
Noname manuscript No.
(will be inserted by the editor)

Scattered Context Grammars with One
Non-Context-Free Production are Computationally
Complete

Alexander Meduna, Zbyněk Křivka

Received: date / Accepted: date

Abstract This paper investigates the reduction of scattered context gram-
mars with respect to the number of non-context-free productions. It proves
that every recursively enumerable language is generated by a scattered con-
text grammar that has no more than one non-context-free production. An
open problem is formulated.

Keywords Scattered context grammars · Size reduction · The number of
non-context-free productions · Computational completeness

1 Introduction

Formal language theory has always struggled to reduce their grammars as
much as possible (for an overview of results concerning this reduction in terms
of classical grammars, consult Sections 1.2 and 1.3 in Chapter 4 in [6]). As
a central topic, this trend has studied how to reduce the number of gram-
matical components, such as nonterminals or productions, without disturbing
the generative power. The present paper contributes to this trend in terms of
scattered context grammars (for an overview of important results concerning
the reduction in terms of scattered context grammars, consult Chapter 6 in
[5]).

Concerning the number of nonterminals in scattered context grammars,
two-nonterminal scattered context grammars are computationally complete—
that is, they characterize the family of recursively enumerable languages (see
[1]). On the other hand, one-nonterminal scattered context grammars are less
powerful (see [3]).

Alexander Meduna
Department of Information Systems
Faculty of Information Technology
Brno University of Technology
Bozetechova 2, 612 66 Brno, the Czech Republic, Europe
E-mail: meduna@fit.vutbr.cz

2 Alexander Meduna, Zbyněk Křivka

The present paper reduces the number of non-context-free productions in
scattered context grammars. In fact, it proves that scattered context gram-
mars with a single non-context-free production are computationally complete.
Of course, this statement represents the best possible result regarding this
reductions because scattered context grammars without any non-context-free
production only characterize the family of context-free languages.

2 Definitions

This paper assumes that the reader is familiar with the language theory (see
[4]), including scattered context grammars (see [5]).

For a set, Q, card(Q) denotes the cardinality of Q. For an alphabet, V , V ∗

represents the free monoid generated by V under the operation of concatena-
tion. The unit of V ∗ is denoted by ε. Set V + = V ∗ − {ε}; algebraically, V + is
thus the free semigroup generated by V under the operation of concatenation.
For w ∈ V ∗, |w| and Reverse(w) denote the length of w and the reversal of
w, respectively. Furthermore, suffix(w) denotes the set of all suffixes of w, and
prefix(w) denotes the set of all prefixes of w. For L ⊆ V ∗, alph(L) denotes the
set of all symbols occurring in a word of L. For w ∈ V ∗ and T ⊆ V , occur(w, T)
denotes the number of occurrences of symbols from T in w, and Erase(w, T)
denotes the string obtained by removing all occurrences of symbols from T
in w. For instance, occur(abdabc, {a, d}) = 3 and Erase(abdabc, {a, d}) = bbc.
If T = {a}, where a ∈ V , we simplify occur(w, {a}) and Erase(w, {a}) to
occur(w, a) and Erase(w, a), respectively.

A scattered context grammar is a quadruple, G = (N,T, P, S), where N
and T are alphabets such that N ∩ T = ∅. Symbols in N are referred to
as nonterminals while symbols in T are terminals. N contains S—the start
symbol of G. P is a finite non-empty set of productions such that every p ∈ P
has the form

(A1, A2, . . . , An)→ (x1, x2, . . . , xn),

where n ≥ 1, and for all i = 1, 2, . . . , n, Ai ∈ N and xi ∈ (N ∪ T)∗. If
each xi satisfies |xi| ≤ 1, i = 1, 2, . . . , n, then (A1, A2, . . . , An) → (x1, x2,
. . . , xn) is said to be simple. If n = 1, then (A1) → (x1) is referred to as a
context-free production; for brevity, we hereafter write A1 → x1 instead of
(A1) → (x1). If for some n ≥ 1, (A1, A2, . . . , An) → (x1, x2, . . . , xn) ∈ P, v =
u1A1u2A2 . . . unAnun+1, and w = u1x1u2x2 . . . unxnun+1 with ui ∈ (N ∪ T)∗

for all i = 1, 2, . . . , n, then v directly derives w in G, symbolically written
as v ⇒ w[(A1, A2, . . . , An) → (x1, x2, . . . , xn)] or, simply, v ⇒ w in G. In
the standard manner, extend ⇒ to ⇒n, where n ≥ 0; then, based on ⇒n,
define ⇒+ and ⇒∗. The set of all sentential forms of G, F(G), is defined as
F(G) = {w ∈ (N ∪ T)∗ : S ⇒∗ w}. The language of G, L(G), is defined as
L(G) = F(G) ∩ T ∗, so L(G) = {w ∈ T ∗ : S ⇒∗ w}. A derivation of the form
S ⇒∗ w with w ∈ T ∗ is called a successful derivation.

A queue grammar (see [2]) is a sextuple, Q = (V, T,W,F, s, P), where V
and W are alphabets satisfying V ∩W = s, T ⊆ V, F ⊆W, s ∈ (V −T)(W−F),

Scattered Context Grammars with One Non-Context-Free Production 3

and P ⊆ (V × (W − F)) × (V ∗ ×W) is a finite relation such that for every
a ∈ V , there exists an element (a, b, z, c) ∈ P . If u, v ∈ V ∗W such that
u = arb; v = rzc; a ∈ V ; r, z ∈ V ∗; b, c ∈ W ; and (a, b, z, c) ∈ P , then
u ⇒ v[(a, b, z, c)] in G or, simply, u ⇒ v. In the standard manner, extend ⇒
to ⇒n, where n ≥ 0; then, based on ⇒n, define ⇒+ and ⇒∗. The language
of Q, L(Q), is defined as L(Q) = {w ∈ T ∗ : s ⇒ ∗wf where f ∈ F}. As a
slight modification of the notion of a queue grammar, we define the notion of
a left-extended queue grammar as a sextuple , Q = (V, T,W,F, s, P), where
V, T,W,F, and s have the same meaning as in a queue grammar. P ⊆ (V ×
(W − F)) × (V ∗ ×W) is a finite relation (as opposed to an ordinary queue
grammar, this definition does not require that for every a ∈ V , there exists
an element (a, b, z, c) ∈ P). Furthermore, assume that # /∈ V ∪W . If u, v ∈
V ∗{#}V ∗W so that u = w#arb; v = wa#rzc; a ∈ V ; r, z, w ∈ V ∗; b, c ∈
W ; and (a, b, z, c) ∈ P, then u ⇒ v[(a, b, z, c)] in G or, simply, u ⇒ v. In the
standard manner, extend ⇒ to ⇒n, where n ≥ 0; then, based on ⇒n, define
⇒+ and ⇒∗. The language of Q,L(Q), is defined as L(Q) = {v ∈ T ∗ : #s⇒∗

w#vf for some w ∈ V ∗ and f ∈ F}. Less formally, during every step of a
derivation, a left-extended queue grammar shifts the rewritten symbol over #;
in this way, it records the derivation history, which plays a crucial role in the
proof of Lemma 3 in the next section.

3 Results

This section demonstrates that for every recursively enumerable language,
L, there exists a scattered context grammar, G = (N,T, P, S), such that
L = L(G) and P contains a single non-context-free production of the form
(1, 2, 0, 3, 0, 2, 1)⇒ (2, ε, ε, ε, ε, ε, 2).

Lemma 1 For every recursively enumerable language, L, there exists a left-
extended queue grammar, Q, satisfying L(Q) = L.

Proof Recall that every recursively enumerable language is generated by a
queue grammar (see [3]). Clearly, for every queue grammar, there exists an
equivalent left-extended queue grammar. Thus, this lemma holds. ut

Lemma 2 Let H be a left-extended queue grammar. Then, there exists a left-
extended queue grammar, Q = (V, T,W,F, s,R), such that L(H) = L(Q) and
every (a, b, x, c) ∈ R satisfies a ∈ V − T, b ∈W −F , and x ∈ ((V − T)∗ ∪ T ∗).

Proof Let H = (ς, T,Ω, Φ, σ,Π) be any left-extended queue grammar. Set
Ω

′
= {q′

: q ∈ Ω}, Ω′′
= {q′′

: q ∈ Ω}, and ς
′

= {a′
: a ∈ ς}. Define the

bijection α from Ω to Ω
′

as α(q) = q
′

for every q ∈ Ω. Analogously, define
the bijection β from Ω to Ω

′′
as β(q) = q

′′
for every q ∈ Ω. Finally, define the

bijection δ from ς to ς
′

as δ(a) = a
′

for every a ∈ ς. In the standard manner,
extend δ so it is defined from ς∗ to (ς

′
)∗. Set

U = {〈y, p〉 : y ∈ T ∗, p ∈ Ω, and (a, q, xy, p) ∈ Π for some a ∈ ς, q ∈ Ω, x ∈ ς∗}

4 Alexander Meduna, Zbyněk Křivka

Without any loss of generality, assume that (δ(ς) ∪ T ∪ α(Ω) ∪ β(Ω) ∪
U) ∩ {1, f} = ∅.SetV = δ(ς) ∪ {1} ∪ T,W = α(Ω) ∪ β(Ω) ∪ {f} ∪ U,F =
{f}, and s = δ(a)α(q). Define the left-extended queue grammar

Q = (V, T,W,F, s,R)

with R constructed in the following way:

I. if (a, q, xy, p) ∈ Π, where a ∈ ς; q ∈ Ω − Φ;x, y ∈ ς∗; and p ∈ Ω, then
add (δ(a), α(q), δ(x)δ(y), α(p)) and (δ(a), α(q), δ(x)1δ(y), α(p)) to R;

II. if (a, q, xy, p) ∈ Π, where a ∈ ς; q ∈ Ω − Φ;x ∈ ς∗; y ∈ T ∗, p ∈ Ω(〈y, p〉 ∈
U), then add (δ(a), α(q), δ(x), 〈y, p〉) and (1, 〈y, p〉, y, β(p)) to R;

III. f (a, q, x, p) ∈ Π, where a ∈ ς; q ∈ Ω − Φ;x ∈ T ∗; and p ∈ Ω, then add
(δ(a), β(q), δ(x), β(p)) to R;

IV. f (a, q, x, p) ∈ Π, where a ∈ ς; q ∈ Ω − Φ;x ∈ T ∗; and p ∈ Φ, then add
(δ(a), β(q), x, f) to R (recall that F = {f}).

Clearly, for every (a, b, x, c) ∈ R, a ∈ V − T, b ∈ W − F, and x ∈ ((V −
T)∗ ∪ T ∗). Leaving a rigorous proof that L(H) = L(Q) to the reader, we next
give its sketch.

To see that L(H) ⊆ L(Q), consider any v ∈ L(H). As v ∈ L(H),

#σ ⇒∗ w#vt

in H,w ∈ ς∗, v ∈ T ∗, and t ∈ Φ. Express #σ ⇒∗ w#vt in H as

#σ ⇒∗ u#zq ⇒ ua#xyp⇒∗ w#vt

where a ∈ ς, u, x ∈ ς∗, y ∈ prefix(v), z = ax,w = uax, and during ua#xyp⇒∗

w#vt, only terminals are generated so that the resulting terminal string equals
v. Q simulates #σ ⇒∗ u#zq ⇒ ua#xyp ⇒∗ w#vt as follows. First, Q uses
productions introduced in I to simulate #σ ⇒∗ u#zq. During this initial
simulation, it once uses a production that generates 1 so that it can then
simulate u#zq ⇒ ua#xyp by making two derivation steps according to pro-
ductions (δ(a), α(q), δ(x), 〈y, p〉) and (1, 〈y, p〉, y, β(p)) (see II). Notice that by
using (1, 〈y, p〉, y, β(p)), Q produces y, which is a prefix of v. After the applica-
tion of (1, 〈y, p〉, y, β(p)), Q simulates ua#xyp⇒∗ w#vt by using productions
introduced in III followed by one application of a production constructed in
IV, during which Q enters f and, thereby, completes the generation of v. Thus,
L(H) ⊆ L(Q).

To establish that L(Q) ⊆ L(H), consider any v ∈ L(Q). Since v ∈ L(Q),

#s⇒∗ w#vf

in Q, where w ∈ V ∗ and v ∈ T ∗. Examine I through IV. Observe that Q
passes through states of α(Ω), U, β(Ω), and {f} in this order so that it occurs
several times in states of α(Ω), once in a state of U , several times in β(Ω),
and once in f . As a result, Q uses productions introduced in I, and during this
initial part of derivation it precisely once uses a production that generates 1
so that it can subsequently make two consecutive derivation steps according

Scattered Context Grammars with One Non-Context-Free Production 5

to (δ(a), α(q), δ(x), 〈y, p〉) and (1, 〈y, p〉, y, β(p)) (see II). By using the latter,
Q produces y, which is a prefix of v. After the application of (1, 〈y, p〉, y, β(p)),
Q applies productions introduced in III, which always use states of β(Ω).
Finally, it once applies a production constructed in IV to enter f and, thereby,
complete the generation of v. To summarize these observations, we can express
#s⇒∗ w#vf in Q as

#s⇒∗ u#zq ⇒ ua#xyp⇒∗ w#vf

where a ∈ V, x ∈ V ∗, y ∈ T ∗, w = uax so that during #s ⇒∗ u#zq, Q uses
productions introduced in I, then it applies (1, 〈y, p〉, y, β(p)) from II to make
u#zq ⇒ ua#xyp, and finally it performs ua#xyp⇒∗ w#vf by several appli-
cations of productions introduced in III and one application of a production
constructed in IV. At this point, by an examination of I through IV, we see
that H makes

#σ ⇒∗ u#zq ⇒ ua#xyp⇒∗ w#vt

with t ∈ Φ, so v ∈ L(H). Therefore, L(H) ⊆ L(Q).
As L(H) ⊆ L(Q) and L(Q) ⊆ L(H), L(H) = L(Q). ut

Lemma 3 Let Q be a left-extended queue grammar. Then, there exists a scat-
tered context grammar, G = (N,T, P, S), such that L(Q) = L(G), whereas P
contains one non-context-free production of this form

(1, 2, 0, 3, 0, 2, 1)→ (2, ε, ε, ε, ε, ε, 2)

Proof Let Q = (V, T,W,F, s,R) be a left-extended queue grammar. Without
any loss of generality, assume that Q satisfies the properties described in
Lemma 2 and that {0, 1, 2, 3}∩ (V ∪W) = ∅. For some positive integer, n ≥ 1,
set

X = {103}+{1}{10}+ ∩ {x|x ∈ {1, 0, 3}∗, occur(x, 1) = n}

and introduce an injection ι from VW to X so that ι remains an injection when
its domain is extended to (VW)∗ in the standard way; after this extension, ι
thus represents an injection from (VW)∗ to X∗ (a proof that such an injection
necessarily exists is simple and left to the reader). Based on ι, define the
substitution ν from V ∗ to X∗ by ν(a) = {ι(aq) : q ∈ W} for every a ∈ V .
Notice that for every x ∈ ν(a), x represents a string of the form

103103 . . . 10311010 . . . 10

with n occurrences of 1, whereas substring 11 occurs in x precisely once. Define
the homomorphism from {0, 1}∗ to {0, 1, 3}∗ by β(0) = 30 and β(1) = 1. Set

Y = {301}∗{030}{10}∗ ∩ {x|x ∈ {1, 0, 3}∗, occur(x, 1) = n}

and define the substitution µ from W ∗ to Y ∗ by

µ(q) = {z10301w|u11v ∈ ι(aq), a ∈ V, z = β(Reverse(u)), w = Reverse(Erase(v, {3}))}

6 Alexander Meduna, Zbyněk Křivka

Notice that for every y ∈ µ(q), y represents a string of the form

301301 . . . 30103010101 . . . 01

with n occurrences of 1, whereas 030 occurs in y precisely once.
Define the function Θ from X∗ to Y ∗ recursively as follows

1. Θ(ε) = ε
2. If Θ(x) = y, i ∈ {2, . . . , n − 1}, v ∈ X, v = 103103 . . . 1031(10)i, u ∈ Y, u =

(301)i03010101 . . . 01, thenΘ(ux) = yv.

To illustrate, assume that 10310311010 ∈ X; then, Θ(10310311010) =
30130103010101.

Set U = {〈p, i〉 : p ∈W − F and i ∈ {1, 2}} ∪ {S}.

Construction Introduce the scattered context grammar G = (U ∪ {0, 1, 2, 3},
T, P, S) with P = M ∪O constructed in the following way.

To construct M , perform 1 through 5, given next.

1. if a0q0 = s, where a ∈ V − T and q ∈W − F , then add S → 1u〈q, 1〉w1 to
P , for all u ∈ ν(a0) and w ∈ µ(q0);

2. if (a, q, y, p) ∈ R, where a ∈ V − T, p, q ∈ W − F , and y ∈ (V − T)∗, then
add 〈q, 1〉 → u〈p, 1〉w to P , for all u ∈ ν(y) and w ∈ µ(p);

3. for every q ∈W − F , add 〈q, 1〉 → 2〈q, 2〉 to P ;
4. if (a, q, y, p) ∈ R, where a ∈ V − T, p, q ∈ W − F, y ∈ T ∗, then add
〈q, 2〉 → y〈p, 2〉w to P , for all w ∈ µ(p);

5. if (a, q, y, p) ∈ R, where a ∈ V − T, q ∈ W − F, y ∈ T ∗, and p ∈ F , then
add 〈q, 2〉 → y302;

Set
O = {(1, 2, 0, 3, 0, 2, 1)→ (2, ε, ε, ε, ε, ε, 2), 2→ ε}

.

Basic Idea G can generate every y ∈ L(G) as

S ⇒∗ 1u002y302v01⇒ 1u1yv11⇒ 1u2yv21⇒ · · · ⇒ 1um−1yvm−11⇒ 2y2⇒2 y

where G makes S ⇒∗ 1u002y302v01 by using productions from P , where u0 ∈
ν(a0 . . . am) with a0, . . . , am ∈ V − T , and v0 ∈ ν(qm . . . q0) with q0, . . . , qm ∈
Q. During 2y2⇒2 y, G applies 2→ ε twice to obtain y ∈ L(G). During

1u002y302v01⇒ 1u1yv11⇒ 1u2yv21⇒ · · · ⇒ 1um−1yvm−11

G only applies (1, 2, 0, 3, 0, 2, 1) → (2, ε, ε, ε, ε, ε, 2). Consider any 1uiyvi1 in
this derivation, 1 ≤ i ≤ m − 1, satisfy one of the following conditions i, ii, or
iii:

(i) ui ends with 120 while vi starts with 3021;
(ii) ui ends with 1203 while vi starts with 021;
(iii) ui ends with 12 while vi starts with 03021.

Scattered Context Grammars with One Non-Context-Free Production 7

Consider the symbols 1, 2, 0, 3, 0, 2, 1 satisfying i, ii or iii. During 1uiyvi1 ⇒
1ui+1yvi+11, G simultaneously rewrites these symbols by (1, 2, 0, 3, 0, 2, 1) →
(2, ε, ε, ε, ε, ε, 2). Thus, from the definition of Θ and the way G performs
1u002y302v01 ⇒∗ 1um−1yvm−11, we see that Θ(u0) = v0. Examine the con-
struction of P to see that S ⇒∗ 1u0yv01 in G if and only if Q makes #a0q0 ⇒∗

a0 . . . am#yf according to (a0, q0, z0, q1) through (am, qm, zm, qm+1), where
qm+1 ∈ F . From this equivalence, we conclude that L(G) = L(Q).

Formal Proof For brevity and readability, the following rigorous proof omits
some obvious details, which the reader can easily fill in.

Claim A, proved next, establishes a derivation form by which G can gene-
rate each member of L(G). This claim fulfills a crucial role in the demonstra-
tion that L(G) ⊆ L(Q), given later in this proof (see Claim C)

Claim (A) G can generate every h ∈ L(G) in this way

S

⇒1x〈q0, 1〉t01⇒ 1g0〈q1, 1〉t11⇒ · · · ⇒ 1gk−1〈qk, 1〉tk1

⇒1gk〈qk+1, 1〉tk+11⇒ 1gk〈qk+1, 2〉tk+11

⇒1gk20y1〈qk+2, 2〉tk+21⇒ 1gk20y1y2〈qk+3, 2〉tk+31⇒ . . .

⇒1gk20y1y2 . . . ym−1〈qk+m, 2〉tk+m1⇒ 1gk20y1y2 . . . ym−1ym032tk+m1

⇒1u1y1y2 . . . ym−1ymv11⇒ 1u2y1y2 . . . ym−1ymv21⇒ . . .

⇒1uνy1y2 . . . ym−1ymvω1⇒ 2y1y2 . . . ym−1ym2⇒2 y1y2 . . . ym−1ym

in G, where k,m ≥ 1; q0, q1, . . . , qk+m ∈ W − F ; y1, . . . , ym ∈ T ∗;x ∈ ν(a0),
where a0 ∈ (V − T) and s = a0q0; ti ∈ µ(qi . . . q1q0) for i = 0, 1, . . . , k +
m; gj ∈ ν(d0d1 . . . dj) with d0 = a0 and d1, . . . , dj ∈ (V − T)∗ for j = 0, 1,
. . . , k; d0d1 . . . dk = a0a1 . . . ak+m with a1, . . . , ak+m ∈ V − T (that is, gk ∈
ν(a0a1 . . . ak+m)) ; 1uiy1y2 . . . ym−1ymvi1 satisfies either i 120 ∈ suffix(ui)
and 3021 ∈ prefix(vi) or ii 1203 ∈ suffix(ui) and 021 ∈ prefix(vi) or iii
12 ∈ suffix(ui) and 03021 ∈ prefix(vi) so during 1uiy1y2 . . . ym−1ymvi1 ⇒
1ui+1y1y2 . . . ym−1ymvi+11, G simultaneously rewrites these prefixes and suf-
fixes by (1, 2, 0, 3, 0, 2, 1) → (2, ε, ε, ε, ε, ε, 2) for 0 ≤ i ≤ m − 1, where u0 =
gk20, v0 = 032tk+m;Θ(gk) = tk+m.

Proof (of Claim A) Examine the construction of P . Consider M . Observe that
every derivation begins with an application of a production having S on its
left-hand side. Set

U1 ={〈p, 1〉 : p ∈W}
U2 ={〈p, 2〉 : p ∈W}
M1 ={p : p ∈M and lhs(p) ∈ U1}
M2 ={p : p ∈M and lhs(p) ∈ U2}

Consider any successful derivation that generate h ∈ L(G). Let us make
some observations. All application of productions from 1 − P precede the

8 Alexander Meduna, Zbyněk Křivka

applications of productions from 2 − P = {〈p, 1〉 : p ∈ W}. Furthermore, an
application of (1, 2, 0, 3, 0, 2, 1)→ (2, ε, ε, ε, ε, ε, 2) requires the occurrence of 3
in the sentential form, and this occurrence is produced only by a production
constructed in the fifth step of the construction of M . After a production from
this step is applied, no production from M can be applied throughout the rest
of the derivation, so only productions from O can be used during this rest. An
application of 2→ ε eliminates 2, which cannot be produced by either of the
two members of O. Thus, G applies 2 → ε during the last two steps of the
derivation. Taking these observations into account, we see that the generation
of h ∈ L(G) can be expressed as

S

⇒1x〈q0, 1〉t01⇒ 1g0〈q1, 1〉t11⇒ · · · ⇒ 1gk−1〈qk, 1〉tk1

⇒1gk〈qk+1, 1〉tk+11⇒ 1gk〈qk+1, 2〉tk+11

⇒1gk20y1〈qk+2, 2〉tk+21⇒ 1gk20y1y2〈qk+3, 2〉tk+31⇒ . . .

⇒1gk20y1y2 . . . ym−1〈qk+m, 2〉tk+m1⇒ 1gk20y1y2 . . . ym−1ym032tk+m1

⇒∗2y1y2 . . . ym−1ym2⇒2 y1y2 . . . ym−1ym

in G, h = y1y2 . . . ym−1ym, (1, 2, 0, 3, 0, 2, 1)→ (2, ε, ε, ε, ε, ε, 2) is the only pro-
duction applied during 1gk20y1y2 . . . ym−1ym032tk+m1⇒∗ 2y1y2 . . . ym−1ym2,
and all the other involved symbols satisfy what is stated in Claim A (these
symbols include x, gs, and ts).

Before going further, let us consider any three strings of the form 103103
. . . 1031(10)i ∈ X, 1203021, (301)j03010101 . . . 01 ∈ Y , where i, j ∈ {1, . . . , n−
1} (see the definition of X for n) and study how to erase the concatenation

103103 . . . 1031(10)i1203021(301)j03010101 . . . 01

by repeatedly applying (1, 2, 0, 3, 0, 2, 1) → (2, ε, ε, ε, ε, ε, 2). We intend to de-
monstrate that this erasure can be performed provided that i = j. First of
all, notice that an occurrence of 1 between the two occurrences of 2 im-
plies that this occurrence of 1 cannot be removed by (1, 2, 0, 3, 0, 2, 1) →
(2, ε, ε, ε, ε, ε, 2). Thus, (1, 2, 0, 3, 0, 2, 1)→ (2, ε, ε, ε, ε, ε, 2) is always applied so
the nearest possible pair of 1s that encloses 2s are rewritten by (1, 2, 0, 3, 0, 2, 1)
→ (2, ε, ε, ε, ε, ε, 2). Specifically, the two underlined 1s are changed to 2s in

103103 . . . 1031(10)i1203021(301)j03010101 . . . 01

by using (1, 2, 0, 3, 0, 2, 1)→ (2, ε, ε, ε, ε, ε, 2). Next, we show that if i 6= j, then
G cannot erase 103103 . . . 1031(10)i1203021(301)j03010101 . . . 01.

Let i < j. As G always rewrites the nearest possible pair of 1s that encloses
the two 2s, it obtains

103103 . . . 1032302(301)ji03010101 . . . 01

Scattered Context Grammars with One Non-Context-Free Production 9

after i derivation steps. As between 2 and 3 appears no 0, (1, 2, 0, 3, 0, 2, 1)→
(2, ε, ε, ε, ε, ε, 2) is inapplicable (see the underlined symbols), which rules out
the erasure.

Let j < i. After making i steps, G obtains

103103 . . . 1031(10)i−j120302103010101 . . . 01,

from which G directly derives 103103 . . . 1031(10)i−j−12003020101 . . . 01. After
the next change of the closest pair of 1s to 2s, G obtains a string with no 3
occurring between the two 2s. As a result, (1, 2, 0, 3, 0, 2, 1)→ (2, ε, ε, ε, ε, ε, 2)
is inapplicable, and the erasure is ruled out. Consequently, i = j.

Return to

1gk20y1y2 . . . ym−1ym032tk+m1⇒∗ 2y1y2 . . . ym−1ym2

with gk ∈ ν(a0a1 . . . ak+m) and tk+m ∈ µ(qk+m . . . q1q0). We have demon-
strated that the erasure of 103103 . . . 1031(10)i1203021(301)j03010101 . . . 01
implies i = j. Considering this implication together with the definitions of
ν, µ and Θ, we see that 1gk20032tk+m1 ⇒∗ 22 with Θ(gk) = tk+m. Conse-
quently, to express 1gk20y1y2 . . . ym−1ym032tk+m1⇒∗ 2y1y2 . . . ym−1ym2 in a
step-by-step way, we have

1gk20y1y2 . . . ym−1ym032tk+m1⇒ 1u1y1y2 . . . ym−1ymv11⇒ 1u2y1y2 . . .

ym−1ymv21⇒ · · · ⇒ 1uνy1y2 . . . ym−1ymvω1⇒ 2y1y2 . . . ym−1ym2

in G, where 1uiy1y2 . . . ym−1ymvi1 satisfies either (i) 120 ∈ suffix(ui) and
3021 ∈ prefix(vi) or (ii) 1203 ∈ suffix(ui) and 021 ∈ prefix(vi) or (iii) 12 ∈
suffix(ui) and 03021 ∈ prefix(vi) so during 1uiy1y2 . . . ym−1ymvi1⇒ 1ui+1y1y2
. . . ym−1ymvi+11, G simultaneously rewrites these prefixes and suffixes by
(1, 2, 0, 3, 0, 2, 1) → (2, ε, ε, ε, ε, ε, 2) for 0 ≤ i ≤ m− 1, where u0 = gk20, v0 =
032tk+m, and Θ(gk) = tk+m. Of course,

2y1y2 . . . ym−1ym2⇒2 y1y2 . . . ym−1ym

is performed by applying 2→ ε twice.

Putting all these partial derivations and their properties together, we obtain
Claim A.

QED (Claim A)

10 Alexander Meduna, Zbyněk Křivka

Claim (B) Q generates every h ∈ L(Q) in this way

#a0q0

⇒a0#x0q1 [(a0, q0, z0, q1)]

⇒a0a1#x1q2 [(a1, q1, z1, q2)]

. . .

⇒a0a1 . . . ak#xkqk+1 [(ak, qk, zk, qk+1)]

⇒a0a1 . . . akak+1#xk+1y1qk+2 [(ak+1, qk+1, y1, qk+2)]

. . .

⇒a0a1 . . . akak+1 . . . ak+m−1#xk+m−1y1 . . .

ym−1qk+m [(ak+m−1, qk+m−1, ym−1, qk+m)]

⇒a0a1 . . . akak+1 . . . ak+m#y1 . . . ymqk+m+1 [(ak+m, qk+m, ym, qk+m+1)]

where k,m ≥ 1, ai ∈ V −T for i = 0, . . . , k+m,xj ∈ (V −T)∗ for j = 1, . . . , k+
m, s = a0q0; ajxj = xj−1zj for j = 1, . . . , k, a1 . . . akxk+1 = z0 . . . zk, ak+1

. . . ak+m = xk, q0, q1, . . . , qk+m ∈ W − F and qk+m+1 ∈ F, z1, . . . , zk ∈ (V −
T)∗, y1, . . . , ym ∈ T ∗, h = y1y2 . . . ym−1ym.

Proof (of Claim B) Recall that Q satisfies the properties given in Lemma 2.
These properties imply that Claim B holds.

QED (Claim B)

Claim (C) Let G generate h ∈ L(G) in the way described in Claim A; then,
h ∈ L(Q).

Proof (of Claim C) Let h ∈ L(G). Consider the generation of h as described
in Claim A. Examine the construction of P to see that at this point R contains
(a0, q0, z0, q1), . . . , (ak, qk, zk, qk+1), (ak+1, qk+1, y1, qk+2), . . . , (ak+m−1, qk+m−1,
ym−1, qk+m), (ak+m, qk+m, ym, qk+m+1), where z1, . . . , zk ∈ (V − T)∗, and y1,
. . . , ym ∈ T ∗. Then, Q makes the generation of h in the way described in Claim
B. Thus, h ∈ L(Q).

QED (Claim C)

Claim (D) Let Q generates h ∈ L(Q) in the way described in Claim B; then,
h ∈ L(G).

Proof This is left to the reader.
QED (Claim D)

Claims A through B imply that L(Q) = L(G). Furthermore, (1, 2, 0, 3, 0, 2, 1)→
(2, ε, ε, ε, ε, ε, 2) is the only non-context-free production in P . Therefore, this
lemma holds. ut

Theorem 1 For every recursively enumerable language, L, there exists a scat-
tered context grammar, G = (N,T, P, S), such that L = L(G) and P contains
a single non-context-free production.

Scattered Context Grammars with One Non-Context-Free Production 11

Proof Recall that for every recursively enumerable language, L, there exists
a queue grammar that generates L (see [2]). Thus, this theorem follows from
Lemmas 1 through 3. ut

As already pointed out, two-nonterminal scattered context grammars are
computationally complete (see [1]). So are scattered context grammars with a
single non-context-free production (see Theorem 1). Consider two-nonterminal
scattered context grammars with one non-context-free production. Are they
computationally complete, too?

Acknowledgements The authors thank Jakub Martǐsko for his useful comments. This
work was supported by The Ministry of Education, Youth and Sports of the Czech Republic
from the National Programme of Sustainability (NPU II), project IT4Innovations excellence
in science – LQ1602; the TAČR grant TE01020415; and the BUT grant FIT-S-17-3964.

References

1. Csuhaj-Varjú, E. and Vaszil, Gy.: Scattered context grammars generate any recursi-
vely enumerable languages with two nonterminals, Information Processing Letters 110(20)
(2010), 902-907.

2. Kleijn, H. C. M. and Rozenberg, G.: On the Generative Power of Regular Pattern Gram-
mars, Acta Informatica 20, pp. 391-411, 1983.

3. Meduna, A. : Generative Power of Three-Nonterminal Scattered Context Grammars,
Theoretical Computer Science 237 (2000), 625-631.

4. Meduna A.: Automata and Languages: Theory and Applications, Springer, London, 2000.
5. Meduna, A. and Techet, J.: Scattered Context Grammars and their Applications, WIT

Press, Southhampton, UK, 2010.
6. Rozenberg, G. and Salomaa, A. (eds.): Handbook of Formal Languages, Volume 1, Sprin-

ger, Berlin 1997.

