI methods can be evaluated:

• Total FETI method (evaluated in this paper)

• Hybrid Total FETI method

7

Figure 1: Diagram of the significant regions in the ESPRESO library as used
for the dynamic savings evaluation in this section. The orange regions are called just
once per iteration and therefore are used only for intra-phase dynamism evaluation.
White regions are ignored because there are other significant regions nested in them.
The green regions denotes the iterative solver (conjugate gradient (CG)) and provides
an opportunity for inter-phase dynamism. The regions with names highlighted in bold
are called only if Hybrid Total FETI is used.

8

4.1.2 RADAR Reports for ESPRESO

In this section we present a series of experiments, that have been executed with
the ESPRESO library. For all runs the significant regions shown in Figure 1 have
been used for measurements.

Configuration 1: 1 node with 1 MPI process; 2 to 24 OpenMP threads

• Method: Hybrid Total FETI

• Preconditioner: Dirichlet (dense)

• Stiffness matrix processing: PARDISO Sparse Direct Solver (sparse)

• Decomposition: 1x1x1 cluster; 8x8x8 subdomains per cluster; 11x11x11 ele-
ments per subdomain

Default
settings

Default
values

Best static
configuration

Static
Savings

Dynamic
Savings

Energy consump-
tion [J] ,
Blade summary

24 threads,
3.0 GHz UCF,
2.5 GHz CF

10678.9 J
20 threads,
2.0 Ghz,
2.4 Ghz

597.00 J
(5.59%)

880.75 J
(8.74%)

Runtime of func-
tion [s]

24 threads,
3.0 GHz UCF,
2.5 GHz CF

29.73 s
20 threads,
3.0 Ghz,
2.5 Ghz

0.00 s
(0.00%)

0.7 s
(1.52%)

Table 1: Overall application evaluation for ESPRESO configuration 1

Configuration 2: 1 node with 1 MPI process; 2 to 24 OpenMP threads

• Method: Hybrid Total FETI

• Preconditioner: Dirichlet (dense)

• Stiffness matrix processing: Local Schur Complement method (Dense)

• Decomposition: 1x1x1 cluster; 8x8x8 subdomains per cluster; 11x11x11 ele-
ments per subdomain

Default
settings

Default
values

Best static
configuration

Static
Savings

Dynamic
Savings

Energy consump-
tion [J],
Blade summary

24 threads,
3.0 GHz UCF,
2.5 GHz CF

23176.1 J
24 threads,
1.8 Ghz,
2.0 Ghz

1815.00 J
(7.83%)

994.91 J
(4.66%)

Runtime of func-
tion [s]

24 threads,
3.0 GHz UCF,
2.5 GHz CF

86.38 s
24 threads,
3.0 Ghz,
2.5 Ghz

0.00 s
(0.00%)

0.56 s
(0.64%)

Table 2: Overall application evaluation for ESPRESO configuration 2

9

Configuration 3: 1 node with 1 MPI process; 2 to 24 OpenMP threads

• Method: Hybrid Total FETI

• Preconditioner: Lumped (sparse)

• Stiffness matrix processing: Local Schur Complement method (Dense)

• Decomposition: 1x1x1 cluster; 8x8x8 subdomains per cluster; 11x11x11 ele-
ments per subdomain

Default
settings

Default
values

Best static
configuration

Static
Savings

Dynamic
Savings

Energy consump-
tion [J],
Blade summary

24 threads,
3.0 GHz UCF,
2.5 GHz CF

20508.9 J
24 threads,
2.0 Ghz,
2.2 Ghz

1589.70 J
(7.75%)

1017.92 J
(5.38%)

Runtime of func-
tion [s]

24 threads,
3.0 GHz UCF,
2.5 GHz CF

86.38 s
24 threads,
3.0 Ghz,
2.5 Ghz

0.00 s
(0.00%)

0.54 s
(0.74%)

Table 3: Overall application evaluation for ESPRESO configuration 3

Configuration 4: 1 node with 1 MPI process; 2 to 24 OpenMP threads

• Method: Hybrid Total FETI

• Preconditioner: Lumped (sparse)

• Stiffness matrix processing: PARDISO Sparse Direct Solver (sparse)

• Decomposition: 1x1x1 cluster; 8x8x8 subdomains per cluster; 11x11x11 ele-
ments per subdomain

Default
settings

Default
values

Best static
configuration

Static
Savings

Dynamic
Savings

Energy consump-
tion [J] ,
Blade summary

24 threads,
3.0 GHz UCF,
2.5 GHz CF

6265.18 J
18 threads,
1.8 GHz UCF,
2.5 GHz CF

771.63 J
(12.32%)

499.2 J
of
5493.6 J
(9.09 %)

Runtime of func-
tion [s],
Job info - hdeem

24 threads,
3.0 GHz UCF,
2.5 GHz CF

29.55 s
22 threads,
3.0 GHz UCF,
2.5 GHz CF

0.01 s
(0.04%)

0.82 s of
29.54 s
(2.76 %)

Table 4: Overall application evaluation for ESPRESO configuration 4

10

For this experiment we provide more detailed report as it has achieved the most
significant static (12.32%) and dynamic savings (9.09%). In the Figure 2 are com-
pared measurements with different core and uncore CPU frequencies, when using
18 OpenMP threads, with a pin at the best configuration from energy savings point
of view. The results are also visualized in the heatmap Table 5.

Uncore freq [GHz]
Core freq [GHz] 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

1.2 7,774.3 7,577.1 7,620.9 7,712.4 7,638.2 7,887.5 8,017.5 8,224.6 8,457.6 8,713.3
1.4 7,015 7,006.6 6,951.7 6,989.9 7,013.9 7,100.8 7,353.8 7,538.7 7,540.2 7,808.5
1.6 6,657.4 6,585.3 6,497.8 6,405.7 6,448.2 6,626.3 6,742.4 6,790.9 6,955.3 7,114.6
1.8 6,387.4 6,286.4 6,195.1 6,068.2 6,093.5 6,158.7 6,244.5 6,354.2 6,412.2 6,693.6
2 6,303.9 6,177.2 5,979.1 5,892.4 5,862.4 5,941.4 6,094.8 6,116.7 6,337.8 6,405.5
2.2 6,130.9 5,908.3 5,771.2 5,729.3 5,696 5,732.9 5,822.6 5,901.7 6,020.5 6,124.2
2.4 6,219.5 5,866.8 5,718.8 5,548.1 5,590.7 5,644.1 5,679.3 5,750.5 5,840.8 5,940.3
2.5 6,201.3 5,871 5,678.6 5,493.6 5,544.8 5,507.1 5,567.9 5,711.9 5,834.9 5,909.9

Table 5: Heatmap of energy consumption [J] for different core and uncore CPU fre-
quencies when using 18 threads to reach the best static energy savings in ESPRESO
configuration 4

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

6,000

7,000

8,000

9,000

(1.8GHz UCF, 2.50GHz CF: 5493.55J)

Core freq [GHz]

E
ne

rg
y

co
ns

um
pt

io
n

[J
]

18 threads

Uncore freq [GHz]
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

Figure 2: Energy consumtion when using 18 threads to reach the best static energy
savings in ESPRESO configuration 4

In this configuration, when the best static settings is applied, the energy savings
reach up to 12.32%, however the runtime of the application is extended. In the de-
fault settings the runtime takes 29.55 seconds, in the best static settings it takes extra
3.76 seconds, that means 12,72% longer. How the change of both, core and uncore

11

CPU frequencies, influence the runtime shows the heatmap Table 6, that contains run-
time length for each settings when using 22 OpenMP threads (the optimum number
of threads to reach the best runtime of this example).

Uncore freq [GHz]
Core freq [GHz] 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

1.2 60.727 58.527 56.92 55.813 55.095 54.454 53.975 53.517 53.023 52.953
1.4 54.553 52.357 50.638 49.499 48.44 48.232 48.128 47.066 46.746 45.975
1.6 49.634 48.031 46.226 44.984 44.163 44.134 42.875 42.999 42.153 41.551
1.8 46.755 44.614 42.516 40.89 40.118 40.101 39.405 38.555 38.611 38.067
2 44.359 41.281 39.536 38.114 37.025 36.431 36.352 35.646 35.404 35.005
2.2 41.544 39.015 37.503 36.214 35.329 34.505 33.865 33.714 32.878 32.779
2.4 39.773 37.102 35.515 33.968 33.053 32.318 31.931 31.36 31.106 30.634
2.5 38.339 35.518 34.437 33.109 32.481 31.425 30.983 30.433 29.862 29.536

Table 6: Time measurement heatmap [s] for static tuning ESPRESO configuration 4
when 22 threads were used to finish in the shortest runtime

Previous tables and figures are focused on static tuning of the ESPRESO library,
searching the best settings to apply at the beginning of the runtime. However our work
is focused on more detailed investigation, as introduced in the Section 2. In the fol-
lowing Table 7 is a list of significant regions that covers the ESPRESO configuration
4 runtime, as mentioned in the Figure 1.

Every significant region has its best settings, that leads to extra energy savings,
if the settings would be changed at the region beginning. If we find out the best regions
settings, it is possible to specify it as the MERIC input and it provides the dynamic
changes.

Region % of 1
phase

Best static
configuration Value Best dynamic

configuration

Value and
dynamic
savings

Assembler–
AssembleStiffMat

14.32
18 threads,
1.8 GHz UCF,
2.5 GHz CF

733.73 J
20 threads,
2.0 GHz UCF,
2.5 GHz CF

731.22 J
-2.51 J
(0.34%)

Assembler–
Assemble-B1

2.23
18 threads,
1.8 GHz UCF,
2.5 GHz CF

114.30 J
2 threads,
2.2 GHz UCF,
2.5 GHz CF

94.15 J
-20.15 J
(17.63%)

Cluster–
CreateF0-
FactF0

0.17
18 threads,
1.8 GHz UCF,
2.5 GHz CF

8.71 J
6 threads,
1.6 GHz UCF,
2.5 GHz CF

6.90 J
-1.80 J
(20.73%)

Assembler–
SaveResults

3.10
18 threads,
1.8 GHz UCF,
2.5 GHz CF

158.81 J
2 threads,
1.2 GHz UCF,
2.5 GHz CF

147.66 J
-11.16 J
(7.03%)

Assembler-K -
Regularization

5.43
18 threads,
1.8 GHz UCF,
2.5 GHz CF

278.39 J
2 threads,
1.8 GHz UCF,
2.5 GHz CF

231.38 J
-47.01 J
(16.89%)

12

Cluster–
CreateSa-
SolveF0vG0

2.22
18 threads,
1.8 GHz UCF,
2.5 GHz CF

113.87 J
6 threads,
2.0 GHz UCF,
2.5 GHz CF

97.46 J
-16.41 J
(14.41%)

Create GGT -
Inv

0.28
18 threads,
1.8 GHz UCF,
2.5 GHz CF

14.23 J
2 threads,
1.2 GHz UCF,
2.5 GHz CF

8.92 J
-5.31 J
(37.34%)

Cluster–
Kfactorization

12.84
18 threads,
1.8 GHz UCF,
2.5 GHz CF

658.07 J
24 threads,
2.0 GHz UCF,
2.4 GHz CF

629.62 J
-28.45 J
(4.32%)

Assembler–
SaveMeshtoVTK

6.36
18 threads,
1.8 GHz UCF,
2.5 GHz CF

325.69 J
2 threads,
1.2 GHz UCF,
2.5 GHz CF

296.66 J
-29.03 J
(8.91%)

Cluster–
CreateSa-
SaFactorization

1.95
18 threads,
1.8 GHz UCF,
2.5 GHz CF

99.93 J
4 threads,
2.2 GHz UCF,
2.5 GHz CF

80.85 J
-19.08 J
(19.09%)

Cluster–
SetClusterPC

1.46
18 threads,
1.8 GHz UCF,
2.5 GHz CF

74.70 J
20 threads,
2.0 GHz UCF,
2.5 GHz CF

74.54 J
-0.16 J
(0.22%)

Assembler–
PrepareMesh

12.53
18 threads,
1.8 GHz UCF,
2.5 GHz CF

641.88 J
22 threads,
1.8 GHz UCF,
2.5 GHz CF

639.39 J
-2.49 J
(0.39%)

Assembler–
SolverSolve

30.79
18 threads,
1.8 GHz UCF,
2.5 GHz CF

1578.06 J
10 threads,
2.2 GHz UCF,
2.5 GHz CF

1289.85 J
-288.21 J
(18.26%)

Assembler–
Assemble-B0

0.26
18 threads,
1.8 GHz UCF,
2.5 GHz CF

13.28 J
24 threads,
2.0 GHz UCF,
2.5 GHz CF

12.51 J
-0.77 J
(5.81%)

Cluster–
CreateG1-
perCluster

0.47
18 threads,
1.8 GHz UCF,
2.5 GHz CF

24.20 J
14 threads,
2.2 GHz UCF,
2.5 GHz CF

22.32 J
-1.88 J
(7.76%)

Cluster–
CreateF0-
AssembleF0

5.43
18 threads,
1.8 GHz UCF,
2.5 GHz CF

278.22 J
24 threads,
2.2 GHz UCF,
2.2 GHz CF

254.98 J
-23.24 J
(8.35%)

Cluster–
CreateSa-
SaReg

0.17
18 threads,
1.8 GHz UCF,
2.5 GHz CF

8.59 J
8 threads,
2.0 GHz UCF,
2.5 GHz CF

7.03 J
-1.56 J
(18.15%)

Total value for static tuning
for significant regions

733.73 + 114.30 + 8.71 + 158.81 + 278.39 + 113.87 + 14.23 +
658.07 + 325.69 + 99.93 + 74.70 + 641.88 + 1578.06 + 13.28
+ 24.20 + 278.22 + 8.59 = 5124.66 J

13

Total savings for dynamic
tuning for significant regions

2.51 + 20.15 + 1.80 + 11.16 + 47.01 + 16.41 + 5.31 + 28.45 +
29.03 + 19.08 + 0.16 + 2.49 + 288.21 + 0.77 + 1.88 + 23.24 +
1.56 = 499.22 J of 5124.66 J (9.74 %)

Dynamic savings for applica-
tion runtime

499.22 J of 5493.55 J (9.09 %)

Total value after savings 4994.33 J (79.72 % of 6265.18 J)

Table 7: Intra-Phase Dynamism Evaluation, Blade summary energy consumption [J]
of each significant region in ESPRESO configuration 4 runtime. For every region the
table contains how many percent of energy the region consumes in compare to entire
application, regions’ the best configuration and the energy savings if the configuration
would be applied during the runtime.

4.2 ProxyApps benchmark

A part of the project was evaluation of the subset of ProxyApps benchmark suit appli-
cations. For this paper we selected Kripke and Lulesh that produced the best total
savings from the measured ProxyApps. Detailed reports of each application would
be as long as the Section 4.1 about the ESPRESO library, therefore we mention only
brief description of these applications, experiment configuration and the result config-
uration with its savings.

4.2.1 Kripke

Kripke is a simple, scalable, 3D Sn deterministic particle transport code (C++, MPI,
OpenMP). Its main goal is investigating how different data-layouts affects instruc-
tion, thread and task level parallelism, and what the implications are on overall solver
performance.

Kripke supports storage of angular fluxes (Psi) using all six striding orders (or nest-
ings) of Directions (D), Groups (G), and Zones (Z), and provides computational ker-
nels specifically written for each of these nestings. An asynchronous MPI-based par-
allel sweep algorithm is provided, which employs the concepts of Group Sets (GS),
Zone Sets (ZS) and Direction Sets (DS). NEST parameter stands for the chosen nest-
ing sequence, whereas the greatest energy savings were achieved for the GZD variant.

The Kripke experiments was measured in two configurations:
1) PX=PY=2, PZ=6, I=1000, NEST=GZD, ZX=ZY=ZZ=4, G=8
2) PX=PY=2, PZ=6, I=30, NEST=GZD, ZX=ZY=ZZ=32, L=8, D=32

The parameters ZX, ZY, ZZ further define the number of zones in each direction.
It was found out that biggest static savings can be achieved with a lower number
of zones, while more significant dynamic savings are possible with higher values.
The numeric value G denotes the number of energy groups. Again, lower value seems
to lead to better static savings. For the second instrumented run we dropped the –
groups argument and chose additional ones. Firstly, the value L denotes the Legendre

14

expansion order. Secondly, the parameter D, which has to be a multiple of 8, de-
fines the number of direction sets. Higher values lead to higher dynamic savings.
The number I denotes the number of iterations and the parameters PX, PY, PZ denote
the number of MPI processes in each direction with the restriction PX×PY×PZ = 24.
The results are presented in the Table 8.

Test case Default
settings

Default
values

Best static
configuration

Static
savings

Dynamic
savings

Total
savings

Kripke 1

24 MPI proc,
1 thread,
3.0 GHz UCF,
2.5 GHz CF

10608.08 J

24 MPI proc,
1 thread,
1.2 GHz UCF,
1.6 GHz CF

2987.48 J
(28.16%)

118.74 J of
7620.60 J
(1.56 %)

3106.22 J
(29.28 %)

Kripke 2

24 MPI proc,
1 thread,
3.0 GHz UCF,
2.5 GHz CF

14732.36 J

24 MPI proc,
1 thread,
1.7 GHz UCF,
1.7 GHz CF

1860.50 J
(12.63%)

906.50 J of
12871.86 J
(7.04 %)

2767.00 J
(18.78 %)

Table 8: Energy consumption of blade summary [J] of the Kripke application in the
default settings and in the best static settings, also the best dynamic settings for eval-
uated significant regions, that in summary gives the total amount of saved Joules.

4.2.2 Lulesh

LULESH approximates the hydrodynamics equations discretely by partitioning the
spatial problem domain into a collection of volumetric elements defined by a mesh.
It is a highly simplified application (C++, MPI, OpenMP), hard-coded to only solve
a simple Sedov blast problem with analytic answers, but represents the numerical
algorithms, data motion, and programming style typical in scientific C or C++ based
applications.

The Lulesh was measured in these two configurations:
1) MPI PROCS=1, S=32, I=20, B=20
2) MPI PROCS=8, S=97, I=20, B=7

Parameters I and S denotes the maximal number of iterations, and the size of the
domain, respectively, and B affecting the load balancing. There is the restriction that
the total number of MPI processes has to be a cube (i.e. 1, 8, 27, . . .).

During experiments we have found out that the parameter S has the most signifi-
cant impact on runtime and power consumption. The best static energy savings were
obtained with powers of two, while primes lead to the best dynamic savings. The pa-
rameter B has not proven to have a significant impact on the energy consumption,
which might be caused by the fact that we only ran the program on a single node and
the MPI communication overhead was not significant. The results for both configura-
tions are presented in the Table 9.

15

Test case Default
settings

Default
values

Best static
configuration

Static
savings

Dynamic
savings

Total
savings

Lulesh 1

1 MPI proc,
24 threads,
3.0 GHz UCF,
2.5 GHz CF

13307.00 J

1 MPI proc,
24 threads,
1.2 GHz UCF,
1.3 GHz CF

3790.04 J
(28.48%)

52.40 J of
9516.96 J
(0.55 %)

3842.44 J
(28.88 %)

Lulesh 2

8 MPI proc,
3 threads,
3.0 GHz UCF,
2.5 GHz CF

13636.90 J

8 MPI proc,
3 threads,
1.2 GHz UCF,
1.6 GHz CF

3519.32 J
(25.81%)

124.38 J of
10117.58 J
(1.23 %)

3643.70 J
(26.72 %)

Table 9: Energy consumption of blade summary [J] of the Lulesh application in the
default settings and in the best static settings, also the best dynamic settings for eva-
luated significant regions, that in summary gives the total amount of saved Joules.

5 Conclusion

In this paper we have introduced the READEX project and its main idea of dynamic
application behavior. This paper is mainly focused on the manual applications eval-
uation from the energy consumption optimisation point of view. This is the key step
in exploring the possible gains of the runtime dynamic tuning. The tools for applica-
tions measurement and data analysis are also briefly introduced.

Section 4 presents the results of the manual evaluation of the ESPRESO library and
two simplified applications from the ProxyApps benchmark tool suite. The ESPRESO
library contains both FEM preprocessing tools and sparse iterative solvers based on
FETI method. We have annotated more than 20 regions, which includes all types
of operations including I/O, communication, sparse BLAS and dense BLAS. The tests
also focus on the variation of the arithmetical intensity in form of sparse and dense data
structures. Two key kernels of the FETI iterative solver the F operator and the precon-
ditioner can be represented by both dense and sparse matrices providing different type
of workload. The results show that static savings are 5.6–12.3 % and dynamic savings
4.7–9.1 %. The highest total savings for ESPRESO are 21.4 % as a combination of
12.3 % static savings and 9.1 % dynamic savings. The ProxyApp applications Kripke
and Lulesh, were presented for two configurations each. The first configuration of
the Kripke saved 29.3 % energy, almost only by static tuning. On the other hand, the
second configuration shows us only 18.8 % savings, but over a third of it was saved
by dynamic switching CPU core and uncore frequencies. The Lulesh test cases saved
28.9 %, respectively 26.7 %, but almost none in dynamic tuning.

From the presented results it is possible to see, that one can save over 20 % of the
consumed energy. The applications from the ProxyApps tool suite shows, that they
are able to deliver significant static savings (over 25 %) over all instrumented regions.
On the other hand, since these programs does not contain any extensive I/O regions
and they were tested on a single node of the Taurus supercomputer, the further dy-
namic savings are rather low.

16

The situation may change when tests will be carried out on a higher number of nodes,
where the applications may become communication bounded. However, the exhaus-
tive search algorithm (sweeping over all combinations of tuning parameters) would
have to be replaced by a more efficient minimization algorithm. A more detailed out-
put causing some I/O overhead would lead to higher dynamism as well.

More complex applications such as the ESPRESO library has much higher po-
tential for dynamic savings. In presented configurations the dynamic savings were
up to 9.1 %.

Application
Static

savings [%]
Dynaminc

savings [%]
Total

Savings [%]

ProxyApps: Kripke, configuration 1 28.16 1.56 29.28
ProxyApps: Kripke, configuration 2 12.63 7.04 18.78

ProxyApps: LULESH, configuration 1 28.58 0.55 28.88
ProxyApps: LULESH, configuration 2 25.81 1.23 26.72

ESPRESO - configuration 0 5.6 8.7 14.3
ESPRESO - configuration 1 12.3 9.1 21.4
ESPRESO - configuration 2 7.8 4.7 12.5
ESPRESO - configuration 3 7.8 5.4 13.1

Table 10: Overview of the static and dynamic energy savings achieved by the applica-
tions selected for this paper.

Acknowledgement

The research leading to these results has received funding from the European Unions
Horizon 2020 Programme under grant agreement number 671657.

References

[1] J. Schuchart, M. Gerndt, P.G. Kjeldsberg, M. Lysaght, D. Horák, L. Řı́ha,
A. Gocht, M. Sourouri, M. Kumaraswamy, A. Chowdhury, M. Jahre, K. Di-
ethelm, O. Bouizi, U.S. Mian, J. Kružı́k, R. Sojka, M. Beseda, V. Kannan,
Z. Bendifallah, D. Hackenberg, W.E. Nagel, “The READEX formalism for auto-
matic tuning for energy efficiency”, Computing, pages 1–19, 2017, ISSN 1436-
5057, URL http://dx.doi.org/10.1007/s00607-016-0532-7.

[2] Y. Oleynik, M. Gerndt, J. Schuchart, P.G. Kjeldsberg, W.E. Nagel, “Run-Time
Exploitation of Application Dynamism for Energy-Efficient Exascale Comput-
ing (READEX)”, in C. Plessl, D. El Baz, G. Cong, J.M.P. Cardoso, L. Veiga,

17

T. Rauber (Editors), Computational Science and Engineering (CSE), 2015 IEEE
18th International Conference on, pages 347–350. IEEE, Piscataway, Oct 2015.

[3] M. Lysaght, K. Iqbal, J. Schuchart, A. Gocht, M. Gerndt, A. Chowdhury, M. Ku-
maraswamy, P.G. Kjeldsberg, M. Jahre, M. Sourouri, D. Horak, L. Riha, R. So-
jka, J. Kruzik, K. Diethelm, O. Bouizi, “D4.1: Concepts for the READEX Tool
Suite”, Technical report, ICHEC, TUD, TUM, NTNU, IT4I, Intel, gns, 2016.

[4] “Co-design at Lawrence Livermore National Lab:LLNL ASC Proxy Apps”,
URL https://codesign.llnl.gov/proxy-apps.php.

[5] “Allinea MAP - C/C++ profiler and Fortran profiler for high performance Linux
code”, URL https://www.allinea.com/products/map.

[6] S. Williams, A. Waterman, D. Patterson, “Roofline: An Insightful Visual Per-
formance Model for Multicore Architectures”, Commun. ACM, 52(4): 65–76,
Apr. 2009, ISSN 0001-0782, URL http://doi.acm.org/10.1145/
1498765.1498785.

[7] K. Venkatesh, R. Lubomir, G. Michael, C. Anamika, V. Ondrej, B. Martin,
H. David, S. Radim, K. Jakub, L. Michael, “PRACE WHITEPAPER: Inves-
tigating and Exploiting Application Dynamism For Energy-Efficient Exascale
Computing”, 2017, URL www.prace-ri.eu.

[8] M. Hähnel, B. Döbel, M. Völp, H. Härtig, “Measuring Energy Consumption for
Short Code Paths Using RAPL”, SIGMETRICS Perform. Eval. Rev., 40(3): 13–
17, Jan. 2012, ISSN 0163-5999, URL http://doi.acm.org/10.1145/
2425248.2425252.

[9] D. Hackenberg, T. Ilsche, J. Schuchart, R. Schöne, W. Nagel, M. Simon, Y. Geor-
giou, “HDEEM: High Definition Energy Efficiency Monitoring”, in Energy
Efficient Supercomputing Workshop (E2SC), Nov 2014.

[10] D. Brodowski, “Linux CPUFreq”, URL https://www.kernel.org/
doc/Documentation/cpu-freq/index.txt.

[11] R. Schoene, “x86 adapt”, URL https://doc.zih.tu-dresden.de/
hpc-wiki/bin/view/Compendium/X86Adapt.

[12] Z. Dostal, D. Horak, R. Kucera, “Total FETI-an easier implementable variant of
the FETI method for numerical solution of elliptic PDE”, Communications in
Numerical Methods in Engineering, 22(12): 1155–1162, jun 2006, URL http:
//dx.doi.org/10.1002/cnm.881.

[13] A. Klawonn, O. Rheinbach, “Highly scalable parallel domain decomposition
methods with an application to biomechanics”, ZAMM, 90(1): 5–32, jan 2010,
URL http://dx.doi.org/10.1002/zamm.200900329.

18

[14] L. Riha, T. Brzobohaty, A. Markopoulos, O. Meca, T. Kozubek, “Massively
Parallel Hybrid Total FETI (HTFETI) Solver”, in Proceedings of the Platform
for Advanced Scientific Computing Conference, PASC ’16. ACM, New York,
NY, USA, 2016, ISBN 978-1-4503-4126-4.

[15] L. Riha, T. Brzobohaty, A. Markopoulos, M. Jarosova, T. Kozubek, D. Horak,
V. Hapla, “Implementation of the efficient communication layer for the highly
parallel total FETI and hybrid total FETI solvers”, Parallel Computing, 2016.

[16] L. Riha, T. Brzobohaty, A. Markopoulos, T. Kozubek, O. Meca, O. Schenk,
W. Vanroose, “Efficient implementation of total FETI solver for graphic pro-
cessing units using Schur complement”, Lecture Notes in Computer Science,
9611: 85–100, 2016.

19

