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Abstract—Faults occurring in the safety-critical systems can
lead to the failure of the whole system and cause high economical
losses or endanger human health. As an example, space, aerospace
or medical systems which are working in the environment with
increased occurrence of faults can serve. Fault avoidance and
fault tolerance are the main techniques, the goal of which is
to avoid such situations. This paper is the continuation of the
previously published work and presents an approach to evaluate
fault tolerance techniques by monitoring the impact of faults in
the experimental electro-mechanical system which consists of the
robot in a maze and its robot controller. The experiments with
the robot controller hardened against faults are combined with
the reliability analysis on a theoretical level in this paper. The
impact of faults artificially injected into the robot controller, in
which Triple Modular Redundancy is applied, is monitored and
used for statistic reliability analysis.

Keywords—Reliability Analysis, TMR, FPGA, Fault Tolerance,
Robot Controller, Reconfiguration.

I. INTRODUCTION

Various electronic systems play an important role in our
everyday lives. We can meet them in various types of com-
monly used devices such as cars, intelligent buildings, or
some entertainment systems. For example, electronic systems
make our lives easier, supervise our health or provide new
opportunities. The reliability of these systems is a problem,
especially in the case of systems in which failure can result in
injury or heavy financial losses or can endanger human health.
One of the reasons which leads to a higher susceptibility
to faults is an increase of chip-level integration. The current
trend is to make electronic systems smaller and integrate more
functionality to smaller area on the chip which leads to greater
sensitivity to faults. The number of digital systems with high
demand on reliability, such as medicine, space, industry, is
growing as well.

Two main approaches to increase reliability are currently
used. The first one is called fault avoidance [1]. As the name
indicates, the main goal is to completely avoid failures in the
system using the means of more reliable parts, manufacturing
processes, etc., which is very challenging and expensive.

The second approach is a technique called fault tolerance
[2]. Fault tolerance accepts the fact a fault can appear, but the
goal of this approach is to keep the system functional, even
in the presence of faults. Techniques based on the various
types of redundancy are used for this purpose. The most
common ones are hardware and time redundancy. Hardware
redundancy usually uses n-copies of the same functional unit
and comparator to guarantee the proper function. On the other
hand, time redundancy is based on computation repeating and

the results from the independent runs are then compared.
Many fault tolerance methodologies exist, which combine
and improve these basic methods, e.g. hardware and time
redundancy is combined in the approach presented in [3].

There have been many fault-tolerant methodologies in-
clined, among others, to Field Programmable Gate Arrays
(FPGAs) developed and new ones are under investigation
[4], because FPGAs are becoming more popular due to their
flexibility and re-configurability. The second reason why so
many techniques are inclined to FPGAs is their sensitivity
to faults and ability to be reconfigured in the case of fault
occurrence. FPGAs are composed of configurable logic blocks
[5] which are connected by programmable interconnection.
The configuration is stored as a bitstream in SRAM memory.
The problem from the reliability point of view is that FPGAs
are quite sensitive to faults caused by charged particles [6].
This particle can induce inversion of a bit in bitstream and
this may lead to a change in its behaviour. This event is called
Single Event Upset (SEU) [7]. The advantage is that faults
which occurred in configuration memory can be repaired by
Partial Dynamic Reconfiguration (PDR) [8].

It is important to test and evaluate these techniques. Various
approaches to the evaluation of fault tolerance exist, some
of them are performed on a theoretical level, for example,
a simulation method for SEU emulation is presented in [9].
Another approach is in the use of fault injection directly into
the design implemented in FPGA. Special evaluation boards
are developed for these purposes, one of them is presented in
[10] or [11]. The evaluation of fault tolerance techniques is one
of the goals of our research, in our previously published work
where we develop the platform for experimental evaluation of
the impact of faults that occurred in an experimental system
[12]. Our evaluation platform was tested and demonstrated
on the experimental electro-mechanical system (a robot in
a maze and its controller) without any hardening against
faults. The next step in our experiments is to apply a fault
tolerance technique on our experimental system and evaluate
it experimentally which is the main topic of this paper. We feel
that only a experimental evaluation is not good enough so the
theoretical reliability analysis based on experimental results is
also mentioned in this paper.

This paper is organized as follows. Section II introduces
reliability analysis and improvement. An evaluation platform
and experimental system on which reliability is experimentally
evaluated is presented in Section III. Verification scenarios
generation presented in Section IV is the important part
of evaluation platform. Section V is dedicated to reliability

2017 Euromicro Conference on Digital System Design

978-1-5386-2146-2/17 $31.00 © 2017 IEEE

DOI 10.1109/DSD.2017.15

337



analysis based on experimental evaluation. The possibility of
using a dynamic reconfiguration for the faulty module recovery
is shown in Section VI. Section VII concludes the paper and
presents future plans of our research.

II. RELIABILITY ANALYSIS AND ITS IMPROVEMENT

A fault-tolerant system development usually starts with
a nondurable system that does not tolerate faults [13]. This
nondurable system is usually designed with minimum re-
dundancy and serves as a starting point for the process of
development. An experienced fault-tolerant system designer
then suggests the modifications that are to be made to the
nondurable system in order to to achieve a higher level of
fault tolerance. After these changes are incorporated into the
design, the result must be evaluated to be sure the applied
redundancy has the desired improvement on the reliability
of the system. The usual approach is to iterate between the
phases of development and the reliability analysis. Multiple
designs with various combinations of fault tolerance methods
assigned to the partitions of the design are created. The system
development ends either with the system complying with the
specification or the findings of the specifications not being
achievable. In this research we try to accelerate this procedure
of the development with an ability to estimate the reliability of
the resulting system even before the application of the method
itself. This allows for a designer to exclude such combinations
of reliability methods that do not look perspective from the
final specification needs point of view. The final specification
usually contains a list of so-called reliability indicators and
the corresponding ranges of values that must be achieved in
order to accept the resulting solution.

A. Reliability Analysis

The reliability itself can be quantified with the support of
the theory of probability as most of the reliability indicators are
of a random nature. The length of a time period of the system
operation until the failure occurs is an important starting point
in the reliability indicators computation. This variable can
be considered the so-called random variable. The simplified
definition of random variable according to [14] is shown in
Definition 1.

Definition 1: Random variable X on a sample space S is
a function X : S → R that assigns a real number X(s) to
each sample point s ∈ S.

The Cumulative Distribution Function (CDF) is an impor-
tant concept of studying random variables. A CDF expresses
a probability the random variable takes a value lower than a
given non-negative real number t which is defined in Equation
1. The CDF is a nondecreasing function.

F (t) = P(τ < t) (1)

1) Failure Function: If a random variable τ expresses a
length of a time interval from the systems start of the operation
to the point a fault occurs, then the CDF F (t) of random
variable τ expresses a probability of the system being in a
failure state at the time t. In this case, the CDF F (t) is denoted
as Q(t) and is called the failure function.

2) Reliability Function: Another reliability indicator is the
so-called reliability function which is denoted as R(t). The
reliability function expresses a probability of the system being
in an fault-less state at the time t and it is a supplement of the
Q(t) as expressed in Equation 2.

R(t) = 1−Q(t) (2)

3) Failure Density: The failure density f(t) is defined by
the time derivative of a CDF Q(t) if the random variable is
continuous and the derivative exists, as shown in Equation 3.

f(t) =
dQ(t)

dt
(3)

The product of f(t)dt then expresses the probability of
a fault occurrence for a short period of time dt that is
immediately following after the time t. Although, the case in
which the fault occurred earlier before the time t is not taken
into account.

4) Failure Rate: The next reliability indicator is failure
rate which is denoted by λ(t). The failure rate expresses a
conditional failure density at the time t assuming the failure
has not occurred yet. Equation 4 gives a relationship between
the λ(t) and Q(t).

λ(t) =
f(t)

R(t)
=

f(t)

1−Q(t)
(4)

Again, the product λ(t)dt gives a probability of a fault
occurrence for a short period of time dt immediately following
after the time t given the examined system was in a fault-less
state at the time t.

Throughout the whole lifetime of the system, the λ(t)
usually forms the so-called bathtub curve. The bathtub curve
can be divided into three main time periods with the first one
related to early failures, the middle one related to a constant
failure period and the last one corresponding with the wear-
out phase [15]. The time interval 〈t1, t2〉 in which the failure
rate keeps an approximate constant value is the most important
part for us, as this is the part where the random failures rate
is revealed.

λ

tt2t1

λ(t)

I II III

Fig. 1. The usual failure rate displayed as a function of a time t, the so-called
bathtub curve.

5) Mean Time To Failure: The Mean Time To Failure
(MTTF) which is in the following text denoted as Ts represents
a mean value of the random variable τ observed. The mean
value can be seen as a mean time of all the time period
lengths since the system started its operation to the first failure
occurrence. If the mentioned system is non-recoverable, the
value can be considered a mean time to the first failure as
well. To calculate the Ts, the Equation 5 can be used.
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Ts =

∫ ∞

0

R(t)dt (5)

B. Reliability Improvement

The reliability improvement can be achieved through sev-
eral means, all of which are based on the concept of redun-
dancy. The concept of time redundancy is based on increasing
the time spent by a particular computation. Another concept
of reliability improvement is to utilize redundant information.
The information redundancy is based on Error Detection
And Correction (EDAC) codes. Although all of the means of
redundancy are closely related, the most fundamental principle
is to utilize the hardware redundancy.

Probably the most known principle of the hardware re-
dundancy is the Triple Modular Redundancy (TMR, 3MR)
which is based on a triplication of the component we intend
to improve reliability of [16]. The TMR is based on a static
backup using three functionally and structurally equivalent
elements. The structural schematic can be seen in Figure 2.
The two additional copies of the original functional unit are
incorporated into the system. The resulting units are named
F1, F2 a F3. The vectors of the input signals x are connected
in such a way that each of the functional units Fi works with
the same input values. The output signals fi(x) are connected
to the inputs of the so-called voter which implements the
so-called majority function. The majority function can be
implemented in different ways, the selection of the majority
can be performed on the level of bits, whole vector, etc. It is
important to note that in the following text, the TMR version
using a voter that works on the per-bit basis is consulted.
The voter is built with the use of n instances of the so-called
majority gate with the n equal to the number of output bits of
F1 (which is the same for all the Fi units).

F1

F2

F3

x
M

f3(x)

f2(x)

f1(x)

fm(x)

Fig. 2. A system module whose reliability was improved according to the
TMR method.

If we omit some edge cases, such as the case when the
faults compensate each other, it can be declared that this
implementation allows us to mask the failure of one module.
If we suppose that each of the Fi modules has an equivalent
reliability function R(t), then Equation 6 that can be used to
evaluate the resulting reliability function of the whole TMR
module exists.

RTMR(t) = 3[R(t)]2 − 2[R(t)]3 (6)

The TMR method is useful for tasks that last for a short
period of time where an improvement of the reliability function
is desired. For longer lasting tasks an option for faulty modules
recovery can be added. An overview of the reliability indicators
of the TMR systems is shown in Table I [13], [16].

TABLE I. AN OVERVIEW OF THE TWO MAIN RELIABILITY INDICATORS

OF THE TMR SYSTEMS.

Reliability indicator Input variables Value

Reliability Function R(t) R(t) of the original RTMR(t) = 3[R(t)]2

RTMR(t) functional unit −2[R(t)]3

Mean Time To Failure λ λ of the original
Ts(TMR) = 5

6λTs(TMR) functional unit

III. EVALUATION PLATFORM AND ROBOT CONTROLLER

CASE STUDY

The development of the experimental system and the evalu-
ation platform for monitoring faults injected into FPGA-based
system was the scope, among other, of our previous work [12].
A created experimental system can serve as a case study for a
discussed techniques demonstration which is also in this paper.
Because the digital controlling systems very often control
some mechanical part, we decided to create an evaluation
platform which can use an electro-mechanical application as
an experimental system. It can be stated that such areas exist
in which electro-mechanical applications are implemented as
fault-tolerant - aerospace and space applications can serve as
an example.

A. The Robot Controller - Experimental Electro-mechanical
System

Our experimental electro-mechanical system consists of a
robot for searching a path through a maze and its electronic
controller implemented in FPGA. Unfortunately, we do not
have a real robot device, so we use the simulation tool
Player/Stage [17] which allows us to simulate the robot and its
environment (in our case the robot in a maze). The robot sim-
ulation is executed on a computer which is connected with the
FPGA board by the Ethernet (see Figure 3) interface through
which data between the robot and its controller are transmitted.
The robot controller is composed of various functional units
which are interconnected through the central bus. There is
in total 16 functional units, the main ones are the Position
Evaluation Unit (PEU) and the Barrier Detection Unit (BDU)
which calculate actual position of the robot in a maze and
detect barriers in robot 4-neighborhoods. The Map Unit (MU)
stores calculated informations into the Map Memory Unit
(MMU) on which path searching realized by Path Finding Unit
(PFU) is based. Mechanical parts of the robot are controlled
by Engine Control Unit (ECU). Almost all of these functional
units are equipped with a control finite stat machine (FSM)
and a bus wrapper.

Fig. 3. The robot in maze and its electronic controller.

B. The Evaluation Platform for Monitoring Impact of Faults
on Electro-mechanical System

The evaluation platform is based on Functional Verification
[18]. The main task of the functional verification is to check if
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a verified circuit satisfies its specification. It compares outputs
of a verified circuit running in a RTL simulator with a reference
model implemented in another programming language (e.g.
C/C++). In the case of the fault injection, the verified circuit
must operate in FPGA, so we do not use classical simulation-
based functional verification, but modified FPGA-based func-
tional verification. Our platform uses functional verification as
a tool for monitoring impacts of faults injected into electronic
controller implemented into the FPGA.

The two main parts of the implemented evaluation platform
(see Figure 4) are a computer and an FPGA development
board. It allows us to implement a verified electronic controller
in FPGA and inject faults directly into FPGA. The fault
injector is a component which runs on the computer. Our
fault injector [19] is based on the partial reconfiguration. It
reads part of the configuration bitstream from the configuration
memory, then the required number of specified bits of the
bitstream are inverted and a modified bitstream is configured
back to the configuration memory through the JTAG interface.
The platform is designed to evaluate the impact of faults
on the electro-mechanical application, so the simulation of
the mechanical part is important and is also runned on the
computer. The simulation of the mechanical part is connected
with FPGA through the Ethernet interface. The software part
of verification environment is also runned on the computer and
performs the evaluation of impacts of injected faults on both
the electronic and mechanical parts.

Fig. 4. The architecture of our evaluation platform.

An important metric in functional verification is the cov-
erage. It measures how well input stimuli cover the behavior
of DUT and provide the feedback that determines when the
verification process can be ended. Depending on the required
coverage criteria, the Code coverage metrics can serve as
an example. Code coverage measures how well input stimuli
cover the source code of DUT. Typical code coverage metrics
are toggle, statement, branch, condition, expression or FSM
coverage.

IV. VERIFICATION SCENARIOS GENERATION

Input stimuli are values on the input of the electronic
controller on which output values are based on. In the case
of the robot controller, input values are changed during the
evaluation of one verification scenario (maze, start and goal
position). High code coverage was achieved by the set of
verification scenarios in our previous work. Actual experiments
are simplified because we are using only one verification
scenario (one maze) which proposes sufficient code coverage
and a suitable number of steps from start to goal position.

The principles of finding such a scenario are described in the
following text.

In our previous research [12], we used a set of different
verification scenarios (mazes) for monitoring the impact of
faults on the robot controller. These mazes achieved sufficient
code coverage for the verification of the proper function of the
robot controller, but the evaluation was very time consuming.
The reason was the execution of a large number of experiments
which monitors the influence monitoring on the mechanical
part of the robot that simulates path finding in a maze. For
these experiments, a set of mazes with size 15x15 cells was
used. The set reached the maximal code coverage 91.85%.
To accelerate the experiments presented in this paper and also
future experiments, we build on the premise of finding the one
ideal maze (including the start and goal position of the robot)
to ensure the correct behavior of the robot controller and to
achieve the previously reached maximal coverage. The found
mazes should contain a reasonable number of the robot steps
from the start to goal position in order to avoid insignificant
prolongation of the experiments. Finding the ideal maze and
its positions can be divided into three steps - maze generation,
maze selection based on the coverage, and maze selection with
the optimal number of steps.

A. Maze Generation

We constantly improve and generalize our test stimuli gen-
erator which is based on our designed universal architecture.
This architecture allows us to describe the desired test stimuli
through two specific input structures. The first structure is used
to describe the format of the stimuli, while the second structure
defines restrictive conditions on how the format has to be
constructed into a valid stimulus. In our previous research,
we used to define these structures by using our description
(language). The language was not general, therefore, a special
functionality to provide a valid stimulus had to be implemented
with every new type of supported system. We have managed
to generalize the test stimuli generator while maintaining the
defined universal architecture. Instead of our own language,
probabilistic context-free grammar (PCFG) was used. PCFG
was extended by restrictive conditions which dynamically
adjust the probabilities for rewriting the rules of grammar
during the test stimuli generation. In this way, we define a
new grammar the expressive power of which is much higher.
More information about PCFG extended with constraints may
be found in [20].

Using this new grammar, we are also able to describe and
generate a maze, where a way between any two points exists.
To generate the maze, we use the principles of the binary tree
algorithm which can be encoded into our grammar. The basic
principle of the binary tree algorithm is shown in Figure 5. It
starts from the basic matrix of the maze (a) in which some cells
are tightly specified - either a corridor or a wall. The corridors
are represented by a white color and walls by a black color.
Cells marked with a question mark represent areas that can take
the white or black color. In order to maintain the continuity
from any corner of the maze to another, it is necessary to
perform a modification of the basic matrix of the maze so
that each two adjacent sides of the maze must contain the
corridor over its entire dimension (b). In our case, we chose
this corridor to the northern and the western side of the maze.
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The final and most critical task is to determine cells A, B, C, D
which allows us to have the maximal continuous maze (c). If
cell A, respectively C, was randomly selected for the corridor
in Figure 5.b, then cell B, respectively D, will be a wall and
vice versa. Such mazes may be generated directly into the
binary file (picture) in Bitmap format (BMP), including start
and goal positions which can be differentiated by a color.

Fig. 5. The demonstration of a conversion of the basic matrix of the maze
for needs of the generator.

For the selection of the one maze with maximal coverage,
we have generated 300 different mazes with dimensions of
7x7, 15x15, and 31x31 cells by using the described approach.
The mazes also have different start and goal positions. The
coverage of individual mazes and the differences between
different dimensions are shown in Figure 6 with a box plot
graph. The upper dash shows the maximal achieved coverage
and the lower dash shows the minimal achieved coverage for
the set of mazes. The inner line in the chart represents the
median value of the coverage. The last shown range defines
the first (25% of all values) and third (75% of all values)
quartiles. In the figure, it can be seen that with increasing the
size of the maze, accomplishment of the maximal coverage
occurs more frequently due to the execution of more steps of
the robot during the path finding in the maze. It is also evident
that some mazes with dimensions 15x15 and 31x31 cells are
able to achieve maximal coverage. Therefore, we calculated
the average number of steps of the robot for each size of the
maze - 13 steps for dimensions of 7x7, 125 steps for 15x15,
and 539 steps for 31x31 cells. Based on this information,
we have chosen the maze with dimensions of 15x15 cells
with maximal coverage 91.85% for further experiments. The
inability of achieving an ideal of 100% is caused by the default
branches in the source code which are never executed (which
is correct), and also by some of the control expressions that
are used only when an abnormal situation occurs (e.g. a fault).

Fig. 6. The Box and whisker chart helps select the right one maze for the
robot controller with maximal total coverage in functional verification.

B. Maze Selection With the Optimal Number of Steps

The final step is to select the one maze with dimensions of
15x15 cells which has the optimal number of steps of the robot

from the start to the goal position. This condition is important
because a maze with the long way has the same coverage as the
maze with the short way, but multiple steps do not bring any
profit and just prolong the time to perform the experiments.
On the other hand, the short mazes can cause a problem with
the detection of a fault which may not occur in a short time.
Among our test set of generated mazes with dimensions of
15x15 cells, we chose the maze with the maximal coverage of
91.85% and with the number of steps equal to 51 which is an
optimal number from our point of view. The selected maze,
including start and goal positions, and the way that the robot
must follow, is shown in Figure 7.

Fig. 7. The selected maze for the robot controller and its path between the
start and goal position which the robot found.

V. RELIABILITY ANALYSIS WITH EXPERIMENTAL

EVALUATION

The subject of this research is to evaluate some of the basic
reliability indicators of the robot controller unit which had
already been used in our previous research presented in Section
III and its fault-tolerant version that is implemented the TMR
method. The other subject of this research is to find out if the
process of the evaluation technique of the fault-tolerant robot
controller could be estimated by an analysis of the nondurable
robot controller system followed by an application of equations
to convert the reliability indicators to estimate the indicators
of the fault-tolerant controller.

A. Data Acquisition

At first, to be able to practically evaluate the parameters of
the robot controller and to verify that the equation mentioned
is applicable in our concept, two robot controller versions
were created. The first version that is referenced to as to
the noft version is actually the initial nondurable system we
started with. The noft version includes one component only
– the instance of robot controller alone named the rc. The
second version that is labeled the tmr was implemented using
three instances of the rc robot controller component from the
previously mentioned noft version and a voter. The components
are named rc1, rc2 and rc3. It is important to note the voter
itself was not subject to evaluation. The resources consumed
for both of the versions are shown in Table II.

TABLE II. RESOURCES CONSUMED FOR BOTH VERSIONS OF THE

ROBOT CONTROLLER UNITS.

Version
Occupied Slice Slice Max freq. LUT bits

slices [−] reg. [−] LUTs [−] [MHz] used [−]

noft 1080 1617 1708 93.76 108480
tmr 2991 4755 5165 93.76 329824

For the practical evaluation of these two robot controller
versions, verification environment presented in Section III was
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used. The fault injection our verification environment utilizes
was set up with a constant SEU injection rate. The SEUs
were injected to the bits of the bitstream that are utilized
in the design and represent the content of Look-Up Tables
(LUTs) at the same time. If we suppose that component c is
subject to SEU fault injection, then the important parameter to
unambiguously describe this type of fault injection is a time
delay dc between two consecutive SEUs injected to c. The
dc actually does not necessarily have to be constant for the
whole time of the SEU simulation, it can be represented by
a random variable with a particular probability distribution.
In our experiments, we have experimentally chosen the dc to
be described by the uniform distribution with a mean value of
12 s and a variance of 2 s.

The scenario of one verification run was as follows:

1) the robot controller unit was configured into its initial
state, the maze map as well as its starting and target
positions were the same for all the verification runs,

2) the Player/Stage simulation environment was started,
the robot was placed on the starting position,

3) after 15 s, for each component c, the SEU injection
started with the dc time period between SEUs based
on the uniform distribution with the mean value of
12 s and variance of 2 s, the bits to inject SEU to
were selected uniformly at random,

4) mainly, the time from the robot start to the first failure
observed was monitored, moreover, the ability of the
robot to reach the target position was observed as
well.

This verification scenario was repeated 3500 times for both
of the two versions of the robot controller units. The data
acquired included the time of the first failure occurrence and
information on whether the robot successfully reached the
target position.

B. Method of Reliability Indicators Calculation

The data obtained from the previously described exper-
iments were then processed. The multi-set of all the times
measured from the start of the operation of the system to
the first detection of an error on the system outputs was
transformed to a discrete failure function Q(t) which was then
converted to the reliability function R(t). The other reliability
indicators included are the failure density f(t) and failure
rate λ(t).

All the data for the noft, tmr robot controller unit versions
and the estimation of parameters for the tmr version are
discretized with the time-step of 15 s in Table III. The
rows that are marked with est. contain the estimations of the
reliability function for the given time-steps calculated using
Equation 6. From there, the other reliability indicators (failure
function, failure density and failure rate) were calculated using
Equations 2, 3 and 4 from Section II respectively. The final
values of the reliability functions on the bottom of Table III
are not close to the limit value of zero, as in most cases the
faults injected did not appear in the form of an error on the
outputs of the robot controller unit. The threshold time length
the robot had to find its path within was evaluated to 204 s,
that is also the maximum time for which the system has been
verified.

TABLE III. A DISCRETIZATION OF THE MEASURED RELIABILITY

PARAMETERS OF THE noft AND tmr ROBOT CONTROLLER UNITS WITH THE

ESTIMATION OF THE PARAMETERS FOR THE tmr ROBOT CONTROLLER.

Time t First err. detect. Q(t) R(t) f(t) λ(t)
[s] [−] [%] [−] [−] [−] [−]

0− 14.9̄
noft 0 0.0% 0.00 1.00 0.0000 0.0000
tmr 0 0.0% 0.00 1.00 0.0000 0.0000
est. − 0.0% 0.00 1.00 0.0000 0.0000

15− 29.9̄
noft 6 0.2% 0.00 1.00 0.0001 0.0001
tmr 1 0.0% 0.00 1.00 0.0000 0.0000
est. − 0.0% 0.00 1.00 0.0000 0.0000

30− 44.9̄
noft 9 0.3% 0.00 1.00 0.0002 0.0002
tmr 0 0.0% 0.00 1.00 0.0000 0.0000
est. − 0.0% 0.00 1.00 0.0000 0.0000

45− 59.9̄
noft 35 1.0% 0.01 0.99 0.0007 0.0007
tmr 8 0.2% 0.00 1.00 0.0002 0.0002
est. − 0.0% 0.00 1.00 0.0000 0.0000

60− 74.9̄
noft 28 0.8% 0.02 0.98 0.0005 0.0005
tmr 25 0.7% 0.01 0.99 0.0005 0.0005
est. − 0.0% 0.00 1.00 0.0000 0.0000

75− 89.9̄
noft 8 0.2% 0.02 0.98 0.0002 0.0002
tmr 11 0.3% 0.01 0.99 0.0002 0.0002
est. − 0.0% 0.00 1.00 0.0000 0.0000

90− 104.9̄
noft 47 1.3% 0.04 0.96 0.0009 0.0009
tmr 53 1.5% 0.03 0.97 0.0010 0.0010
est. − 0.2% 0.00 1.00 0.0001 0.0001

105− 119.9̄
noft 42 1.2% 0.05 0.95 0.0008 0.0008
tmr 36 1.0% 0.04 0.96 0.0007 0.0007
est. − 0.2% 0.00 1.00 0.0001 0.0001

120− 134.9̄
noft 52 1.5% 0.06 0.94 0.0010 0.0011
tmr 34 1.0% 0.05 0.95 0.0006 0.0007
est. − 0.2% 0.01 0.99 0.0002 0.0002

135− 149.9̄
noft 36 1.0% 0.08 0.92 0.0007 0.0007
tmr 47 1.3% 0.06 0.94 0.0009 0.0010
est. − 0.4% 0.01 0.99 0.0003 0.0003

150− 164.9̄
noft 42 1.2% 0.09 0.91 0.0008 0.0009
tmr 33 0.9% 0.07 0.93 0.0006 0.0007
est. − 0.3% 0.01 0.99 0.0002 0.0002

165− 179.9̄
noft 50 1.4% 0.10 0.90 0.0010 0.0011
tmr 48 1.4% 0.08 0.92 0.0009 0.0010
est. − 0.6% 0.02 0.98 0.0004 0.0004

180− 194.9̄
noft 45 1.3% 0.11 0.89 0.0009 0.0010
tmr 46 1.3% 0.10 0.90 0.0009 0.0010
est. − 0.7% 0.03 0.97 0.0004 0.0004

195− 209.9̄
noft 856 24.5% 0.36 0.64 0.0163 0.0254
tmr 787 22.5% 0.32 0.68 0.0150 0.0221
est. − 21.8% 0.25 0.75 0.0146 0.0193

Fig. 8. An experimental evaluation of the measured results of the reliability
function for the noft and the tmr versions.

The results of our research can be seen from two different
points of view. The first point of view is from the improvement
of the reliability by the TMR application. As can be seen in
the chart on Figure 8, it is evident that the implementation
of the TMR method improved the reliability of the robot
controller unit in each of the time-steps we used to discretize
the calculation. As a known fact, the chart shows the TMR
without faulty modules recovery is useful mainly for shorter
mission times. From the second point of view, there is a
considerable difference between the estimated and measured
parameters for the tmr version of the robot controller unit.
One reason we believe could possibly cause this phenomenon
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is the fact the evaluation was done with the fault injections
to the LUTs only. Another consideration includes a possible
problem within the method of the calculation. In order to find
out the true reason for this, disproportion is seen by us as a
good direction for future research.

VI. RELIABILITY IMPROVEMENT BY PARTIAL DYNAMIC

RECONFIGURATION

The results of our research demonstrated in the previous
parts of this paper is the increase of system reliability by
using the TMR approach. TMR is naturally only a passive
approach [21], which is capable of delivering correct output
when a fault occurs. However, just fault masking means that
FPGA is not fully utilized – namely the ability of changing its
configuration. Therefore, the extension of the passive by active
approach is very effective. The active approach of avoiding the
impact of fault occurrence is based on a reconfiguration. The
combination of passive and active approaches is described in
[22]. The utilization of a reconfiguration controller to eliminate
faults in FPGA based applications is a key technique for such
approaches. This controller is responsible for scrubbing and
other activities combined with bitstream relocation. A Partial
Dynamic Reconfiguration (PDR) is very advantageous when
used because it does not interrupt other functions implemented
in FPGA. Therefore, PDR is a very important approach for crit-
ical applications and Generic Partial Dynamic Reconfiguration
Controller (GPDRC) [23] is an example of such a controller
used for this purpose. An extension of the TMR majority voter
function is demanded to acquire information on which module
a fault has occurred. This extension resides in adding an output
from the voter, which identifies the malfunction module whose
output value is different from the other two. Mitigation of
faults that occur in individual TMR modules is possible due
to the GPDRC existence in the design. Such an approach
increases the reliability of a particular system.

A. PDR Controller Requirement
The requirement of including more components to FPGA

necessarily represents sufficient FPGA size. However, larger
and more expensive FPGA will be a requisite for achieving
fault tolerance improvement. Possibly, a reconfiguration con-
troller can be configured in FPGA with the application, or as
another component which has to be included into the system
(i.e. an extra FPGA). However, the increase in occupied FPGA
area is manifested in both cases. The probability of hitting the
utilized part of FPGA by some fault, which can cause a circuit
malfunction, increases concurrently with its reliability. Faults,
which hit the TMR module, are not important because the
reconfiguration controller will fix them. Nevertheless, some
faults can hit the reconfiguration controller that will behave
in an incorrect way. It can cause ultimate system breakdown
even if this system behavior is presumed. The malfunction-
ing controller might occasionally destroy a correct circuit
configuration due to a reconfiguration which is performed
unexpectedly. If the controller area in FPGA is considerably
smaller than the application in TMR, the controller should
provide longer failure-free time compared with triplication.

The reconfiguration controller is utilized to deliver bit-
streams into the FPGA configuration memory during the
PDR procedure. These bitstreams are called golden bitstreams.
Special memory can be used to save them. When a fault is
identified, the controller then loads and applies corresponding

bitstreams from this memory which should be protected against
faults as well. The records can be equipped with a correction
code. Another component which can possibly be included in
the FPGA produces higher FPGA area requirements. Another
possibility is the utilization of module triplication (TMR).
When there is a fault in one module, the remaining two
modules are still faultless. Therefore, three bitstreams of
three modules are downloaded from the FPGA configuration
memory. Then, a new bitstream is prepared as a majority value
of each bit of these bistreams. This new bitstream is used for
fixing faults instead of using golden bitstream. This approach
is called Lazy Scrubbing [24] by M. Garvie.

B. Fault Tolerant PDR Controller
Fault tolerance of a reconfiguration controller might be

also required in some applications. The same technique as
for protected circuit can possibly be used (i.e. TMR). The
reconfiguration controller will then be implemented three times
in FPGA and each of its instances will operate in parallel with
the remaining two. The outputs from each instance will be
compared and when a controller malfunction is detected, the
other two correctly functioning controllers will be capable of
reconfiguring the incorrectly working one. Even in this case,
when two controllers reconfigure the third one simultaneously,
it is possible to check fault occurrence. Because outputs of the
two correctly working controllers are compared and if they are
equal, no fault exists there. This approach corresponds to the
Duplication with Comparison (DwC) method. Nevertheless,
in the case of fault occurrence in DwC architecture it is
impossible to determine which controller works incorrectly. It
is important to note that the fault tolerance for reconfiguration
controller has a negative impact on FPGA area and circuit
delay – because of a majority voter addition to the system.

C. Research in the Area of GPDRC
Two versions of the PDR controller for FPGA, which we

designate as GPDRC, were designed and implemented within
our research group. The first version of the controller [23]
is capable to mitigate transient faults i.e. SEUs. The second
expanded version of the controller [25] is focused on the
mitigation of permanent faults too. The permanent fault is a
fault when some bits of FPGA configuration memory are in an
incorrect state without a possibility to change it. Some spare
modules for TMR are available in the FPGA to be used in
these situations. These modules are able to be used instead of
another TMR module with a permanent fault. When all spare
modules are exhausted and one more permanent fault occurs,
fault protection degrades to only DwC. The next permanent
fault causes circuit function termination.

Previous research aims at ensuring fault tolerance for the
circuit function itself. However, fault tolerance for the recon-
figuration controller itself is not provided. The controller has to
be in a radiation protection component outside FPGA, which
performs its function. It is certainly not the only alternative of
protecting the reconfiguration controller against faults.

Future research in the area of GPDRC will be oriented to
bringing fault tolerance into the GPDRC design. The utilization
of the TMR approach for the design of a fault tolerant GPDRC
is an idea for future research. This approach is based on placing
three equivalent controllers into the FPGA and connecting
their outputs to a special majority voter. The experiments
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with this approach will be executed and compared with the
version which contains just one reconfiguration controller.
In both cases, the reconfiguration controller will guarantee
the proper function of a robot controller, which is described
herein. Certainly, this is only a passive approach for fault
tolerance, which is not sufficient for proper attenuation of
the SEU impact on the FPGA. Therefore, we will solve how
to perform reconfiguration of the malfunction controller by
another two controllers which operate correctly. Obviously,
the malfunction reconfiguration controller must not interfere
in its reconfiguration. However, that problem will be solved
by a majority voter, which masks one incorrect output due to
another two correct outputs. We will ensure fault tolerance
for majority voters after thorough testing and comparison
with previous versions. The majority voters remain as the last
unprotected component of the system.

VII. CONCLUSIONS AND FUTURE RESEARCH

In this paper we introduced the combination of fault
injection-based experimental evaluation and theoretical relia-
bility analysis of our previously developed robot controller.
Our previous work was targeted mainly towards the exper-
imental evaluation, but we feel that the theoretical reliability
analysis has also important place in our evaluation process. We
applied a commonly used TMR on the top level of the robot
controller (there were three instances of the robot controller
complemented with the majority voter). The first step was
the fault injection-based experimental evaluation of the robot
controller without TMR applied and its reliability indicators
calculation. The calculation of reliability indicators of the
TMR version was done in the second step, then we gained
estimated reliability indicators. Reliability indicators of the
TMR version were also evaluated by fault injection. These
experiments show us that TMR has a significant impact on the
reliability indicator and improves reliability of the hardened
robot controller. When we compare a measured and estimated
reliability indicator we found that the measured values are not
so good as the estimated ones. We outlined possible causes
which are in the scope of our future research.
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