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In this paper, we focus on fully automatic traffic surveillance camera calibration, which we use for speed 

measurement of passing vehicles. We improve over a recent state-of-the-art camera calibration method 

for traffic surveillance based on two detected vanishing points. More importantly, we propose a novel 

automatic scene scale inference method. The method is based on matching bounding boxes of rendered 

3D models of vehicles with detected bounding boxes in the image. The proposed method can be used 

from arbitrary viewpoints, since it has no constraints on camera placement. We evaluate our method on 

the recent comprehensive dataset for speed measurement BrnoCompSpeed. Experiments show that our 

automatic camera calibration method by detection of two vanishing points reduces error by 50% (mean 

distance ratio error reduced from 0.18 to 0.09) compared to the previous state-of-the-art method. We also 

show that our scene scale inference method is more precise, outperforming both state-of-the-art auto- 

matic calibration method for speed measurement (error reduction by 86 % – 7.98 km/h to 1.10 km/h) and 

manual calibration (error reduction by 19 % – 1.35 km/h to 1.10 km/h). We also present qualitative results 

of the proposed automatic camera calibration method on video sequences obtained from real surveillance 

cameras in various places, and under different lighting conditions (night, dawn, day). 

© 2017 Elsevier Inc. All rights reserved. 
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. Introduction 

Surveillance systems pose specific requirements on camera cal-

bration. Their cameras are typically placed in hardly accessible

ocations and optics are focused at longer distances, making the

ommon pattern-based calibration approaches unusable (such as

lassical ( Zhang, 20 0 0 )). That is why many solutions place mark-

rs to the observed scene and/or measure existing geometric fea-

ures ( Do et al., 2015; Luvizon et al., 2016; Sina et al., 2013; You

nd Zheng, 2016 ). These approaches are laborious and inconvenient

oth in terms of camera setup (manually clicking on the measured

eatures in the image) and in terms of physically visiting the scene

nd measuring the distances. 

In our paper, we focus on precise and at the same time fully au-

omatic traffic surveillance camera calibration including scene scale

or speed measurement. The proposed speed measurement method

eeds to be able to deal with significant viewpoint variation, dif-

erent zoom factors, various roads and densities of traffic. If the
∗ Corresponding author. 

E-mail addresses: isochor@fit.vutbr.cz (J. Sochor), ijuranek@fit.vutbr.cz (R. Ju- 
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ethod should be applicable for large-scale deployment, it needs

o run fully automatically without the necessity to stop traffic for

nstallation or for performing calibration measurements. 

Our solution uses camera calibration obtained from two de-

ected vanishing points and it is built on our previous work

 Dubská et al., 2015, 2014 ). However, this calibration procedure

nly allows reconstruction of the rotation matrix and the intrin-

ic parameters from vanishing points, and it is still necessary to

btain the scene scale. We propose to detect vehicles on the road

y Faster-RCNN ( Ren et al., 2015 ), classify them into a few com-

on fine-grained types by a CNN ( Krizhevsky et al., 2012 ) and use

ounding boxes of 3D models for the known classes to align the

etected vehicles. The vanishing point-based calibration allows for

ull reconstruction of the viewpoint on the vehicle and the only

ree parameter in the alignment is therefore the scene scale. Fig. 1

hows an example of the 3D model and the aligned images. Our

xperiments show that our method (mean speed measurement er-

or 1.10 km/h) significantly outperforms existing automatic camera

alibration method by Dubská et al. (2014) (error reduction by 86 %

mean error 7.98 km/h) and also calibration obtained from man- 

al measurements on the road (error reduction by 19% – mean er-

or 1.35 km/h). This is important because in previous approaches,

utomation always compromised accuracy, forcing a trade off by

he system developer. Our work shows that fully automatic calibra-

http://dx.doi.org/10.1016/j.cviu.2017.05.015
http://www.ScienceDirect.com
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Fig. 1. Examples of detected vehicles and 3D model bounding box aligned to the 

vehicle detection bounding box. Top: detected vehicle and corresponding 3D model 

(edges only), bottom: examples of aligned bounding boxes with shown 3D model 

edges (green), its bounding box (yellow) and vehicle detection (blue). (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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tion methods may produce better results than manual calibration

(which was performed thoroughly and according to state-of-the-art

approaches). 

Existing solutions for traffic surveillance camera calibration

( Cathey and Dailey, 2005; Dailey et al., 20 0 0; Do et al., 2015;

Dubská et al., 2015, 2014; Grammatikopoulos et al., 2005; He and

Yung, 2007b; Lan et al., 2014; Luvizon et al., 2014, 2016; Maduro

et al., 2008; Nurhadiyatna et al., 2013; Schoepflin and Dailey, 2003;

Sina et al., 2013; You and Zheng, 2016 ) (see Section 2 for detailed

analysis) usually have limitations for real world applications. They

are either limited to some viewpoints (zero pan, second vanish-

ing point at infinity), or they require some per-installed-camera

manual work. To our knowledge, there is only one work ( Dubská

et al., 2014 ) which does not have these limitations, and therefore

we compare our results with this solution. For a brief description

of the method, see Section 2 ; a more comprehensive review can be

found in a recent dataset paper BrnoCompSpeed by Sochor et al.

(2016b ). 

The key contributions of this paper are: 

• An improved camera calibration method by detection of two

vanishing points. The camera calibration error is reduced by

50% – 0.18 to 0.09 mean distance ratio error. 
• A novel method for scene scale inference, which significantly

outperforms automatic traffic camera calibration methods (er-

ror reduced by 86% – 7.98 km/h to 1.10 km/h) and also manual

calibration (error reduced by 19% – 1.35 km/h to 1.10 km/h) in

automatic speed measurement from a monocular camera. 
• Results show that when used for the speed measurement task,

the automatic (zero human input) method can perform better

than the laborious manual calibration, which is generally con-

sidered accurate and treated as the ground truth. This finding

can be important also in other fields beyond traffic surveillance.

2. Related work 

The camera calibration algorithm (obtaining intrinsic and ex-

trinsic parameters of the surveillance camera) is critical for the

accuracy of vehicle speed measurement by a single monocular

camera, as it directly influences the speed measurement accuracy.

There is a very recent comprehensive review of the traffic surveil-
ance calibration methods ( Sochor et al., 2016b ), so for detailed in-

ormation we refer to this review and we include only a brief de-

cription of the methods. 

Several methods ( Cathey and Dailey, 2005; Grammatikopoulos

t al., 2005; He and Yung, 2007b ) are based on the detection of

anishing points as an intersection of road markings (lane divid-

ng lines). Other methods ( Dailey et al., 20 0 0; Dubská et al., 2015,

014; Schoepflin and Dailey, 2003 ) use vehicle motion to calibrate

he camera. There is also a set of methods which use some form of

anually measured dimensions on the road plane ( Do et al., 2015;

an et al., 2014; Luvizon et al., 2014, 2016; Maduro et al., 2008;

urhadiyatna et al., 2013; Sina et al., 2013 ). 

An important attribute of calibration methods is whether they

re able to work automatically without any manual per-camera

alibration input. Only two methods ( Dailey et al., 20 0 0; Dubská

t al., 2014 ) are fully automatic and both of them use mean vehicle

imensions for camera calibration. Another important requirement

or real-world deployment is whether the camera can be placed in

n arbitrary position above the road, which is not true for some

ethods as they assume to have zero pan or other constraints. 

Regarding fine-grained vehicle classification, there are several

pproaches. The first one is based on detected parts of vehi-

les ( Fang et al., 2016; Krause et al., 2015; Simon and Rodner,

015 ), another approach is based on bilinear pooling ( Gao et al.,

016; Lin et al., 2015 ). There is also an approach based on Con-

olutional Neural Networks (CNN) and input modification ( Sochor

t al., 2016a ). For object detection, it is possible to use boosted cas-

ades ( Dollár et al., 2014 ), HOG detectors ( Dalal and Triggs, 2005 ),

r Deformable Parts Models (DPMs) ( Felzenszwalb et al., 2010 ).

here are also recent advances in object detection based on CNNs

 Girshick et al., 2014; Liu et al., 2016; Ren et al., 2015 ). 

Several authors deal with alignment of 3D models and vehi-

les and use this technique for gathering data in the context of

raffic surveillance. Lin et al. (2014) propose to jointly optimize

D model fitting and fine-grained classification, and Hsiao et al.

2014) align edges formulated as an Active Shape Model ( Cootes

t al., 1995; Li et al., 2009 ). Krause et al. (2013) and propose

o use synthetic data to train geometry and viewpoint classifiers

or 3D model and 2D image alignment. Prokaj and Medioni (2009)

se detected SIFT features ( Lowe, 1999 ) to align 3D vehicle mod-

ls and the vehicle’s observation. They use the alignment mainly

o overcome vehicle appearance variation under different view-

oints. However, in our case, as the precise viewpoint on the ve-

icle is known ( Section 4.3 ), such alignment does not have to be

erformed. Hence, we adopt a simpler and more efficient method

ased on 2D bounding boxes – simplifying the procedure consid-

rably without sacrificing the accuracy. 

When it comes to camera calibration in general, various ap-

roaches exist. The widely used method by Zhang (20 0 0) uses

 calibration checkerboard to obtain intrinsic and extrinsic cam-

ra parameters (relative to the checkerboard). Liu et al. (2012) use

ontrolled panning or tilting with stereo matching to calibrate the

amera. Correspondences of lines and points are used by Chaperon

t al. (2011) . Yu et al. (2009) focus on automatic camera calibration

or tennis videos from detected tennis court lines. 

. Traffic camera model 

The main goal of camera calibration in the application of speed

easurement is to be able to measure distances on the road plane

etween two arbitrary points in meters (or other distance units),

herefore we only focus on a camera model which enables the

easurement of distance between two points on the road plane. 

For convenience and better comparison of the methods, we

dopt the traffic camera model and notation proposed in previ-

us papers ( Dubská et al., 2015, 2014 ); however, to make the paper
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Fig. 2. Camera model and coordinates. Points denoted by small letters represent 

points in image space while points in the world space on the road plane ρ are 

represented by capital letters. The representation stays the same for both finite and 

ideal points. 
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elf-contained, we briefly describe the model and notation. For in-

rinsic parameters of our camera model, we assume to have zero

ixel skew, and the principal point c in the center of the image.

he method also assumes the road section to be flat and straight;

he experiments reported in the previous work and our experi-

ents as well show that this requirement is not very strict, be-

ause most roads that are not sharply curved locally meet this as-

umption for practical purposes. 

Homogeneous 2D image coordinates are referenced by bold

mall letters p = [ p x , p y , 1] T , points on the image plane p =
 p x , p y , f ] T in 3D, where f is the focal length, are denoted by small

old letters with overline. Finally, other 3D points (on the road

lane) are denoted by bold capital letters P = [ P x , P y , P z ] 
T . 

Fig. 2 shows the camera model and its notation. For conve-

ience, we assume that the origin of the image coordinate system

s at the center of the image; therefore, the principal point c has

D homogeneous coordinates [0, 0, 1] T (3D coordinates of the cen-

er of camera projection are [0, 0, 0] T ). As it is shown, the road

lane is denoted by ρ. We encode vanishing points in the following

ay. The first one (in the direction of vehicle flow) is referenced as

 ; the second vanishing point (whose direction is perpendicular to

he first one and which is parallel to the road plane) is denoted

y v ; and the third one (direction perpendicular to the road plane)

s w . 

Using the first two vanishing points u, v and the principal point

 , it is possible to compute the focal length f , the third vanishing

oint w , the road plane normalized normal vector n , and the road

lane ρ. However, the road plane is computed only up to scale (as

t is not possible to recover the distance to the road plane only

rom the vanishing points) and therefore, we add an arbitrary value

= 1 as the constant term in Eq. (6) . 

f = 

√ 

−u 

T · v (1) 

 = [ u x , u y , f ] T (2) 

 = [ v x , v y , f ] T (3) 

 = u × v (4) 

 = 

w 

‖ w ‖ 

(5) 

= 

[
n 

T , δ
]T 

(6) 
With known road plane ρ, it is possible to compute 3D coordi-

ates P = [ P x , P y , P z ] 
T of an arbitrary point p = [ p x , p y , 1] T by pro-

ecting it onto the road plane using the following equations: 

 = [ p x , p y , f ] T (7) 

 = − δ[
p 

T 
, 0 

]
· ρ

p (8) 

It is possible to measure distances on the road plane directly

ith 3D coordinates P ; however, as the road plane is shifted to

 predefined distance by a constant term, the distance ‖ P 1 − P 2 ‖
etween points P 1 and P 2 is not directly expressed in meters (or

ther real-world units of distance). Therefore, it is necessary to

ntroduce another calibration parameter, referred to as the scene

cale λ, which converts the distance ‖ P 1 − P 2 ‖ from pseudo-units

n the road plane to meters by scaling the distance to λ‖ P 1 − P 2 ‖ .
Under the assumptions that the principal point is in the center

f the image and zero pixel skew, it is necessary for the calibration

ethod to compute two vanishing points ( u and v in our case)

ogether with the scene scale λ, yielding 5 degrees of freedom.

ethods to convert these camera parameters to the standard in-

rinsic and extrinsic camera model K [R T] have been discussed be-

ore in several papers ( Fung et al., 2003; Zhang et al., 2013; Zheng

nd Peng, 2014 ), therefore we refer to them. 

. Camera calibration and vehicle tracking 

We adopted the calibration method of Dubská et al. (2014) ,

hich gives the image coordinates of the vanishing points and

cene scale information. We improved the method with more pre-

ise detection of the vanishing points, and we infer the scene scale

y using 3D models of frequently passing cars. 

Our method measures the speed of passing cars detected by

aster-RCNN ( Ren et al., 2015 ) and tracked by a combination of

ackground subtraction and Kalman filter ( Kalman, 1960 ) assisted

y the detector. This method, more sophisticated than the previ-

us method ( Dubská et al., 2014 ), gives fewer false positives and

 comparable recall rate. In the case of very dense flow when ve-

icles overlap each other in the camera image (which does rarely

ccur even in real conditions), our method would miss some of the

ars as we target free-flow conditions. In the following text, we de-

cribe the components of the method in detail, and evaluate it in

ection 5 . 

.1. Vanishing point estimation from edgelets 

We adopted the algorithm proposed by Dubská et al.

2015) (based on the detection of two orthogonal vanishing points)

or the detection of the first vanishing point and propose to use a

imilar algorithm for detecting the second vanishing point. How-

ver, we improved the detection of the second vanishing point by

sing edgelets instead of image gradients used in the previous pa-

er ( Dubská et al., 2015 ). This change, although subtle, improves

he calibration and speed measurement considerably, as the results

n Section 5.3 show. 

We start with the detection of vanishing points from which the

amera rotation with respect to the road can be estimated. The

rst vanishing point u is estimated from the movement of the ve-

icles by a form of cascaded Hough Transform ( Dubská et al., 2015 )

f lines formed by tracking points of interest on the moving vehi-

les. This is a more stable approach than finding the closest point

o the lines in an algebraic way, because it is more robust to track-

ng noise and it is not influenced by vehicles that change lane (and

herefore, the vanishing point of their movement is different from

he rest of the vehicles). Similarly to Dubská et al. (2015) , we use
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Fig. 3. Visualization of edgelet detection. From left to right – Seed points s i as local maxima of image gradient (foreground mask was used to filter interesting areas); Patches 

gathered around the seed points from which the edge orientation is computed; Detail of an edgelet and its orientation superimposed on the gradient image; Top 25% of 

edgelets detected in the image. 
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the Min-eigenvalue point detector ( Shi and Tomasi, 1994 ) and the

KLT tracker ( Tomasi and Kanade, 1991 ). 

To detect the second vanishing point v we use edges on pass-

ing vehicles as many lines formed by the edges coincide with v .

This step heavily relies on the correct estimation of the orientation

of the edges. The angle can be easily computed from gradients, but

angles close to k π /2 are almost impossible to accurately recover on

small neighborhoods. We estimate edge orientation from a larger

neighborhood by analysis of the shape of image gradient magni-

tude (edgelets). The detection process is shown in Fig. 3 . 

Edgelets are detected by the following algorithm. Given an im-

age I , first, we find seed points s i as local maxima of gradient mag-

nitude of the image E = ‖∇I ‖ , keeping only the strong ones with

magnitudes above a threshold. From the 9 × 9 neighborhood of

each seed point s i = [ x i , y i , 1] T , matrix X i is formed: 

X i = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

w 1 (m 1 − x i ) w 1 (n 1 − y i ) 

w 2 (m 2 − x i ) w 2 (n 2 − y i ) 

. . . 
. . . 

w k (m k − x i ) w k (n k − y i ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(9)

where [ m k , n k , 1] T are coordinates of the neighboring pixels ( k =
1 . . . 81 ) and w k is their gradient magnitude from E , i.e. for a 9 × 9

neighborhood, the size of X i is 81 × 2. Then, singular vectors and

values of X i can be computed as: 

W i �
2 
i W 

T 
i = SVD 

(
X 

T 
i X i 

)
, (10)

where 

W i = [ a 1 , a 2 ] (11)

�i = 

⎛ 

⎝ 

λ1 0 

0 λ2 

⎞ 

⎠ . (12)

Vectors a 1 and a 2 represent the eigenvectors of X i , while λ1 and λ2 

denote the corresponding eigenvalues. Edge orientation is then the

first singular column vector d i = a 1 from (11) and the edge quality

is the ratio of singular values q i = 

λ1 
λ2 

from (12) . Each edgelet is

then represented as a triplet E i = ( s i , d i , q i ) . 

We gather the edgelets from the input video (see Fig. 4 ), keep-

ing only the strong ones which do not coincide with the already

estimated u , and accumulate them to the Diamond Space accumu-

lator ( Dubská and Herout, 2013 ). The position of the global max-

imum in the accumulator is taken as the second vanishing point

v . It should be noted that in this step, additional filtering can be

applied – e.g. masking the Diamond Space to find only plausible

solutions (i.e. avoid imaginary focal length from Eq. (1) ), or to find
olutions within a certain range of focal lengths or horizon inclina-

ions (when known in advance). This may improve the robustness

f the second vanishing point estimation. 

.2. Vehicle detection and tracking 

During speed measurement, passing cars are detected in each

rame by the Faster-RCNN (FRCN) detector ( Ren et al., 2015 ) but

ny detector can be used as well (e.g. ACF, LDCF ( Dollár et al.,

014 )). We trained the detector on the COD20K dataset ( Juránek

t al., 2015 ), which contains approximately 20 k car instances for

raining from views of surveillance nature. The detection rate of

he detector is 96% with 0.02 false positive detections per image on

he test part of the COD20K dataset. The detector yields a coarse

nformation about locations of cars in the image (bounding boxes

re not precisely aligned). We use a simple heuristic to remove

etections that would lead to imprecise tracking and ultimately

o wrong speed estimation – those that are slightly occluded by

ther detections and that are farther from the camera. Therefore

e track only cars that are fully visible. 

For the tracking itself, we use a simple background model that

uilds a background reference image by moving average. In the

oreground image, compact blobs are detected and the FRCN de-

ections are used to group those blobs that correspond to one car.

rom each group of blobs, the convex hull and its 2D bounding box

re extracted. Finally, we track the 2D bounding box of the convex

ull using a Kalman filter to get the movement of the car. For an

xample, see Fig. 5 . 

For each tracked car, we extract a reference point for speed

easurement. The convex hull is used to construct the 3D bound-

ng box ( Dubská et al., 2014 ) and we take the center of the bottom-

ront edge – the reference point located in the ground/road plane.

ach track is represented by a sequence of bounding boxes and ref-

rence points both constructed from the convex hull. Our method

nherits all the advantages and limitations of similar approaches

ased on the extraction of the vehicle’s foreground mask. We rely

n the extractor to do its job properly, and we can take advan-

age of works dealing with different issues related to for example

ighting and weather (for example contour extractors such as Yang

t al., 2016 , or semantic segmentation methods such as Long et al.,

015 ). In Section 5.6 , we show a number of examples of real-world

urveillance cameras under bad conditions, where the calibration

lgorithm nonetheless works well. 

.3. Scale inference using 3D model bounding box alignment 

The previous state-of-the-art automatic method for scale infer-

nce in traffic surveillance by Dubská et al. (2014) used three-

imensional bounding boxes built around the vehicle and mean di-

ensions of vehicles to compute the scale. However, this approach

as two main drawbacks. The obvious one is in the usage of mean

imensions of vehicles. However, the more important one is less
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Fig. 4. Visualization of edges gathered from a video – (red) edges that pass close to the first vanishing point, (blue and green) edges accumulated to the Diamond Space, 

and (green) edges supporting the detected second vanishing point. The corresponding Diamond Space is shown in bottom-right corner. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Car detection and tracking. From left to right: Car detected by FRCN (blue), 

its foreground mask and convex hull (green); 3D bounding box constructed around 

the convex hull and tracking point on the bottom front edge; Car bounding box 

(from the convex hull) tracked by Kalman filter. (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this 

article.) 
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bvious: the constructed bounding box is too tight around the ve-

icle and the tightness is largely influenced by the particular view-

oint direction. This causes systematic errors in the calibration de-

ending on the camera location with respect to the road, leading

o high sensitivity to viewpoint change. 

We propose to use a different approach for scale inference,

vercoming the mentioned imprecisions. We use fine-grained

ypes of vehicles (i.e. make, model, variant, model year) and for

 few (two in our experiments) common types we obtained 3D

odels which are rendered to the image and we align them to the

eal observed vehicles in order to obtain the proper scale. 

As it is necessary to know the precise vehicle classes (up to

odel year) for our scale inference method, we used the Box-

ars dataset ( Sochor et al., 2016a ) and we also collected some

ther training data from videos related to papers by Dubská et al.

2015) ; 2014 ). The classification of vehicles is done only into a few

ost common fine-grained vehicle types on roads in the area plus

ne class for all the others vehicles. The full training dataset con-

ained ∼23 k tracks and ∼92 k images of vehicles. We used a CNN

 Krizhevsky et al., 2012 ) for the classification itself. The classifica-

ion accuracy on the validation set ( ∼7 k of images) was 0.97. As

nly single instances of vehicles are classified by the CNN, we use

ean probability over all of the detections belonging to one vehi-

le track to improve the recognition rates. 
For each vehicle, we also build a 3D bounding box around it

 Dubská et al., 2014 ) to obtain the center b of the vehicle’s base

n image coordinates. To obtain the viewpoint vector φ, we first

ompute the rotation matrix R , which has columns equal to nor-

alized u , v , and w . It is then possible to compute the 3D view-

oint vector as φ = −R 

T b . The minus sign is necessary as we need

he viewpoint vector going from the vehicle to the camera, not the

pposite one. 

Once the viewpoint vector to the vehicle, the vehicle’s class,

nd its position on the screen are determined, we render the ap-

ropriate 3D model given the parameters. The only open variable

s the scale of the vehicle to be rendered (i.e. the distance between

he vehicle and the camera). Examples of the two used 3D models

re shown in Fig. 6 . Therefore, we render images of the vehicle

n multiple different scales and match the bounding boxes of the

endered vehicles with the bounding box detected in the video by

sing the Intersection-over-Union (IoU) metric. Examples of such

atches can be found in Fig. 7 . The figure also shows two interest-

ng points related to the vehicle in red: points on the base of the

D models representing front f and rear r of the vehicle. Finally,

or all vehicle instances i and scales j , these points are projected

n the road plane, yielding F ij and R ij . They are used to compute

he scale λij ( Eq. (13) , where l t i is the real world length of the type

 i ). For all considered combinations of i and j , the IoU matching

etric m ij is computed. 

λi j = 

l t i 
‖ F i j − R i j ‖ 

(13) 

To obtain the final camera’s scale λ∗, all the scales λij are taken

nto account together with metrics m ij . We consider only cases

ith m ij larger than a predefined threshold (we used 0.85 in our

xperiments) to eliminate poor matches. Finally, we compute λ∗

ccording to Eq. (14) . The probability p ( λ | ( λij , m ij )) is computed

y kernel density estimation with a discretized space: 

λ∗ = arg max λ p 
(
λ | (λi j , m i j ) 

)
(14) 

In order to further improve the scale inference, we use several

raining videos from BrnoCompSpeed dataset ( Sochor et al., 2016b ).

e train the scale-correcting linear regression λ∗
reg = αλ∗ + β, us-

ng manually obtained scales as the ground truth. Even though this
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Fig. 6. Examples of used 3D models (showing only edges) rendered under the same viewpoint as the corresponding real vehicle on the road. The left image shows the 

model which we will refer as Combi and the other two images show the 3D model Sedan. Both models are for Skoda Octavia mk1 which is common on the observed streets. 

Fig. 7. Development of IoU (yellow boxes) metric for different scales ( left to right ), vehicle types and viewpoints ( top to bottom ). The left two images show larger rendered 

vehicles, the middle one shows the best match, and the right two images show smaller rendered vehicles. The rendered vehicle is shown only in a form of edges with the 

yellow rectangle bounding box of the rendered model and blue rectangle denoting the detected vehicle bounding box. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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step is not necessary, it improves the scale acquisition further by

correcting the imprecise geometry of the obtained 3D models. 

We also experimented with an alignment metric based on

matching of edges on the rendered and detected vehicles (based on

distance transform). However, the speed measurement did not im-

prove further. The biggest problem with this method is that most

of the edges on vehicles are blurry and therefore not detected at

all. However, the vehicle detector ( Ren et al., 2015 ) is able to de-

tect the vehicles properly and in most cases accurately. Also, the

proposed algorithm using just the bounding boxes is much more

efficient in terms of storage (it is possible to store just the bound-

ing boxes, not the images) and computation. 

4.4. Speed measurement of tracked cars 

The speed measurement itself is done by following the method-

ology proposed by Sochor et al. (2016b ). Given a tracked car with

reference points p i and timestamps t i for each reference point,

where i = 1 . . . N, the speed v is calculated from Eq. (15) by project-

ing the reference points p i to the ground plane P i (see Eq. (8) ). 

v = median 

i =1 ... N−τ

(
λ∗

reg ‖ P i + τ − P i ‖ 

t i + τ − t i 

)
(15)

The speed is computed as the median value of speeds between

consecutive time positions. However, for stability of the measure-
ent, it is better not to use the next frame, but the time position

everal video frames apart. This is controlled by the constant τ ,

nd for all our experiments, we use τ = 5 (the time difference is

sually 0.2 s). 

. Experiments and results 

To evaluate our proposed methods for camera calibration and

cene scale inference, we use the very recent BrnoCompSpeed

ataset ( Sochor et al., 2016b ) which contains over 20 k vehi-

les with precise ground truth speed from multiple locations. The

ataset also contains markers on the road with known dimensions

etween them. For an example of such road markers, see Fig. 8 .

he ground truth distances can be used for either calibration or

valuation of distance measurements on the road plane. It is also

ossible to evaluate the accuracy of vanishing point estimation by

sing the markings ( Sochor et al., 2016b ). In the following text we

ill refer to various methods for camera calibration which are de-

ned as: 

• ITS15 – Automatic camera calibration method as described

by Dubská et al. (2015) . Brief outline of the method is in

Sections 2 and 4.1 . 
• Edgelets – Camera calibration method proposed in this paper,

Section 4.1 . 
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Fig. 8. An example of manually measured distances between markers on the road 

plane. Other examples can be found in the original BrnoCompSpeed publication 

( Sochor et al., 2016b ). Blue lines denote the lane dividing lines, lines perpendicular 

to the vehicles direction are shown in yellow. Finally, measured distances between 

two points towards the first (second) vanishing point are shown by red (green) 

color. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

 

 

 

 

Table 1 

Errors of distance measurement ratios (see 

Section 5.1 for details). The first row for each 

calibration method contains absolute errors; the 

relative errors in percents are in the second row. 

system mean median 99% 

Edgelets (ours) 0.09 0.04 0.49 

6.45 3.38 39.08 

ITS15 0.18 0.05 1.36 

11.74 5.25 61.03 

ManualCalib 0.02 0.01 0.15 

1.80 1.26 10.98 

 

 

 

 

 

 

 

 

 

 

S  

e  

t  

a  

p  

(  

n  

s

5

e

 

i  

B  

s  

t  

t  

l  

c  

v

 

e  

B  

(  

E  

m  

u  

b  

c

 

p  

m  

s  
• ManualCalib – We use known distances ( Fig. 8 ) on the road

for manual calibration of the camera. In agreement with the

previous papers ( Cathey and Dailey, 2005; Grammatikopoulos

et al., 2005; He and Yung, 2007a ) we use intersection lanes di-

viding lines (blue dashed lines in Fig. 8 ) for estimation of the

first vanishing point u . As there are usually more than just two

lane dividing lines, we use least squares minimization to obtain

the intersection of multiple lines. Formally, given lines l i with

normalized normal vectors, we compute the vanishing point u

by solving Au = −b in a least squares manner, where rows of A

contain transposed normal vectors of the lines, and rows of b

contain constant terms of the lines. 

The second vanishing point v can be obtained in the same man-

ner (as the intersection of yellow dashed lines in Fig. 8 , since

they are perpendicular to the vehicle flow on the road). How-

ever, we found out that it is more accurate and robust to use

the intersection only as a first guess, and then use measured

distances on the road to optimize the vanishing point position

using Eq. (16) . 

v ∗ = arg min 

v 

( ∑ 

(p 1 , p 2 ,d) ∈D 2 
| λ‖ P 1 − P 2 ‖ − d | 

) 

, (16) 

where set D 2 contains image endpoints and distances measured

on the road towards the second vanishing point (green line seg-

ments in Fig. 8 ) and scale λ is computed for the given vanishing

points u, v by Eq. (17) . It should be noted that the computation

of 3D coordinates P i of image point p i depends on the van-

ishing points (see Eq. (8) for details). The optimization itself is

done by grid search (we loop over discretized feasible positions

of v corresponding to reasonable focal lengths and evaluate the

optimization objective (16) ). 

The usage of standard manual methods based on calibration

patterns (e.g. checkerboards) proposed by Zhang (20 0 0) is im-

practical, as it would require a large checkerboard (more than

10 m 

2 ) placed on the road. 

We also define method names for different approaches for scale

nference: 

• BMVC14 – Scale inference method proposed by Dubská et al.

(2014) . Brief outline of the method is in Section 2 . 
• BBScale + reg – Our method for scale calibration using bound-

ing box matching ( Section 4.3 ) with scale correction regression.
• ManualScale – Scale computed from manually measured dis-

tances between markers towards the first vanishing point on
the road. The scale is computed as the mean value of Eq.

(17) from a set of endpoints and distances ( p i , 1 , p i , 2 , d i ) to-

wards the first vanishing point (red line segments in Fig. 8 ). 

λ = E 

[
d i 

‖ P i, 1 − P i, 2 ‖ 

]
(17) 

• SpeedScale – Scale is computed from ground truth speed mea-

surements and minimizes the speed measurement error for

given camera calibration. It can be understood as the lower er-

ror bound for the given camera calibration method. The scale is

computed as the mean value of Eq. (18) where, the set M con-

tains pairs of ground truth speed 

ˆ v i and measured speed v i . It is

assumed that scale λ = 1 was used for computation of speeds

v i . 

λ = E 

[
ˆ v i 
v i 

]
(18) 

If not stated otherwise, the evaluation was done on BrnoComp-

peed – Split C (contains more than 10 k of vehicle tracks for

valuation), because our method requires parameter tuning for

he scale correction regression and split C provides a sufficient

mount of data for training and testing. For each metric, we re-

ort mean, median, and 99 percentile error for both absolute units

 er r = | ̂ r − r | ) and relative units ( er r = | ̂ r − r | / ̂ r · 100% ), where ˆ r de-

otes the ground truth measurement, and r represents the mea-

ured value. 

.1. Evaluation of vanishing point estimation – camera calibration 

rror 

To evaluate the camera calibration itself (the obtained vanish-

ng points), we follow the evaluation metric proposed with the

rnoCompSpeed dataset ( Sochor et al., 2016b ). The evaluation mea-

ures the difference between ratios of distances between markings

owards the first vanishing point (red lines in Fig. 8 ) and the dis-

ances between markers towards the second vanishing point (green

ines in Fig. 8 ). As the ratio does not depend on scale, this metric

onsiders only the camera calibration in the form of two detected

anishing points. 

Since we do not require any parameter tuning for the cam-

ra calibration method, we report the results on all videos in the

rnoCompSpeed dataset (including the extra session0). The results

reported in Table 1 ) show that our automatic calibration method

dgelets outperforms calibration method ITS15 almost twice on

ean error. It should be noted that the same distances that were

sed to obtain the manual calibration were evaluated by the cali-

ration error metric based on distance ratios; this gives the manual

alibration an unfair advantage in the comparison. 

The significant improvement of our method is caused by more

recise acquisition of v ; position of u stays the same for our

ethod as for the ITS15 calibration method. There are two rea-

ons why vanishing points play an important role. The first one is
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Table 2 

Distance measurement errors on the road plane for different cal- 

ibrations. Only distances towards the first vanishing point (red in 

Fig. 8 ) were used for this evaluation. The first row for each cal- 

ibration method contains absolute errors in meters; the relative 

errors in percents are in the second row. 

system mean median 99% 

Edgelets + BBScale + reg (ours) 0.26 0.17 1.08 

2.33 2.06 5.49 

ITS15 + BMVC14 1.23 0.81 5.40 

9.62 10.65 21.07 

Edgelets + ManualScale (ours) 0.10 0.06 0.57 

0.98 0.62 4.46 

ITS15 + ManualScale 0.25 0.14 1.54 

2.11 1.66 8.07 

ManualCalib + ManualScale 0.10 0.08 0.32 

1.08 0.65 3.59 

Table 3 

Distance measurement errors on the road plane for different cali- 

brations. Each segment of the table represents a different level of 

supervision in the calibration. The first row for each calibration 

method contains absolute errors in meters and the relative errors 

in percents are in the second row. 

system mean median 99% 

Edgelets + BBScale + reg (ours) 0.34 0.18 2.29 

3.47 2.28 30.49 

ITS15 + BMVC14 1.17 0.72 5.82 

9.79 9.00 55.89 

Edgelets + ManualScale (ours) 0.24 0.10 2.60 

2.66 1.00 34.75 

ITS15 + ManualScale 0.57 0.20 5.43 

5.84 2.07 52.19 

ManualCalib + ManualScale 0.07 0.04 0.30 

0.84 0.50 3.47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Evaluation of speed measurement errors; all systems differ only 

in the calibration and scale inference, with the same tracking of 

vehicles. Each segment represents one level of supervision in the 

calibration (automatic, known ground truth distances on road, 

known ground truth speeds). The first row for each calibration 

method contains absolute errors in km/h; the relative errors in 

percents are in the second row. 

system mean median 99% 

Edgelets + BBScale + reg (ours) 1.10 0.97 3.05 

1.39 1.22 4.13 

ITS15 + BMVC14 7.98 8.18 18.58 

10.15 11.45 19.22 

Edgelets + ManualScale (ours) 1.04 0.83 3.48 

1.31 1.04 4.61 

ITS15 + ManualScale 1.44 1.17 5.43 

1.76 1.50 6.16 

ManualCalib + ManualScale 1.35 0.95 4.84 

1.64 1.18 5.40 

Edgelets + SpeedScale (ours) 0.52 0.35 2.57 

0.66 0.44 3.71 

ITS15 + SpeedScale 0.80 0.57 3.70 

0.99 0.72 4.68 

ManualCalib + SpeedScale 0.56 0.38 2.73 

0.71 0.48 3.63 
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that the vanishing points are directly used for estimating the focal

length; the second one is that they are used for computation of

the viewpoint on the vehicle for scale estimation. Therefore, if the

viewpoint is computed imprecisely, the alignment of the rendered

3D model is also imprecise. 

5.2. Evaluation of distance measurement in the road plane 

The next step is to evaluate the camera calibration together

with the obtained scale. We use manual annotations of distances

on the road plane which are directed towards the first or the sec-

ond vanishing point, respectively (red and green in Fig. 8 ). 

First, we evaluated the distance measurement only towards the

first vanishing point as it is the direction in which the vehicles are

going and it is more important for speed measurement. The re-

sults are shown in Table 2 for different combinations of calibra-

tions and scale estimations. First, our fully automatic method for

camera calibration (Edgelets) and scale inference (BBScale + reg)

significantly outperforms the previous automatic method ITS15 +

BMVC14. Second, when we use our automatically computed cali-

bration and scale obtained with manual annotations, we achieve

almost the same results as ManualCalib + ManualScale, which re-

quired much more manual effort than our automatic system. 

When we evaluated the same metric with all the distances, the

results are similar (see Table 3 ). Again, our method significantly

outperforms the previous automatic method. Considering the cal-

ibrations with manually obtained scale, our system has a slightly

higher error then the manual calibration. However, this is caused

by the fact that the manual calibration is optimized directly to the

evaluation metric by Eq. (16) and thus gets an unfair and unrealis-

tic advantage. 
To summarize the distance measurement results: our method

ignificantly outperforms previous automatic state-of-the-art for

peed measurement – the mean error for distance measurement in

he direction of vehicles’ flow (which is important for speed mea-

urement) was reduced by 79% (1.23 m to 0.26 m). 

.3. Evaluation of speed measurement 

The most important part of the evaluation is the speed mea-

urement itself. We used the same vehicle detection and tracking

ystem (see Section 5 ) in all experiments so that the results for

ifferent calibrations and scales are directly comparable. 

We show both quantitative results in the form of Table 4 and

lots with cumulative error histograms in Fig. 9 . The table and the

gures are divided into several parts where we compare similar

evels of supervision. 

The first level of supervision is fully automatic; in the second

evel, known ground truth dimensions on the road plane are used.

n the third and final level of supervision, we use known ground

ruth speeds to form the lower error bound for different calibration

ethods. 

Regarding the first level of supervision, our system Edgelets

 BBScale + reg significantly outperforms the previous automatic

ethod ITS15 + BMVC14 and we reduce the mean speed measure-

ent error by 86 % (7.98 km/h to 1.10 km/h) . Another important

act is that our fully automatic method for camera calibration and

cale inference also outperforms manual calibration and scale in-

erence (1.35 km/h mean error) while the error is reduced by 19 %

1.35 km/h to 1.10 km/h). This improvement is important because

n previous approaches, the automation always compromised accu-

acy, forcing the system developer to trade off between them. Our

ork shows that fully automatic calibration methods may produce

etter results than manual calibration. 

When it comes to the second and third level of supervision, the

esults follow the same trend with our calibration outperforming

ll of them (manual and automatic). The fact that manual cali-

ration is better on the calibration metric ( Section 5.1 ) and dis-

ance measurement ( Section 5.2 ), while our method outperforms

he manual calibration at the speed measurement task, is caused

y the fact that manual calibration uses the same data which are

hen used for the evaluation of the calibration metric and distance
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Fig. 9. Evaluation of speed measurement – cumulative histograms of errors. The gray dashed vertical lines represent 3 km/h error. Top left: comparison of automatic 

methods and a manual method for camera calibration, top right: calibrations obtained with known ground truth distances on the road plane, bottom left: calibrations with 

scale obtained by minimizing the speed measurement error, thus forming a lower bound error for speed measurement with given camera calibration and tracking algorithm, 

bottom right: analysis of influence of different aspects of used 3D car models evaluated on speed measurement, see Section 5.4 . The cumulative histogram is suitable for 

directly obtaining the “success rate” for a given error tolerance. 
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Table 5 

Analysis of influence of different aspects of used 3D 

car models. It shows that it is best to use both models. 

The second segment of the table also shows that it is 

useful to use scale correction regression as described 

in Section 4.3 . The first row for each 3D model com- 

bination method contains absolute errors in km/h; the 

relative errors in percents are in the second row. 

system mean median 99% 

Sedan 2.39 1.74 8.67 

2.82 2.14 7.74 

Combi 2.03 1.72 6.51 

2.48 2.14 5.94 

Combi + Sedan 1.38 0.99 5.18 

1.70 1.23 4.94 

Sedan + reg 2.43 2.49 7.26 

2.97 3.17 6.56 

Combi + reg 1.03 0.82 3.29 

1.33 1.04 4.49 

Combi + Sedan + reg 1.10 0.97 3.05 

1.39 1.22 4.13 

s  

u

5

 

f  

t  

(  
easurement. The achieved accuracy is very close to meeting the

tandards for speed measurements accuracy required for enforce-

ent (typically 3% in many European countries). The accuracy

s definitely comparable to measurements achievable by radars

 Sochor et al., 2016b ), while being considerably cheaper, more flex-

ble, and passive. 

.4. Sensitivity to selection of the 3D model 

We also evaluated how using different 3D models of vehicles

nfluences the speed measurement results. The results are shown

n Table 5 and Fig. 9 (bottom right). We tested several combi-

ations of used vehicles: use of only one of the models (Combi,

edan) or both of them together (Combi + Sedan), forming the first

egment of the table. It shows that using both models significantly

mproves the results, as the errors in geometry of the 3D models

ancel out. We consider that using only a few (as few as two) fine-

rained models is beneficial because it is not necessary to obtain

ore 3D models and training data for fine-grained recognition. The

xperiments show that having two models is sufficient for obtain-

ng usable results; using more than two models in practice would

ollow the same principles and could increase the robustness fur-

her. 

The second segment of the table shows the performance of the

ystem with scale correction regression to overcome the inaccu-

acies of the 3D models. The results show that for model Combi,

he error significantly decreases. However, for the Sedan model,

he results stay more or less the same. This paradox is caused by

he smaller number of training data for Sedan version as for some

raining videos, no Sedan vehicle was detected. The results also

how that if we use both models, the performance drop is not that
ignificant (1.10 km/h to 1.38 km/h) and therefore, it is possible to

se the scale inference without the scale correction regression. 

.5. Vehicle detection and tracking evaluation 

Since we use a different vehicle detection and tracking method

rom Dubská et al. (2014) , we also evaluate this part of the solu-

ion. We compare the methods on all videos of BrnoCompSpeed

including extra session0) with exactly the same calibration (Man-
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Fig. 10. Example of camera calibration (two vanishing points) for real world surveillance cameras. The first row shows different locations, while the second one show the 

same locations at night, dawn, and during daylight. The yellow line denotes the detected horizon (if present inside the frames) and red-green grid is formed by lines going 

to the first vanishing point (red) and to the second one (green). In an ideal case the grid is perpendicular in the real world and the lines are parallel to the features which 

define the vanishing points on the ground (e.g. line marking). It should also be noted that the method is able to work even on an intersection (top center). (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 6 

Evaluation of differences between vehicle detection and tracking 

proposed by Dubská et al. (2014) and our detection and tracking 

method. FPPM denotes the number of False Positives Per Minute, 

recall was computed as mean recall across all videos and speed 

error denotes mean speed measurement error. 

method FPPM recall speed error [km/h] 

Dubská et al. (2014) 9.77 0.885 1.46 

ours 1.91 0.863 1.21 
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ualCalib + ManualScale) to isolate the influence of vehicle detection

and tracking. 

We report the number of False Positives Per Minute and mean

recall in vehicle counting. The results can be found in Table 6 , and

as the table shows, our method considerably reduces the number

of false positives with essentially the same recall. 

A tracked vehicle is matched to the ground truth if it passes

through the correct lane and the time difference of pass through

the measurement line (yellow line in Fig. 8 which is closest to

the camera) compared to the ground truth is less than 0.2 s. This

threshold is used by Sochor et al. (2016b ) to correctly match the

vehicles, as a higher threshold could lead to mismatches between

the detected track and ground truth. 

As we use the same calibration, we can also compare directly

the speed measurement error which is influenced (with the same

calibration) only by the tracking. As the table shows, our tracking

method yields slightly reduced speed measurement error for the

same scale and camera calibration. 

For the tracking and speed measurement, we use the point at

the front of the vehicle on the road plane (using the 3D bounding

box), which is geometrically correct, as the point is on the road

plane. We evaluated how the choice of the tracking point influ-

ences the measurement error, comparing to a naive solution which

takes the center of the bottom edge of the 2D bounding box for
he tracking, and we found out that the difference to the correct

olution was negligible. 

.6. Camera calibration on real surveillance cameras 

The automatic calibration from vehicle movement can be jus-

ifiably suspected of requiring idealized conditions and to be sen-

itive to bad lighting, etc. In order to verify the usability of our

amera calibration method in real-world conditions, we obtained

ata from surveillance cameras in production use at 9 different lo-

ations. The videos were captured both at day and night condi-

ions. The data are of rather poor quality (704 × 576 px or 704 ×
88 px) with 6 frames per second and a mean length of 40 s. As

he ground truth calibration is not available for the data, we report

nly qualitative results in the form of equilateral grid projected on

he road plane. Despite the challenging character of the sequences

poor video quality and lighting conditions), we were able to cor-

ectly detect the vanishing points, as can be seen in Fig. 10 on a

ew examples, and thus find the camera parameters and its orien-

ation, which is important in many real-world surveillance applica-

ions (e.g. estimation of vehicle viewpoints or image rectification). 

. Conclusions 

We propose a fully automatic method for traffic surveillance

amera calibration. It does not have any constraints on camera

lacement and does not require any manual input whatsoever. The

esults show that our system decreases the mean speed measure-

ent error by 86% (7.98 km/h to 1.10 km/h) compared to the pre-

ious automatic state-of-the-art method and by 19% (1.35 km/h to

.10 km/h) compared to the manual calibration method. This im-

rovement is important, as in the previous approaches, automa-

ion always compromised accuracy, forcing the system developer

o trade off between them. Our work shows that fully automatic
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alibration methods may produce better results than manual cal-

bration. This result can be important beyond the field of traffic

urveillance, since different forms of manual camera calibration are

ften considered the “ground truth”, but our work shows that au-

omatic calibration from statistics of repeated inaccurate measure-

ents can be more precise, despite requiring no user input. Our

ethod removes the necessity of per-camera setting or calibration,

ut it still requires some human annotations per coarse geographic

egion (e.g. European Union or the USA) and per time period when

he car models get vastly replaced (e.g. per decade). 

In the experiments, we also showed that our method is able to

alibrate real world traffic surveillance cameras and our proposed

ethod for vehicle detection and tracking significantly reduces the

umber of false positives compared to the previous method. In fu-

ure work, we would like to simplify the system and remove the

ecessity to render the vehicles by approximation of the bounding

ox size with a function parameterized by viewpoint and image

ocation. 
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