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Abstract. This paper investigates the reduction of scattered context grammars with respect to the
number of non-context-free productions. It proves that every recursively enumerable language is
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An open problem is formulated.

Keywords: Scattered context grammars, size reduction, the number of non-context-free pro-
ductions, parallel productions, computational completeness, descriptional complexity

1. Introduction

Formal language theory has always aimed at reducing their grammars as much as possible (for an
overview of results concerning this reduction in terms of classical grammars, consult Sections 1.2
and 1.3 in Chapter 4 in [1]). As a central topic, this line of research has studied how to reduce
the number of grammatical components, such as nonterminals or productions, without disturbing the
generative power. The present paper contributes to this line of research in terms of scattered context
grammars introduced in [2] (for an overview of important results concerning the reduction in terms of
scattered context grammars, consult Chapter 6 in [3] and journal papers [4, 5, 6]).
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Concerning the number of nonterminals in scattered context grammars, two-nonterminal scattered
context grammars are computationally complete—that is, they characterize the family of recursively
enumerable languages (see [7]). On the other hand, one-nonterminal scattered context grammars are
less powerful (see [8]). In terms of the number of non-context-free productions, a reduction like this
is studied in [4] and [5]; most importantly, the question of whether scattered context grammars with a
single non-context-free production are computationally complete is formulated in the former.

The present paper reduces the number of non-context-free productions in scattered context gram-
mars. In fact, it proves that scattered context grammars with a single non-context-free production
are computationally complete. Of course, this statement represents the best possible result regarding
these reductions because scattered context grammars without any non-context-free production only
characterize the family of context-free languages which is properly included in the family of scattered
context languages.

2. Definitions

This paper assumes that the reader is familiar with formal language theory (see [9]), including scat-
tered context grammars (see [2], [3], [10]).

For a set, Q, card(Q) denotes the cardinality of Q. For an alphabet, V , V ∗ represents the free
monoid generated by V under the operation of concatenation. The unit of V ∗ is denoted by ε. Set
V + = V ∗ − {ε}; algebraically, V + is thus the free semigroup generated by V under the operation
of concatenation. For w ∈ V ∗, |w| and Reverse(w) denote the length of w and the reversal of w,
respectively. Furthermore, suffix(w) denotes the set of all suffixes of w, and prefix(w) denotes the
set of all prefixes of w. For w ∈ V ∗ and T ⊆ V , occur(w, T ) denotes the number of occurrences
of symbols from T in w, and Erase(w, T ) denotes the string obtained by removing all occurrences
of symbols from T in w. For instance, occur(abdabc, {a, d}) = 3 and Erase(abdabc, {a, d}) =
bbc. If T = {a}, where a ∈ V , we simplify occur(w, {a}) and Erase(w, {a}) to occur(w, a) and
Erase(w, a), respectively.

A scattered context grammar is a quadruple,G = (N,T, P, S), whereN and T are alphabets such
that N ∩ T = ∅. Symbols in N are referred to as nonterminals while symbols in T are terminals. N
contains S—the start symbol of G. P is a finite non-empty set of productions such that every p ∈ P
has the form

(A1, A2, . . . , An)→ (x1, x2, . . . , xn),

where n ≥ 1, and for all i = 1, 2, . . . , n, Ai ∈ N and xi ∈ (N ∪ T )∗. If n = 1, then (A1) → (x1)
is referred to as a context-free production; for brevity, we hereafter write A1 → x1 instead of (A1)→
(x1). If for some n ≥ 1, (A1, A2, . . . , An) → (x1, x2, . . . , xn) ∈ P, v = u1A1u2A2 . . . unAnun+1,
and w = u1x1u2x2 · · ·unxnun+1 with ui ∈ (N ∪ T )∗ for all i = 1, 2, . . . , n, then v directly derives
w in G, written as v ⇒ w [(A1, A2, . . . , An) → (x1, x2, . . . , xn)] or, simply, v ⇒ w in G. In the
standard manner, extend ⇒ to ⇒n, where n ≥ 0; then, based on ⇒n, define ⇒+ and ⇒∗. The
language of G, L(G), is defined as L(G) = {w ∈ T ∗ : S ⇒∗ w}. A derivation of the form S ⇒∗ w
with w ∈ T ∗ is called a successful derivation.
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Example 2.1. Let G = ({S,A,B,C,D}, {a, b, c, d}, P, S) be a scattered context grammar, where P
contains

1. S → ABCD

2. (A,C)→ (aA,Cc)

3. (B,D)→ (Bb, dD)

4. (A,C)→ (a, c)

5. (B,D)→ (b, d)

For instance, we can generate aaabbcccdd in the following successful derivation:

S ⇒ ABCD ⇒ ABbCdD ⇒ aABbCcdD ⇒

aaABbCccdD ⇒ aaAbbCccdd⇒ aaabbcccdd

Observe that L(G) = {ambncmdn : m,n ≥ 1} which is a non-context-free language.

A queue grammar (see [11]) is a sextuple, Q = (V, T,W,F, s,R), where V and W are alphabets
of symbols and states, respectively, satisfying V ∩W = ∅, T ⊆ V , F ⊆ W , s ∈ (V − T )(W − F ),
and R ⊆ (V × (W − F )) × (V ∗ ×W ) is a finite relation such that for every a ∈ V , there exists an
element (a, p, z, q) ∈ R. If u ∈ V +W and v ∈ V ∗W such that u = arp; v = rzq; a ∈ V ; r, z ∈ V ∗;
p, q ∈ W ; and (a, p, z, q) ∈ R, then u ⇒ v [(a, p, z, q)] in Q or, simply, u ⇒ v. In the standard
manner, extend⇒ to⇒n, where n ≥ 0; then, based on⇒n, define⇒+ and⇒∗. The language of Q,
L(Q), is defined as L(Q) = {w ∈ T ∗ : s⇒∗ wf , f ∈ F}.

As a slight modification of the notion of a queue grammar, we introduce the notion of a left-
extended queue grammar (see [12]) such that it is a queue grammar that during every derivation step
shifts the rewritten symbol in front of the beginning of its sentential form; in this way, it records the
derivation history in front of the special symbol #. The derivation history plays a crucial role in
the proof of Lemma 3.7 in the next section. Formally, left-extended queue grammar is a sextuple,
Q = (V, T,W,F, s,R), where V, T,W,F , and s are defined as in a queue grammar. R ⊆ (V × (W −
F )) × (V ∗ ×W ) is a finite relation (as opposed to an ordinary queue grammar, this definition does
not require that for every a ∈ V , there exists an element (a, p, z, q) ∈ R). Furthermore, assume that
# /∈ V ∪W . If u, v ∈ V ∗{#}V ∗W so that u = w#arp; v = wa#rzq; a ∈ V ; r, z, w ∈ V ∗; p, q ∈
W ; and (a, p, z, q) ∈ R, then u⇒ v [(a, p, z, q)] in Q or, simply, u⇒ v. In the standard manner, we
extend⇒ to⇒n, where n ≥ 0; then, based on⇒n, define⇒+ and⇒∗. The language of Q,L(Q), is
defined as L(Q) = {v ∈ T ∗ : #s⇒∗ w#vf for some w ∈ V ∗ and f ∈ F}.

In general, two grammars are equivalent if both generate the same language.

Example 2.2. Let Q = (V, T,W,F, s,R) be a left-extended queue grammar, where V = {S, $, a},
T = {a}, W = {p, f}, F = {f}, s = Sp, and R contains

1. (S, p, $a, p)

2. ($, p, $, p)



364 Z. Křivka and A. Meduna / Scattered Context Grammars with One Non-Context-Free Production

3. (a, p, aa, p)

4. ($, p, ε, f)

For instance, we can generate aaaa in the following successful derivation (for brevity, in the
brackets, we only use the labels denoting the productions above):

#Sp⇒ S# $ap [1]⇒ S$ # a$p [2]⇒ S$a# $aap [3]⇒ S$a$ # aa$p [2]⇒

S$a$a# a$aap [3]⇒ S$a$aa# $aaaap [3]⇒ S$a$aa$ # aaaaf [4]

To give a more general insight into derivations in Q, consider any sentential form w. Observe that
w has this form

S$a$aa$ · · ·#aa · · · aaq

That is, w consists of three parts—(1) the part preceding # represents, intuitively speaking, the
rewriting history, (2) the rightmost symbol q is the current state, and (3) in between # and q, the queue
of as, processed in the left-to-right way, occurs. On sentential forms of this form, Q works so it places
aa at the queue end for each a read at the queue head. Whenever $ is read, Q can either repeat this
doubling mechanism or enter f , thus successfully completing the derivation. As a result, the length of
any sentence in L(Q) is a power of two.

Observe that L(Q) = {a2n : n ≥ 0} which is a non-context-free language.

3. Results

This section demonstrates that for every recursively enumerable language, L, there exists a scattered
context grammar, G = (N,T, P, S), such that L = L(G) and P contains a single non-context-free
production of the form (1, 2, 0, 3, 0, 2, 1) → (2, ε, ε, ε, ε, ε, 2). This demonstration is based on left-
extended queue grammars, which are computationally complete (see Theorem 4.3 in [13]).

Next, we establish the first normal form of left-extended queue grammars, subsequently used in
the proofs of Lemmas 3.4 and 3.7. In essence, in this form, these grammars never rewrite terminals;
in addition, at the queue end represented by the rightmost symbol of the sentential form occurring in
front of the current state, they produce strings consisting purely of either terminals or nonterminals.

Definition 3.1. Let Q = (V, T,W,F, s,R) be a left-extended queue grammar. Q is said to be in
normal form 1 if every (a, p, x, q) ∈ R satisfies a ∈ V − T , p ∈ W − F , q ∈ W , and x ∈
((V − T )∗ ∪ T ∗).

Next, we show how to turn any left-extended queue grammar H to an equivalent left-extended
queue grammar Q in normal form 1. To give an insight into this transformation, consider any success-
ful generation of x from L(H) in H . By using two-component states and extra symbol 1, Q simulates
this generation in the following three phases.

(i) Before applying productions that generate only terminals, Q performs the generation exactly
like H does except that Q only uses nonterminals, each of which encodes a symbol from H .
Noteworthy, terminals of H are encoded in this way, too.
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(ii) Q generates an extra symbol 1 that marks the position behind which only terminals can be
produced.

(iii Q enters a special two-component state, rewrites 1 and goes on generating only terminals to
obtain x as the result.

Lemma 3.2. For every left-extended queue grammarH , there exists an equivalent left-extended queue
grammar Q in normal form 1.

Proof:
Let H = (V̄ , T, W̄ , F̄ , s̄, R̄) be any left-extended queue grammar. Set W̄

′
= {q′ : q ∈ W̄}, W̄ ′′

=
{q′′ : q ∈ W̄}, and V̄

′
= {a′ : a ∈ V̄ }. Define the bijection α from W̄ to W̄

′
as α(q) = q

′
for every

q ∈ W̄ . Analogously, define the bijection β from W̄ to W̄
′′

as β(q) = q
′′

for every q ∈ W̄ . Finally,
define the bijection δ from V̄ to V̄

′
as δ(a) = a

′
for every a ∈ V̄ . In the standard manner, extend δ so

it is defined from V̄ ∗ to (V̄
′
)∗. Set

U = {〈y, q〉 : y ∈ T ∗, q ∈ W̄ , and (a, p, xy, q) ∈ R̄ for some a ∈ V̄ , p ∈ W̄ − F̄ , x ∈ V̄ ∗}

Consider new objects 1, f outside δ(V̄ ) ∪ T ∪ α(W̄ ) ∪ β(W̄ ) ∪ U . Set V = δ(V̄ ) ∪ {1} ∪ T ,
W = α(W̄ )∪β(W̄ )∪{f}∪U , F = {f}, and s = δ(a)α(q) where s̄ = aq. Define the left-extended
queue grammar

Q = (V, T,W,F, s,R)

with R constructed in the following way:

I. if (a, p, xy, q) ∈ R̄, where a ∈ V̄ ; p ∈ W̄ − F̄ ;x, y ∈ V̄ ∗; and q ∈ W̄ , then add (δ(a), α(p),
δ(x)δ(y), α(q)) and (δ(a), α(p), δ(x)1δ(y), α(q)) to R;

II. if (a, p, xy, q) ∈ R̄, where a ∈ V̄ ; p ∈ W̄ − F̄ ;x ∈ V̄ ∗; y ∈ T ∗; q ∈ W̄ ; and 〈y, q〉 ∈ U , then
add (δ(a), α(p), δ(x), 〈y, q〉) and (1, 〈y, q〉, y, β(q)) to R;

III. if (a, p, x, q) ∈ R̄,where a ∈ V̄ ; p ∈ W̄ −F̄ ;x ∈ T ∗; and q ∈ W̄ , then add (δ(a), β(p), x, β(q))
to R;

IV. if (a, p, x, q) ∈ R̄, where a ∈ V̄ ; p ∈ W̄ − F̄ ;x ∈ T ∗; and q ∈ F̄ , then add (δ(a), β(p), x, f) to
R (recall that F = {f}).

Clearly, for every (a, p, x, q) ∈ R, we have a ∈ V −T , p ∈W −F , q ∈W , and x ∈ ((V −T )∗∪
T ∗). Next, we prove that L(H) = L(Q).

To see that L(H) ⊆ L(Q), consider any v ∈ L(H). As v ∈ L(H),

#s̄⇒∗ w#vt

in H,w ∈ V̄ ∗, v ∈ T ∗, and t ∈ F̄ . Express #s̄⇒∗ w#vt in H as

#s̄⇒∗ u#zp⇒ ua#xyq ⇒∗ w#vt
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where a ∈ V̄ , u, x ∈ V̄ ∗, y ∈ prefix(v), z = ax,w = uax, and during ua#xyq ⇒∗ w#vt, only
terminals are generated so that the resulting terminal string equals v. Q simulates #s̄ ⇒∗ u#zp ⇒
ua#xyq ⇒∗ w#vt as follows. First, Q uses productions introduced in I to simulate #s̄ ⇒∗ u#zp.
During this initial simulation, it once uses a production that generates 1 so that it can then simulate
u#zp⇒ ua#xyq by making two derivation steps according to productions (δ(a), α(p), δ(x), 〈y, q〉)
and (1, 〈y, q〉, y, β(q)) (see II). Notice that by using (1, 〈y, q〉, y, β(q)), Q produces y, which is a
prefix of v. After the application of (1, 〈y, q〉, y, β(q)), Q simulates ua#xyq ⇒∗ w#vt by using
productions introduced in III followed by one application of a production constructed in IV, during
which Q enters f and, thereby, completes the generation of v. Thus, L(H) ⊆ L(Q).

To establish that L(Q) ⊆ L(H), consider any v ∈ L(Q). Since v ∈ L(Q),

#s⇒∗ w#vf

in Q, where w ∈ V ∗ and v ∈ T ∗. Examine I through IV. Observe that Q passes through states of
α(W̄ ), U, β(W̄ ), and {f} in this order so that it occurs several times in states of α(W̄ ), once in a
state of U , several times in states of β(W̄ ), and once in f . As a result, Q uses productions intro-
duced in I, and during this initial part of derivation it precisely once uses a production that generates
1 (observe that any subsequent generation of 1 would rule out the generation of a terminal string).
After this, it can make two consecutive derivation steps according to (δ(a), α(p), δ(x), 〈y, q〉) and
(1, 〈y, q〉, y, β(q)) (see II). By using the latter, Q produces y, which is a prefix of v. After the applica-
tion of (1, 〈y, q〉, y, β(q)), Q applies productions introduced in III, which always use states of β(W̄ ).
Finally, it once applies a production constructed in IV to enter f and, thereby, complete the generation
of v. To summarize these observations, we can express #s⇒∗ w#vf in Q as

#s⇒∗ u#zp⇒ ua#xyq ⇒∗ w#vf

where a ∈ V, x ∈ V ∗, y ∈ T ∗, w = uax so that during #s⇒∗ u#zp, Q uses productions introduced
in I, then it applies (1, 〈y, q〉, y, β(q)) from II to make u#zp ⇒ ua#xyq, and finally it performs
ua#xyq ⇒∗ w#vf by several applications of productions introduced in III and one application of a
production constructed in IV. At this point, by an examination of I through IV, we see that H makes

#s̄⇒∗ u#zp⇒ ua#xyq ⇒∗ w#vt

with t ∈ F̄ , so v ∈ L(H). Therefore, L(H) ⊆ L(Q).

As L(H) ⊆ L(Q) and L(Q) ⊆ L(H), L(H) = L(Q). ut

Next, we establish the second normal form of left-extended queue grammars, subsequently used
in the proof of Lemma 3.7. This normal form requests any left-extended queue grammar in normal
form 1 to satisfy the following property:

(a, p, x, q) ∈ R and (a′, p, x′, q′) ∈ R imply that a = a′

where a, a′ ∈ V − T , p ∈W − F , q, q′ ∈W and x, x′ ∈ (V − T )∗ ∪ T ∗.
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Definition 3.3. Let Q = (V, T,W,F, s,R) be a left-extended queue grammar. Q is said to be in
normal form 2 if it is in normal form 1 and in addition, for every p ∈ W − F , there is no more than
one a ∈ V − T such that (a, p, x, q) ∈ R, where x ∈ (V − T )∗ ∪ T ∗ and q ∈W .

Next, we explain how to convert any left-extended queue grammar H in normal form 1 to an
equivalent left-extended queue grammar Q in normal form 2. To give a brief insight into this conver-
sion, every state in Q is of the form 〈q, a〉, where q is a state from H and a is a nonterminal. In fact, a
prescribes the nonterminal that has to be rewritten at the beginning of the queue when simulating the
rewriting in the original state q. To complete this insight, let us point out that for any a, a′ ∈ V − T ,
Q has to change the current state to 〈q, a〉 or 〈q, a′〉 in order to rewrite a or a′, respectively.

Lemma 3.4. For every left-extended queue grammarH , there exists an equivalent left-extended queue
grammar Q in normal form 2.

Proof:
Let H = (V, T, W̄ , F, s̄, R̄) be any left-extended queue grammar in normal form 1, where s̄ = a0q0,
a0 ∈ V − T , and q0 ∈ W̄ − F . Set W = {〈q, a〉 : q ∈ W̄ , a ∈ V − T} ∪ F , and let s = a0〈q0, a0〉.
Define the left-extended queue grammar Q = (V, T,W,F, s,R) with R constructed in the following
way:

(1) if (a, p, y, q) ∈ R̄, where a ∈ V−T , p, q ∈ W̄−F , y ∈ (V−T )∗∪T ∗, then add (a, 〈p, a〉, y, 〈q, b〉)
to R, for all b ∈ V − T ;

(2) if (a, p, y, q) ∈ R̄, where a ∈ V − T , p ∈ W̄ − F , y ∈ T ∗, and q ∈ F , then add (a, 〈p, a〉, y, q)
to R.

Clearly, in Q, we can rewrite symbol a that follows # if and only if we are in state 〈p, a〉 from
W − F for some p ∈ W̄ . Next, we demonstrate that L(H) = L(Q).

To see that L(H) ⊆ L(Q), consider any w ∈ L(H). As w ∈ L(H), there is a derivation

#s̄⇒∗ γ#cvq ⇒ γc#vyf

inH where c ∈ V −T , q ∈ W̄−F ,w = vy, and f ∈ F . To every derivation step z#axp⇒ za#xx′p′

from #s̄ ⇒∗ γ#cvq in H where a ∈ V − T , p, p′ ∈ W̄ − F , and x′ ∈ V ∗, there is a corresponding
derivation step in Q

z#ax〈p, a〉 ⇒ za#xx′〈p′, b〉

where a ∈ V − T and 〈p, a〉, 〈p′, b〉 ∈W − F .

The inclusion L(Q) ⊆ L(H) is obvious as well. Q starts from #a0〈q0, a0〉 and continues the
derivation by performing steps of this form

z#ax〈p, a〉 ⇒ z′#x〈q, b〉

where a, b ∈ V − T , x, z, z′ ∈ V ∗, and 〈p, a〉, 〈q, b〉 ∈ W . Observe that every derivation step
performed in Q corresponds to exactly one step in H . In addition, Q non-deterministically chooses
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a symbol b by entering state 〈q, b〉 one step earlier than H does; however, this entrance is actually be
performed only if Q has properly chosen b, which can be rewritten in state q from W̄ . In the last step,
Q enters the final state from F . ut

The upcoming Lemmas 3.5 and 3.7 are crucially important because their construction parts turn
any left-extended queue grammar Q to an equivalent scattered context grammar G with a single non-
context-free production—that is, the objective of this paper as a whole. In essence, the proof of Lemma
3.5 turns any left-extended queue grammar to an equivalent scattered context grammar H satisfying
a prescribed property concerning the way it works, after which the proof of Lemma 3.7 transforms
H , resulting from Lemma 3.5, to an equivalent scattered context grammar with one non-context-free
production. As obvious, both lemmas might be combined and proved as a single statement. However,
a proof like this would be so unbearably complicated that we undertake the two-lemma approach in
what follows. Before that, however, we briefly sketch both Lemma 3.5 and Lemma 3.7 slightly more
precisely.

In the construction part of the proof of Lemma 3.5, we turn any left-extended queue grammar Q
satisfying normal form 2 to an equivalent scattered context grammar H in the following way. Take
any x ∈ L(Q). Every successful derivation of x in Q is simulated in H by a derivation consisting
of two phases. During the first phase, in an utterly non-deterministic way, by using only context-free
productions, it derives uxv from its start symbol. During the second part, by using only non-context-
free productions, in an inside-out way, it gradually eliminates u and v and, thereby, verifies that the first
non-deterministic phase of simulation has been actually performed properly. In this way, it generates
x. Thus, L(H) = L(Q).

Then, Lemma 3.7 demonstrates that for any left-extended queue grammar Q, there is an equiv-
alent scattered context grammar with a single non-context-free production—the goal of the present
study. Without any loss of generality, the construction part of the proof of Lemma 3.7 assumes that
Q is transformed to a scattered context grammar H that works in the way described in Lemma 3.5
and turns it to an equivalent scattered context grammar G with a single non-context-free production
in the following way. First, it encodes the nonterminals in H by codes over {0, 1, 2, 3}. Then, it in-
troduces (1, 2, 0, 3, 0, 2, 1)→ (2, ε, ε, ε, ε, ε, 2) as its only non-context-free production. By using this
production, it removes u and v by analogy with the way performed in the proof of Lemma 3.5.

To give an intuitive and more detailed insight into Lemma 3.5, take any left-extended queue gram-
mar Q. Lemma 3.5 says that there exists a scattered context grammar H such that L(Q) = L(H) and,
in addition, H simulates every successful generation #s⇒∗ w#yf in Q, y ∈ L(Q), in the following
two-phase way.

(i) In a non-deterministic and context-free way, H generates a sentential form corresponding to a
sentential form inQ. H performs this generation so that it includes all the generation steps of the
corresponding generation in Q preceeding the step when # is hit (this performance resembles
the simulation given in [10] on page 129).

(ii) H checks that all previous non-deterministic choices in (i) were made properly. This check
is made by eliminating special nonterminals A, Ā, L̄, and R̄ in an inside-out way. Uniform
productions of the form (A, L̄, R̄, Ā)→ (L̄, ε, ε, R̄) are used during this elimination.
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Lemma 3.5. For any left-extended queue grammar Q = (V, T,W,F, s,R), there exists an equivalent
scattered context grammar H = (K,T, P, S) so the next equivalence holds true for any y ∈ T ∗,

S ⇒∗ ν1L̄yR̄ν2 ⇒∗ L̄yR̄⇒2 y in H if and only if #s⇒∗ w#yf in Q

where s = a0q0, w ∈ (V − T )∗, f ∈ F , and ν1, ν2 ∈ (K − {L̄, R̄})m, m ≥ 0 such that S ⇒∗
ν1L̄yR̄ν2 uses only context-free productions from P and ν1L̄yR̄ν2 ⇒∗ L̄yR̄ uses only non-context-
free productions from P .

Proof:
Let Q = (V, T,W,F, s,R) be a left-extended queue grammar. Without any loss of generality (by
Lemma 3.4), assume that Q is in normal form 2.

Construction. Consider new objects S, L̄, R̄ outside V ∪ W ∪ N ∪ M . Set U = {〈p, i〉 :
p ∈ W − F and i ∈ {1, 2}} ∪ {S, L̄, R̄}. Set N = {da, qe : a ∈ V − T, q ∈ W − F} and
M = {ba, qc : a ∈ V −T, q ∈W −F}. Introduce the scattered context grammar H = (U ∪N ∪M,
T, P, S) with P = P1 ∪ P2 ∪ P3 constructed in the following way.

To construct P1, perform (i) through (v), given next.

(i) if a0q0 = s, where a0 ∈ V − T and q0 ∈W − F , then add S → da0, qe〈q0, 1〉ba, q0c to P1, for
all q ∈W − F and all a ∈ V − T ;

(ii) if (a, q, y, p) ∈ R, where a ∈ V −T , p, q ∈W−F , y ∈ (V −T )∗, and y = a1a2 · · · a|y|, then add
〈q, 1〉 → da1, q1eda2, q2e · · · da|y|, q|y|e〈p, 1〉bb, pc with q1 = p to P1, for all q2, q3, . . . , q|y| ∈
W − F and for all b ∈ V − T ;

(iii) for every q ∈W − F , add 〈q, 1〉 → L̄〈q, 2〉 to P1;

(iv) if (a, q, y, p) ∈ R, where a ∈ V − T , p, q ∈W − F , y ∈ T ∗, then add 〈q, 2〉 → y〈p, 2〉bb, pc to
P1, for all b ∈ V − T ;

(v) if (a, q, y, p) ∈ R, where a ∈ V − T , q ∈ W − F , y ∈ T ∗, and p ∈ F , then add 〈q, 2〉 → yR̄
to P1.

Set
P2 = {(da, qe, L̄, R̄, ba, qc)→ (L̄, ε, ε, R̄) : a ∈ V − T, q ∈W − F}

and
P3 = {L̄→ ε, R̄→ ε}

Proof (Gist). Next, we sketch the reason why L(H) = L(Q). What we need to demonstrate is that
for any y ∈ T ∗,

S ⇒∗ y in H if and only if #s⇒∗ w#yf in Q

with s = a0q0, w ∈ (V − T )∗, and f ∈ F .
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To rephrase this equivalence more precisely, we need to show that S ⇒∗ y in H if and only if for
some m ≥ 1, Q makes #a0q0 ⇒∗ a0 · · · am#yf according to (a0, q0, z0, q1) through (am, qm, zm,
qm+1), where qm+1 = f . To see why this equivalence holds true, take any S ⇒∗ y with y ∈ L(H).
Examine the construction of P to see that S ⇒∗ y in H has, in a greater detail, the form

S ⇒∗ ν1L̄yR̄ν2 ⇒∗ y

with ν1 ∈ N∗, ν2 ∈ M∗, |ν1| = `, |ν2| = k, where `, k ≥ 1. Consequently, we see that proving the
equivalence requires a demonstration that in the derivation of the above form in H ,

(I) m = ` = k;

(II) ν1 = da0, q0e · · · da`, q`e for some q0, . . . , q` ∈W − F with a0, . . . , a` ∈ V − T ;

(III) ν2 = bak, qkc · · · ba0, q0c for some a0, . . . , ak ∈ V − T with q0, . . . , qk ∈W − F .

Consider (II) above. Observe that ν1 encodes the prefix of all the front queue symbols (including
the erased symbols) rewritten during the generation of y. This is the reason why we assume that Q is
a left-extended queue grammar, which records this prefix as opposed to any ordinary queue grammar,
which throws it away.

During the sketch of this basic idea, we refer to all symbols that occur somewhere to the left of
y as left nonterminals, and we refer to all symbols that occur somewhere to the right of y as right
nonterminals.

Let us examine ν1L̄yR̄ν2 ⇒∗ y in a greater detail. In front of y, L̄ is made by a production
from (iii), and behind y, R̄ is produced by a production from (v). Observe that all the left and right
nonterminals can be removed only by productions from P2 ∪ P3. In ν1L̄yR̄ν2, there exist the only
occurrence of each special symbol, L̄ and R̄. Productions from P2 are applicable as soon as these
nonterminals appear in the rewritten string, and the application of a production from P2 does not
change the number of these occurrences. Consequently, during ν1L̄yR̄ν2 ⇒∗ y, productions from P3

are applied only during the last two steps while all the preceding steps are made by using productions
from P2. L̄ is always a left nonterminal and R̄ occurs always as a right nonterminal. Considering these
observations and P2, we see that if a string contains a nonterminal fromN∪M somewhere in between
L̄ and R̄, then H cannot derive a terminal string from it. Consequently, during ν1L̄yR̄ν2 ⇒∗ y,
H eliminates symbols from N ∪ M in an inside-out way so that it always rewrites the rightmost
occurrence within the left nonterminals from N and, simultaneously, the leftmost occurrence among
the right nonterminals from M .

In this way, H simulates the successful derivation of y performed by Q so

S ⇒∗ ν1L̄yR̄ν2 ⇒∗ L̄yR̄⇒2 y

with ν1 ∈ N∗, ν2 ∈M∗, ν1 = da0, q0e · · · dam, qmewith a0, . . . , am ∈ V −T , and ν2 = bam, qmc · · ·
ba0, q0c with q0, . . . , qm ∈W − F . Thus, L(Q) = L(H).

Next, we illustrate the construction of a simulating scattered context grammar for a very simple
left-extended queue grammar.
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Example 3.6. Consider a left-extended queue grammar Q = (V, T,W, {f}, Ss,R) in normal form
2 with V = {S,X, a, b}, T = {a, b},W = {s, p, q, f}. Let R = {(S, s,XS, p), (X, p, aa, q),
(S, q, bb, f)}

Considering the construction from Lemma 3.5, we present all productions in the resulting scattered
context grammar, H = (K,T, P, S′), in the corresponding steps (productions used in the example of
a derivation are in bold):

(i): Add S′ → dS, se〈s, 1〉bS, sc,
S′ → dS, se〈s, 1〉bX, sc,
S′ → dS, pe〈s, 1〉bS, sc,
S′ → dS, pe〈s, 1〉bX, sc,
S′ → dS, qe〈s, 1〉bS, sc,
S′ → dS, qe〈s, 1〉bX, sc into P ;

(ii): For (S, s,XS, p) ∈ R, add
〈s, 1〉 → dX, pedS, se〈p, 1〉bS, pc,
〈s, 1〉 → dX, pedS, se〈p, 1〉bX, pc,
〈s, 1〉 → dX, pedS, pe〈p, 1〉bS, pc,
〈s, 1〉 → dX, pedS, pe〈p, 1〉bX, pc,
〈s, 1〉 → dX, pedS, qe〈p, 1〉bS, pc,
〈s, 1〉 → dX, pedS, qe〈p, 1〉bX, pc into P ;

(iii): Add 〈s, 1〉 → L̄〈s, 2〉, 〈p, 1〉 → L̄〈p, 2〉, 〈q, 1〉 → L̄〈q, 2〉 into P ;

(iv): For (X, p, aa, q) ∈ R, add
〈p, 2〉 → aa〈q, 2〉bS, qc,
〈p, 2〉 → aa〈q, 2〉bX, qc into P ;

(v): For (S, q, bb, f) ∈ R, add 〈q, 2〉 → bbR̄ into P .

Observe that in the production 〈s, 1〉 → dX, pedS, qe〈p, 1〉bX, pc from (ii), we non-deterministi-
cally choose the nonterminal dS, qe for S in XS so it will match some bS, qc later to proceed the
derivation. Similarly, in the production 〈p, 2〉 → aa〈q, 2〉bS, qc from (iv), we non-deterministically
choose S as the symbol in bS, qc to match dS, qe generated earlier.

Now, we explore how a derivation

#Ss⇒ S#XSp⇒ SX#Saaq ⇒ SXS#aabbf

in Q is simulated in H .

We explore the first phase of a derivation of aabb in H:
S′

⇒ dS, se 〈s, 1〉 bS, sc
⇒ dS, sedX, pedS, qe 〈p, 1〉 bX, pcbS, sc
⇒ dS, sedX, pedS, qeL̄ 〈p, 2〉 bX, pcbS, sc
⇒ dS, sedX, pedS, qeL̄ aa 〈q, 2〉 bS, qcbX, pcbS, sc
⇒ dS, sedX, pedS, qeL̄ aabb R̄ bS, qcbX, pcbS, sc
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Now we illustrate an inside-out erasure in the second phase of the derivation in H:
dS, se dX, pe dS, qe L̄ aabb R̄ bS, qc bX, pc bS, sc

⇒ dS, se dX, pe L̄ aabb R̄ bX, pc bS, sc
⇒ dS, se L̄ aabb R̄ bS, sc
⇒ L̄ aabb R̄

⇒2 aabb

So H eliminates all nonterminals in the second phase to match that the non-deterministic context-
free generation was proper and aabb was generated. ut

In the proof of Lemma 3.7, given next, we turn the grammarH , constructed in the proof of Lemma
3.5, to an equivalent scatterred context grammar G with a single non-context-free production.

In essence, the transformation of H to G is performed as follows:

1. Consider the set of productions P1 and the set of nonterminals in H . Transform the productions
of P1 to the productions of P ′ in G by using two encoding functions—denoted by ι and κ in the
upcoming proof—in a way that nonterminals from U that simulate the current state ofQ remain
intact.

2. In P ′, consider productions originated in step (i) in the proof of Lemma 3.5. Modify the right-
hand side of each production constructed therein. Place symbol 1 in front of this side, and place
1 behind it, too.

3. On the right-hand sides of each production in P ′, replace L̄ and R̄ with 20 and 302, respectively.

To give a more detailed insight into the removal made by the only non-context-free production in
the proof of Lemma 3.7, suppose that G makes

S ⇒∗ u1u2 · · ·um−1umxvmvm−1 · · · v2v1

where each uj and vj encodes a production applied during the jth derivation step inQ, and all of them
have the same number of 1s. More specifically, each ui = pui sui where pui is a prefix of ui over
{0, 1, 3} and sui is a suffix of ui over {0, 1}. Let us call the beginning of sui as ui-break. Similarly,
each vi = pvi svi where pvi is a prefix of vi over {0, 1} and svi is a suffix of vi over {0, 1, 3}. Let us
call the end of pvi as vi-break. The position of ui-break and vi-break encodes a production in Q so
this encoding satisfies the following property:

if (a, q, x, p) and (b, o, y, r) are two productions
encoded by the same break position, then p = r and x = y.

During the second phase, G has to make sure that the simulation of the generation of x in Q is
performed correctly. To do so,G has to verify that for j = m, . . . , 2, 1, both uj and vj encode the same
production rj in Q. G makes this verification solely by using (1, 2, 0, 3, 0, 2, 1) → (2, ε, ε, ε, ε, ε, 2)
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so it eliminates all um through u1 and, simultaneously, vm through v1 in the inside-out way. To explain
the elimination process more precisely, consider this portion

u1u2 · · · pui • sui 20 x 302 pvi • svi · · · v2v1

where • points out the position of ui-break and vi-break, respectively. G can eliminate the codes
ui and vi if and only if ui-break and vi-break are simultaneously rewritten by (1, 2, 0, 3, 0, 2, 1) →
(2, ε, ε, ε, ε, ε, 2); thereby, it guaranties that sui and pvi have the same number of 1s and 0s, therefore,
ui and vi encode the same production ri. Finally, concerning the existence of substrings 20 and 302
surrounding x from left and right, respectively, a note is in order: both have originated from the
previous elimination of codes ui+1 and vi+1.

For instance,

· · · 103 · · · 1031 • 10101010 · · · 101020x302301301 · · · 301 • 03010101 · · · 01 · · ·

where
ui = 103 · · · 1031 • 10101010 · · · 1010

and
vi = 301301 · · · 301 • 03010101 · · · 01

During the second phase, G simultaneously eliminates ui and vi by using (1, 2, 0, 3, 0, 2, 1) →
(2, ε, ε, ε, ε, ε, 2) in the way sketched next

1103 · · · 103110101010 · · · 101020 x 302301301 · · · 30103010101 · · · 011

⇒ 1103 · · · 103110101010 · · · 1020 x 302301 · · · 30103010101 · · · 011

⇒ 1103 · · · 103110101010 · · · 20 x 302 · · · 30103010101 · · · 011

⇒
...

⇒ 1103 · · · 10310311020 x 3023010301010101 · · · 011

⇒ 1103 · · · 103103120 x 3020301010101 · · · 011

⇒ 1103 · · · 1031032 x 0302010101 · · · 011

⇒ 1103 · · · 103203 x 020101 · · · 011

(by underlining, we denote the occurrences of symbols rewritten in the next step).

Lemma 3.7. LetQ be a left-extended queue grammar. Then, there exists a scattered context grammar,
G = (K,T, P, S), such that L(Q) = L(G), whereas P contains

(1, 2, 0, 3, 0, 2, 1)→ (2, ε, ε, ε, ε, ε, 2)

as its only non-context-free production.
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Proof:
Without any loss of generality, assume that Q = (V, T,W,F, s,R) is a left-extended queue grammar
in normal form 2, H is an equivalent scattered context grammar constructed by the proof of Lemma
3.5 from Q, and let D = {0, 1, 2, 3} such that D ∩ (V ∪W ) = ∅. Let us introduce

Xn = {103}+{1}{10}+ ∩ {x : x ∈ {1, 0, 3}∗, occur(x, 1) = n}

and an injection ι from (V − T )(W − F ) to Xn so that ι remains an injection when its domain is
extended to ((V − T )(W − F ))∗ in the standard way, where n is a positive integer great enough to
allow us to introduce these notions in this way (a proof that such a constant necessarily exists is simple
and left to the reader).

Notice that for some a ∈ V − T and q ∈W − F , ι(aq) is a string of the form

103103 · · · 10311010 · · · 10

in which there are n occurrences of 1 and precisely one occurrence of substring 11.

Then, define the homomorphism from {0, 1}∗ to {0, 1, 3}∗ by β(0) = 30 and β(1) = 1. Set

Yn = {301}+{0301}{01}+ ∩ {x : x ∈ {1, 0, 3}∗, occur(x, 1) = n}

and define the injection κ from (V − T )(W − F ) to Yn by

κ(aq) = z10301w such that ι(aq) = u11v, a ∈ V − T , q ∈W − F ,
z = β(Reverse(v)) and w = Reverse(Erase(u, {3}))}

Notice that every κ(aq) is a string of the form

301301 · · · 30103010101 · · · 01

in which there are n occurrences of 1 and precisely one occurrence of 030.

Construction. Introduce the scattered context grammar G = (U ∪D,T, P, S) with P = P ′ ∪ P ′′
constructed from H = (U ∪N ∪M,T, P1 ∪ P2 ∪ P3, S) in the following way.

To construct P ′, perform (i) through (v), given next.

(i) For every production from P1 of the form S → da0, qe〈q0, 1〉ba, q0c, where a0, a ∈ V − T and
q0, q ∈W − F ,
add S → 1ι(a0q)〈q0, 1〉κ(aq0)1 into P ′;

(ii) For every production from P1 of the form 〈q, 1〉 → da1, q1eda2, q2e · · · dam, qme〈p, 1〉bb, pc,
where a1, a2, . . . , am, b ∈ V − T and q, q1, q2, . . . , qm ∈W − F , m ≥ 0,
add 〈q, 1〉 → ι(a1q1)ι(a2q2) · · · ι(amqm)〈p, 1〉κ(bp) into P ′;

(iii) For every production from P1 of the form 〈q, 1〉 → L̄〈q, 2〉, where q ∈W − F ,
add 〈q, 1〉 → 20〈q, 2〉 into P ′;
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(iv) For every production from P1 of the form 〈q, 2〉 → y〈p, 2〉bb, pc, where b ∈ V − T and q, p ∈
W − F , y ∈ T ∗,
add 〈q, 2〉 → y〈p, 2〉κ(bp) into P ′;

(v) For every production from P1 of the form 〈q, 2〉 → yR̄, where q ∈W − F , y ∈ T ∗,
add 〈q, 2〉 → y302 into P ′.

Set
P ′′ = {(1, 2, 0, 3, 0, 2, 1)→ (2, ε, ε, ε, ε, ε, 2), 2→ ε}

and, hereafter, denote (1, 2, 0, 3, 0, 2, 1)→ (2, ε, ε, ε, ε, ε, 2) by π.

Basic Idea. To see why L(G) = L(Q), we demonstrate that for any y ∈ T ∗,

S ⇒∗ y in G if and only if #s⇒∗ w#yf in Q

with s = a0q0, w ∈ (V − T )∗, and f ∈ F just like we did in the proof of Lemma 3.5.

More precisely, we need to show that S ⇒∗ y in G if and only if for some m ≥ 1, Q makes
#a0q0 ⇒∗ a0 · · · am#yf according to (a0, q0, z0, q1) through (am, qm, zm, qm+1), where qm+1 = f .
To see why this equivalence holds true, take any S ⇒∗ y with y ∈ L(G). Examine the construction
of P to see that S ⇒∗ y in G has, in a greater detail, the form

S ⇒∗ 1ν120y302ν21⇒∗ y

with ν1, ν2 ∈ D∗, ν1 = ι(a0q0) · · · ι(a`q`) for some q0, . . . , q` ∈ W − F , ν2 = κ(akqk) · · ·κ(a0q0)
for some a0, . . . , ak ∈ V − T , where `, k ≥ 1

Consequently, we see that proving the equivalence requires a demonstration that in the derivation
of the above form in G,

(I) m = ` = k;

(II) ν1 = ι(a0q0) · · · ι(a`q`) for some q0, . . . , q` ∈W − F with a0, . . . , a` ∈ V − T ;

(III) ν2 = κ(akqk) · · ·κ(a0q0) for some a0, . . . , ak ∈ V − T with q0, . . . , qk ∈W − F .

Consider (II) above. Observe that ν1 encodes the prefix of all the front queue symbols (including
the erased symbols) rewritten during the generation of y. This is the reason why we assume that Q is
a left-extended queue grammar, which records this prefix as opposed to any ordinary queue grammar,
which throws it away.

From the definition of ι, it follows that
1ν120 = 1103103 · · · 103110 · · · 1010 · · · 103103 · · · 103110 · · · 101010 · · ·

· · · 103103 · · · 103110 · · · 1020
Counting from the right to the left, we refer to the ith underlined occurrence of 11 as the ith left

turn, 1 ≤ i ≤ n. From the definition of κ, it follows that
302ν21 = 302301 · · · 301030101 · · · 0101 · · · 301301301 · · · 301030101 · · ·

· · · 0101 · · · 301301 · · · 301030101 · · · 01011
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Counting from the left to the right, we refer to the ith underlined occurrence of 030 as the ith right
turn.

Let us examine 1ν120y302ν21 ⇒∗ y in a greater detail. The first 1 and the last 1 are produced
by a production from step (i) in the construction. Furthermore, in front of y, 20 is made by a pro-
duction from (iii), and behind y, 302 is produced by a production from (v). Observe that all the left
and right nonterminals can be removed only by π and 2 → ε. In 1ν120y302ν21, there exist two
occurrences of 2. Production π is applicable as soon as two occurrences of 2 appear in the rewritten
string, and its application does not change the number of these occurrences. Consequently, during
1ν120y302ν21 ⇒∗ y, 2 → ε is applied only during the last two steps while all the preceding steps
are made by using π. The first 2 is always a left nonterminal and the other occurs always as a right
nonterminal. Considering these observations and π, we see that if a string contains 1 somewhere in
between the left 2 and the right 2, thenG cannot derive a terminal string from it. Consequently, during
1ν120y302ν21 ⇒∗ y, G eliminates 1s in an inside-out way so that it always rewrites the rightmost
occurrence within the left 1s and, simultaneously, the leftmost occurrence among the right 1s. Unless
a string contains 0, 3, 0 in this order scattered somewhere in between the left 2 and the right 2, then G
cannot apply π and derive a terminal string. More specifically, every successful derivation in G is of
the form

S ⇒∗ 1ν120y302ν21⇒∗ 1203y021⇒ 2y2⇒2 y

Let 1v3yv41 ⇒ 1v′3yv
′
41 be a direct derivation step in 1ν120y302ν21 ⇒∗ 1203y021. Then, in a

greater detail, this step has one of these five forms

a) 1v51020y302301v61⇒ 1v520y302v61 with v51020 = v3 and 302301v6 = v4;

b) 1v5120y3020301v61⇒ 1v52y0302v61 with v5120 = v3 and 3020301v6 = v4;

c) 1v51032y030201v61⇒ 1v5203y02v61 with v51032 = v3 and 030201v6 = v4;

d) 1v5103203y0201v61⇒ 1v5203y02v61 with v5103203 = v3 and 0201v6 = v4;

e) 1v510203y02301v61⇒ 1v520y302v61 with v510203 = v3 and 02301v6 = v4.

Hereafter, to point out that a derivation step u ⇒ v [π] satisfies one specific form of the five
previous forms (X ∈ {a, b, c, d, e}), we write u⇒X) v.

Suppose that the leftmost right turn occurs closer to y than the rightmost left turn does. For
instance,

1103103 · · · 1031031101010101020y3020301010101 · · · 01011

From this string, G performs these steps

1103103 · · · 1031031101010101020 y 3020301010101 · · · 01011

⇒ 1103103 · · · 10310311010101020 y 0302010101 · · · 01011

⇒ 1103103 · · · 1031031101010200 y 020101 · · · 01011

Observe that in between the two 2s, no 3 occurs, so G cannot derive a terminal string from it.
Suppose that the leftmost right turn occurs farther from y than the rightmost left turn does. For

instance,
1103103 · · · 10310311020y3023013013013010301010101 · · · 01011
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From this string, G performs these steps

1103103 · · · 10310311020 y 3023013013013010301010101 · · · 01011

⇒ 1103103 · · · 103103120 y 3023013013010301010101 · · · 01011

⇒ 1103103 · · · 1031032 y 3023013010301010101 · · · 01011

Observe that in between the two 2s, only one 0 occurs, so G cannot derive a terminal string from
it.

Next, we give an example for some a ∈ V − T and q ∈ W − F , where the right and left turns
match.

1103103 · · · 103110101010 · · · 101020y302301301 · · · 30103010101 · · · 01011

where
ι(aq) = 103103 · · · 103110101010 · · · 1010

and
301301 · · · 30103010101 · · · 0101 = κ(aq)

Consequently, G always simultaneously eliminates the ith left turn and the ith right turn in the
way sketched next

1103103 · · · 103110101010 · · · 101020 y 302301301 · · · 30103010101 · · · 01011

⇒a) 1103103 · · · 103110101010 · · · 1020 y 302301 · · · 30103010101 · · · 01011

⇒a) 1103103 · · · 103110101010 · · · 20 y 302 · · · 30103010101 · · · 01011

⇒ ...
⇒ 1103103 · · · 10310311020 y 3023010301010101 · · · 01011

⇒a) 1103103 · · · 103103120 y 3020301010101 · · · 01011

⇒b) 1103103 · · · 1031032 y 0302010101 · · · 01011

⇒c) 1103103 · · · 103203 y 020101 · · · 01011

In this way, G simulates the successful derivation of y performed by Q so

S ⇒∗ 1ν120y302ν21⇒∗ y

with ν1, ν2 ∈ D∗, ν1 = ι(a0q0) · · · ι(amqm) for some q0, . . . , qm ∈W −F with a0, . . . , am ∈ V −T ,
and ν2 = κ(amqm) · · ·κ(a0q0) for some a0, . . . , am ∈ V − T with q0, . . . , qm ∈ W − F . Thus,
L(Q) = L(G).

In the following example, we finish Example 3.6 but with nonterminals from N and M encoded
into D∗ using ι and κ, respectively.

Example 3.8. According to the construction, the injection ι should handle card((V −T )× (W −F ))
elements. Thus, for simple coding, n should be at least card((V −T )× (W −F )) + 2. In the second
phase of this example, we need to code six pairs—(S, s), (S, p), (S, q), (X, s), (X, p), and (X, q).
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Take n = 8. Next, we introduce ι for these pairs—that is,

ι(Ss) = 1031(10)6 = dS, se ι(Xs) = (103)41(10)3 = dX, se
ι(Sp) = (103)21(10)5 = dS, pe ι(Xp) = (103)51(10)2 = dX, pe
ι(Sq) = (103)31(10)4 = dS, qe ι(Xq) = (103)6110 = dX, qe

and bS, sc = (301)6030101, bS, qc = (301)40301(01)3, and bX, pc = (301)20301(01)5.

Now we illustrate an erasure in the second phase of the derivation such that

1dS, sedX, pedS, qe20y302bS, qcbX, pcbS, sc1⇒∗ y

with y = aabb in G:

1dS, se dX, pe (103)3110101010 20 y 302 3013013013010301(01)3 bX, pc bS, sc1
⇒a) 1dS, se dX, pe 103103103110101020 y 3023013013010301010101 bX, pc bS, sc1
⇒a) 1dS, se dX, pe 1031031031101020 y 3023013010301010101 bX, pc bS, sc1
⇒a) 1dS, se dX, pe 10310310311020 y 3023010301010101 bX, pc bS, sc1
⇒a) 1dS, se dX, pe 103103103120 y 3020301010101 bX, pc bS, sc1
⇒b) 1dS, se dX, pe 1031031032 y 0302010101 bX, pc bS, sc1
⇒c) 1dS, se dX, pe 103103203 y 020101 bX, pc bS, sc1
⇒d) 1dS, se dX, pe 103203 y 0201 bX, pc bS, sc1
⇒d) 1dS, se 10310310310310311010 203 y 02 30130103010101010101 bS, sc1
⇒e) 1dS, se 103103103103103110 20 y 302 30103010101010101 bS, sc1
⇒a) 1dS, se 1031031031031031 20 y 302 03010101010101 bS, sc1
⇒b) 1dS, se 103103103103103 2 y 0302 0101010101 bS, sc1
⇒c) 1dS, se 10310311020 y 30230103010101 bS, sc1
⇒a) 1dS, se 103103120 y 30203010101 bS, sc1
⇒b) 1dS, se 1031032 y 03020101 bS, sc1
⇒c) 1dS, se 103203 y 0201 bS, sc1
⇒d) 1 1031101010101010 203 y 02 301301301301301301030101 1

⇒e) 1 10311010101010 20 y 302 301301301301301030101 1

⇒a) 1 103110101010 20 y 302 301301301301030101 1

⇒a) 1 1031101010 20 y 302 301301301030101 1

⇒a) 1 10311010 20 y 302 301301030101 1

⇒a) 1 103110 20 y 302 301030101 1

⇒a) 1 103120 y 302030101 1

⇒b) 1 1032 y 030201 1

⇒c) 1203 y 021

⇒ 2 y 2

⇒2 y
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Formal Proof. For brevity and readability, the following rigorous proof omits some obvious details,
which the reader can easily fill in.

Define the function Θ from X∗n to Y ∗n recursively as follows

1. Θ(ε) = ε

2. If Θ(x) = y, i ∈ {1, . . . , n−2}, u ∈ Xn, u = 103103 · · · 1031(10)i, v ∈ Yn, v = (301)i030101
· · · 0101, then Θ(ux) = yv.

To illustrate, assume that 10310311010 ∈ Xn and 1031101010 ∈ Xn; then,

Θ(10310311010 1031101010) = 301301301030101 30130103010101

To make the formal specification of encoded sentential forms in G easier to follow, define two
functions, ν : (V − T )∗ → 2X

∗
n and µ : Q∗ → 2Y

∗
n , which encode all possible strings of symbols and

sequences of states, respectively. For k ≥ 0,

ν(a1a2 · · · ak) = {ι(a1q1a2q2 · · · akqk) : q1, q2, . . . , qk ∈ Q} where a1, a2, . . . , ak ∈ V − T

and

µ(q1q2 · · · qk) = {κ(a1q1a2q2 · · · akqk) : a1, a2, . . . , ak ∈ V − T} where q1, q2, . . . , qk ∈ Q.

Claim 3.9, proved next, establishes a derivation form by which G can generate each member of
L(G). This claim fulfills a crucial role in the demonstration that L(G) ⊆ L(Q), given later in this
proof (see Claim 3.11).

Claim 3.9. G constructed in Lemma 3.7 can generate every h ∈ L(G) in this way

S

⇒1g0〈q0, 1〉t01⇒ 1g1〈q1, 1〉t11⇒ . . .

⇒1gk〈qk, 1〉tk1⇒ 1gk20〈qk, 2〉tk1

⇒1gk20y1〈qk+1, 2〉tk+11⇒ 1gk20y1y2〈qk+2, 2〉tk+21⇒ . . .

⇒1gk20y1y2 · · · ym−1〈qk+m−1, 2〉tk+m−11

⇒1gk20y1y2 · · · ym−1ym302tk+m−11

⇒1u1y1y2 · · · ym−1ymv11⇒ 1u2y1y2 · · · ym−1ymv21⇒ . . .

⇒1u`y1y2 · · · ym−1ymv`1⇒ 2y1y2 · · · ym−1ym2⇒2 y1y2 · · · ym−1ym = h

in G, where k, `,m ≥ 1; q0, q1, . . . , qk+m−1 ∈ W − F ; y1, . . . , ym ∈ T ∗; ti ∈ µ(qi · · · q1q0)
for i = 0, 1, . . . , k + m − 1; gj ∈ ν(d0d1 · · · dj) with d0 = a0 ∈ V − T where s = a0q0 and d1,
. . . , dj ∈ (V −T )∗ for j = 0, 1, . . . , k; d0d1 · · · dk = a0a1 · · · ak+m−1 with a1, . . . , ak+m−1 ∈ V −T
(that is, gk ∈ ν(a0a1 · · · ak+m−1)); 1uiy1y2 · · · ym−1ymvi1 satisfies either (a) 1020 ∈ suffix(ui) and
302301 ∈ prefix(vi) or (b) 120 ∈ suffix(ui) and 3020301 ∈ prefix(vi) or (c) 1032 ∈ suffix(ui) and
030201 ∈ prefix(vi) or (d) 103203 ∈ suffix(ui) and 0201 ∈ prefix(vi) or (e) 10203 ∈ suffix(ui) and
02301 ∈ prefix(vi) so during 1uiy1y2 · · · ym−1ymvi1 ⇒ 1ui+1y1y2 · · · ym−1ymvi+11, G simultane-
ously rewrites these prefixes and suffixes by π for 0 ≤ i ≤ `− 1, where u0 = gk20, v0 = 302tk+m−1,
u` = 203, v` = 02; Θ(gk) = tk+m−1.
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Proof:
Examine the construction of P in G. Consider P ′. Observe that every derivation begins with an
application of a production having S on its left-hand side. Set

P ′1 = {p : p ∈ P ′ and lhs(p) = 〈p, 1〉}
P ′2 = {p : p ∈ P ′ and lhs(p) = 〈p, 2〉}

Consider any successful derivation that generates h ∈ L(G). Let us make some observations. All
applications of productions from P ′1 precede the applications of productions from P ′2. After appli-
cations of productions from P ′1, the current sentential form contains precisely two occurrences of 2.
Furthermore, an application of

π = (1, 2, 0, 3, 0, 2, 1)→ (2, ε, ε, ε, ε, ε, 2)

requires the occurrence of 3 in the sentential form, and this occurrence is produced only by a produc-
tion constructed in step (v) of the construction of P ′. After a production from step (v) is applied, no
production from P ′ can be applied throughout the rest of the derivation, so only productions from P ′′

can be used during this rest. An application of 2 → ε eliminates 2. After this elimination, π is inap-
plicable. Thus, G applies 2→ ε during the last two steps of the derivation. Taking these observations
into account, we see that the generation of h ∈ L(G) can be expressed as

S

⇒ 1g0〈q0, 1〉t01⇒ 1g1〈q1, 1〉t11⇒ . . .

⇒ 1gk〈qk, 1〉tk1⇒ 1gk20〈qk, 2〉tk1

⇒ 1gk20y1〈qk+1, 2〉tk+11⇒ 1gk20y1y2〈qk+2, 2〉tk+21⇒ . . .

⇒ 1gk20y1y2 · · · ym−1〈qk+m−1, 2〉tk+m−11

⇒ 1gk20y1y2 · · · ym−1ym302tk+m−11

⇒∗ 2y1y2 · · · ym−1ym2⇒2 y1y2 · · · ym−1ym = h

in G, π is the only production applied during 1gk20y1y2 · · · ym−1ym302tk+m−11⇒∗ 2y1y2 · · · ym−1
ym2, and all the other involved symbols satisfy what is stated in Claim 3.9 (these symbols include gs,
and ts).

Before going further, let us consider any three strings of the form 103103 · · · 1031(10)i ∈ Xn,
20302, (301)j030101 · · · 0101 ∈ Yn, where i, j ∈ {1, . . . , n− 2} (see the definition of Xn for n) and
study how to erase the concatenation

103103 · · · 1031(10)i20302(301)j030101 · · · 0101

by repeatedly applying π. We intend to demonstrate that this erasure can be performed provided that
i = j. First of all, notice that an occurrence of 1 between the two occurrences of 2 implies that this
occurrence of 1 cannot be removed by π. Thus, π is always applied so the nearest possible pair of 1s
that encloses 2s are rewritten. Specifically, the two underlined 1s are changed to 2s in

103103 · · · 1031(10)i−11020302301(301)j−1030101 · · · 0101
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by using π. Next, we show that if i 6= j, thenG cannot erase 103103 · · · 1031(10)i20302(301)j030101
· · · 0101.

Let i < j. As G always rewrites the nearest possible pair of 1s that encloses the two 2s, it obtains

103103 · · · 1032302(301)j−i−1030101 · · · 0101

after i + 1 derivation steps. As between 2 and 3 appears no 0, π is inapplicable (see the underlined
symbols), which rules out the erasure.

Let j < i. After making j steps, G obtains

103103 · · · 1031(10)i−j20302030101 · · · 0101,

from which G directly derives 103103 · · · 1031(10)i−j−120030201 · · · 0101. After the next change of
the closest pair of 1s to 2s, G obtains a string with no 3 occurring between the two 2s. As a result, π
is inapplicable, and the erasure is ruled out. Consequently, i = j.

Return to
1gk20y1y2 · · · ym−1ym302tk+m−11⇒∗ 2y1y2 · · · ym−1ym2

with gk ∈ ν(a0a1 · · · ak+m−1) and tk+m−1 ∈ µ(qk+m−1 · · · q1q0). We have demonstrated that the era-
sure of 103103 · · · 1031(10)i20302(301)j030101 · · · 0101 implies i = j. Considering this implication
together with the definitions of ν, µ and Θ, we see that 1gk20302tk+m1⇒∗ 22 with Θ(gk) = tk+m−1.
Consequently, to express 1gk20y1y2 · · · ym−1ym302tk+m−11 ⇒∗ 2y1y2 · · · ym−1ym2 in a step-by-
step way, we have

1gk20y1y2 · · · ym−1ym302tk+m−11⇒ 1u1y1y2 · · · ym−1ymv11⇒ 1u2y1y2 · · ·
ym−1ymv21⇒ . . .⇒ 1u`y1y2 · · · ym−1ymv`1⇒ 2y1y2 · · · ym−1ym2

in G, where 1uiy1y2 · · · ym−1ymvi1 satisfies either

(a) 1020 ∈ suffix(ui) and 302301 ∈ prefix(vi) or

(b) 120 ∈ suffix(ui) and 3020301 ∈ prefix(vi) or

(c) 1032 ∈ suffix(ui) and 030201 ∈ prefix(vi) or

(d) 103203 ∈ suffix(ui) and 0201 ∈ prefix(vi) or

(e) 10203 ∈ suffix(ui) and 02301 ∈ prefix(vi)

so during 1uiy1y2 · · · ym−1ymvi1 ⇒ 1ui+1y1y2 · · · ym−1ymvi+11, G simultaneously rewrites these
prefixes and suffixes by π for 0 ≤ i ≤ ` − 1, where u0 = gk20, v0 = 302tk+m−1, and Θ(gk) =
tk+m−1. Of course,

2y1y2 · · · ym−1ym2⇒2 y1y2 · · · ym−1ym
is performed by applying 2→ ε twice.

Putting all these partial derivations and their properties together, we obtain Claim 3.9. ut
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Claim 3.10. Q generates every h ∈ L(Q) in this way

#a0q0

⇒ a0#x0q1 [(a0, q0, z0, q1)]

⇒ a0a1#x1q2 [(a1, q1, z1, q2)]
...
⇒ a0a1 · · · ak#xkqk+1 [(ak, qk, zk, qk+1)]

⇒ a0a1 · · · akak+1#xk+1y1qk+2 [(ak+1, qk+1, y1, qk+2)]
...
⇒ a0a1 · · · akak+1 · · · ak+m−1#xk+m−1y1 · · ·
ym−1qk+m [(ak+m−1, qk+m−1, ym−1, qk+m)]

⇒ a0a1 · · · akak+1 · · · ak+m#y1 · · · ymqk+m+1 [(ak+m, qk+m, ym, qk+m+1)]

where k ≥ 0, m ≥ 1, ai ∈ V − T for i = 0, . . . , k + m, xj ∈ (V − T )∗ for j = 1, . . ., k + m − 1,
s = a0q0; aj′xj′ = xj′−1zj′ for j′ = 1, . . . , k, a1 · · · akxk+1 = z0 · · · zk, ak+1 · · · ak+m = xk,
q0, q1, . . . , qk+m ∈ W − F and qk+m+1 ∈ F , z1, . . . , zk ∈ (V − T )∗, y1, . . . , ym ∈ T ∗, h = y1y2
· · · ym−1ym.

Proof:
Recall that Q is in normal form 2. Considering the properties of normal form 2 (see Definition 3.3),
we see that Claim 3.10 holds true. ut

Claim 3.11. Let G generate h ∈ L(G) in the way described in Claim 3.9; then, h ∈ L(Q).

Proof:
Let h ∈ L(G). Consider the generation of h as described in Claim 3.9. Examine the construction
of P to see that at this point R contains (a0, q0, z0, q1), . . . , (ak, qk, zk, qk+1), (ak+1, qk+1, y1, qk+2),
. . . , (ak+m−1, qk+m−1, ym−1, qk+m), (ak+m, qk+m, ym, qk+m+1), where z1, . . . , zk ∈ (V −T )∗, and
y1, . . . , ym ∈ T ∗. Then, Q derives h in the way described in Claim 3.10. Thus, h ∈ L(Q). ut

Claim 3.12. Let Q generate h ∈ L(Q) in the way described in Claim 3.10; then, h ∈ L(G).

Proof:
Let h ∈ L(Q). Consider the generation of h as described in Claim 3.10. Examine the construction of
P . Among other productions, this construction makes

1. S → 1ν0〈q0, 1〉µ0 by step (i) where ν0 ∈ ν(a0);

2. 〈qj−1, 1〉 → νj〈qj , 1〉µj by step (ii) where j = 1, . . . , k;

3. 〈qk, 1〉 → 20〈qk, 2〉 by step (iii);

4. 〈qk+j′−1, 2〉 → yj′〈qk+j′ , 2〉µk+j′+1 by step (iv) where j′ = 1, . . . ,m− 1;
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5. 〈qk+m−1, 2〉 → ym302 by step (v);

where νi ∈ ν(di), di ∈ (V −T )∗ for i = 1, . . . , k, µi′ ∈ µ(qi′) for i′ = 0, 1, . . . , k+m− 1. Then, by
additional applications of π followed by two applications of 2→ ε, G derives h in the way described
in Claim 3.9. Thus, h ∈ L(G). ut

Claims 3.9 through 3.12 imply that L(Q) = L(G). Furthermore, (1, 2, 0, 3, 0, 2, 1) → (2, ε, ε, ε,
ε, ε, 2) is the only non-context-free production in P . Therefore, Lemma 3.7 holds. ut

Theorem 3.13. For every recursively enumerable language, L, there exists a scattered context gram-
mar, G = (K,T, P, S), such that L = L(G) and P contains a single non-context-free production.

Proof:
By Theorem 4.3 in [13], for every recursively enumerable language, L, there exists a left-extended
queue grammar that generates L. Thus, this theorem follows from Lemma 3.7. ut

As its main result, the present paper demonstrated the computational completeness resulting from
scattered context grammars with a single non-context-free production (see Theorem 3.13). Can this
result be improved so it simultaneously reduces the number of nonterminals?
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