
Fault Tolerance Properties of Systems Generated
with the Use of High-Level Synthesis

Jakub Lojda, Jakub Podivinsky, Zdenek Kotasek
Faculty of Information Technology, Brno University of Technology,

Centre of Excellence IT4Innovations
Bozetechova 2, 612 66 Brno, Czech Republic
{ilojda, ipodivinsky, kotasek}@fit.vutbr.cz

Abstract

During the last decades, electronic systems became
an important matter of controlling many critical pro-
cesses. However, those critical processes often require
increased reliability. This requirement places pressure
on system developers to make systems reliable. Be-
cause of ever growing chip-level integration, capabilities
of electronic systems are expanding, and, thus, leading
to more complex system architectures, the number of
man-hours needed to develop such systems is signifi-
cantly increasing. Many people believe the solution is
to move the development to a higher level of abstrac-
tion (e.g. an algorithm level) and use the so-called
High-Level Synthesis (HLS) for this purpose. In this
research, we aimed towards a decision, whether the us-
age of HLS impacts the resulting reliability properties
of the system, and, thus, whether the HLS-generated
system matches reliability properties of its correspond-
ing VHDL-implemented version. We found out that,
for the selected set of circuits, HLS performs better in
terms of resource consumption, but, also, which we con-
sider surprising, in terms of reliability. For the selected
set, HLS achieved better reliability by 3.03 percentage
points in contrast to the classical approach utilizing a
traditional Hardware Description Language (HDL). In
these experiments, no redundancy was intentionally in-
serted into benchmarking circuits.

1. Introduction

Many critical processes that are controlled by an
electronic system require a certainly higher level of re-
liability. These critical processes are usually controlled
by a computer or, in general, by a digital system. A
failure of such system would have a potential to cause

irreversible damage, introduce high economical losses
or even endanger human health. In some cases, the
system is not easily accessible for an eventual repair,
such as a space probe computer. The reparation of such
device, while on its mission, might many times exceed
the costs of the effort put to such system to enhance
its reliability.

In case of Field Programmable Gate Arrays (FP-
GAs), reliability is mainly tested by evaluating the
overall percentage of the so-called critical bits of the
bitstream. A bit of the bitstream that participates in
a functionality of a design (i.e. is used in the design)
is called an essential bit [20]. A critical bit is a bit
of the bitstream that causes a discrepancy on the sys-
tem’s behavior. The discrepancy of the behavior might
be observable immediately or in a future on the output
pins of the system. Some methods for system testing,
such as the one published in [6], eliminate the prob-
lem of the future misbehavior by making elements that
hold the internal state of the system observable. Other
methods, such as that described in our previous pub-
lication [8], use certain time period, each tested bit
is given, to show the discrepancy through its output
pins. When computing the percentage of critical bits,
it is important to focus on whether the percentage re-
flects the number of essential bits, which has a higher
information value, or whether the percentage is based
on the FPGA partition area, which might not reflect
the actual usage inside of this partition. One approach
that could be used to lower the number of the critical
bits is called Fault Tolerance (FT) [4]. The approach
of FT adopts the fact the failure may happen, but FT
aims to mask such failures to protect the output data
from errors.

With increasing chip-level integration of today’s
modern systems, the design of such systems is becom-
ing a great challenge. Designers are required to utilize
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the given chip-area as much as possible, which signif-
icantly increases man-hours required. For this reason,
designers are searching for a design flow that would
allow them to abstract low-level details, and, thus, re-
duce the complexity of the development. One of such
design flow methods is High-Level Synthesis (HLS).
HLS is able to process the input description in the
form of an algorithm (e.g. written in the C or C++
language) and output a functionally equivalent circuit
description. The resulting implementation is usually on
the Register Transfer Level (RTL) and written in the
form of a Hardware Description Language (HDL; e.g.
the VHDL or Verilog language). HLS usually provides
means to accelerate the synthesized HW realizations
such as loop unrolling or loop pipelining [2]. HLS is
also able to go through the state space of all the pos-
sible hardware realizations and provides ability to find
the realization with the desired hardware parameters.
We believe the combination of these two approaches
(i.e. FT and HLS) solves both of the problems. That
is why we focus our research on such combination. In
this paper, we are investigating the influences of HLS
on the reliability of the synthesized circuit in compar-
ison to the traditional HDL flow. We believe that this
comparison is important not only for developers that
design safety-critical applications and want to move to
a higher level of abstraction, but also for our research
focusing on reliable design automation on an arbitrary
abstraction level. For the purpose of evaluation, we
use our FT estimation framework. For our tests, we
use the publicly available benchmark circuits from the
ITC’99 set [1], which we reimplemented in the C++
language intentionally for the purpose of testing HLS.
As an HLS tool, we use the Catapult C [3].

This paper is organized as follows. Related work
is discussed in Section 2. Our evaluation framework
is presented in Section 3. The proposed experimen-
tal setup is discussed in Section 4. The results of our
experiments are summarized in Section 5. Section 6
concludes the paper and presents our future plans.

2. Related Work

In the paper [12], the authors present a compari-
son of HLS and HDL approaches. For this purpose,
they use HDL and C++ implementations of the grid
synchronization algorithm. However, the authors focus
on the resource consumption and the overall usability.
The paper [10] discusses comparison of multiplication
and division operations for the usage on Galois Fields
(GF). The comparison focuses mainly on the size, fre-
quency and latency of the implemented design. The
authors of [14] propose a reliability evaluation of HLS-

generated systems with and without the pipelining op-
timization applied and also with and without the us-
age of DSP’s in the design. Their work can serve as
a guide to select the particular HLS configuration for
a designer working with the HLS approach on safety-
critical systems. In [13], the authors published also
an experimental evaluation of various HLS-based de-
signs and evaluated their susceptibility to failure using
fault injection. The authors compared the results with
a soft-core processor-based implementation executing
the SW implementation directly. The authors of [7]
present an in-depth comparison of various open-source
HLS tools, however, their comparison does not mainly
focus on the reliability point of view. The authors of [9]
also provide a detailed comparison, while focusing on
open-source tools mainly.

Many publications exist, that compare various pa-
rameters of HLS-generated designs to the designed syn-
thesized with the traditional HDL flow. However, the
focus on reliability in the comparison of HLS and HDL
designs, such as in this paper, is not addressed yet.

3. Evaluation Framework

For the purpose of the benchmarking circuits evalua-
tion we use our FT-ESTimation (FT-EST) framework,
which we previously published in [5]. The framework
originally serves as a part of FT design automation
SW, however, for this paper, we utilize its ability to
fully evaluate the design while profitting from its ac-
celeration capabilities. The FT-EST framework is de-
signed to make the evaluation process of Units Under
Test (UUTs) fast as much as possible. It incorporates
several techniques to accelerate the evaluation and save
the time needed for the reconfiguration, such as:

• parallel testing of multiple UUT instances,

• stimuli generation and outputs comparison is per-
formed on the FPGA to remove any bottlenecks,

• after each test, just the UUT instances are re-
freshed back to their original bitstreams.

The FT-EST framework is composed of the HW
part, which wraps the UUT instances, and the SW
part, which controls the evaluation process and saves
the results obtained from the HW. A new realization
of the HW part must be synthesized every time a new
UUT is evaluated, however, the process of the synthe-
sis is fully automated, as the whole FT-EST framework
is originally targeted towards testing of automatically
synthesized FT circuits. The framework utilizes a well
known concept of fault injection followed by functional
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verification of UUTs. The concept of the evaluation is
based on a cycle that tests UUTs with the defined set
of stimuli. This cycle that tests all the stimuli we call
the test cycle. A cycle that tests all the Single Event
Upsets (SEUs) (i.e. cycles through all the possible bits
of the bitstream or all the possible fault scenarios) is
called the SEU cycle. It is obvious that the test cycle
is an integral part of the SEU cycle. The architecture
of the framework is shown in Figure 1.
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Figure 1. Simplified architecture of the FT-EST
system; the parts highlighted in blue are dy-
namically and fully automatically generated,
while the parts highlighted in red are to be
provided by the designer to specify the ex-
periment setup.

The HW part of the FT-EST framework is struc-
tured into various units, each of which has a particu-
lar function. The main component of the HW part is
the Unit Instantiation Area (UIA), which holds
one golden instance of the UUT that provides ref-
erence results, and, therefore, is not subject to the
fault injection. The UIA contains also the ordinary
instances of UUTs to which faults are injected and im-
pacts of these faults are evaluated. The input stimuli

are generated inside of the Input Generation Unit
(IGU). Before testing of FT system of a particular
nature, it is possible to tune the parameters of the
IGU to suit the needs of the UUT. The UUT out-
put values are compared against the golden unit inside
of the Output Compare Unit (OCU). The OCU
then connects to the Failure Capture Unit (FCU),
which consists of counters that count the number of
output mismatches per each UUT. The counter regis-
ters are addressable and readable from the SW part
of the framework, allowing to analyze the number of
erroneous outputs caused by a particular fault injec-
tion scenario (i.e. one particular bit or multiple bit-
flips). The experiment flow of each test cycle is con-
trolled by the eXperiment Control Unit (XCU).
The XCU, as well as the IGU, are dependent on the
designer’s choice. The autonomous execution of tests
is controlled and supervised through the Communi-
cation Interface (CIF). The CIF permits read and
write operations to its configuration registers that trig-
ger and control the evaluation process. In other words,
this unit creates a technology independent communica-
tion interface. All of the components previously men-
tioned in this paragraph form the FT-EST unit, ex-
posing its configuration capabilities through the CIF
component. Besides this, another component called
Communication Module (CM) opens the interface
of the FT-EST unit through the implementation of the
vendor-specific technology. In our case, the commu-
nication is performed through the Joint Test Action
Group (JTAG) boundary scan interface in combination
with the Universal Serial Bus (USB) programmer. As
we are using Xilinx FPGAs, the technology behind the
CM incorporates ChipScope Pro Integrated Controller
(ICON) core [18] in combination with the Virtual In-
put/Output (VIO) cores [17].

The SW part of the framework utilizes our previ-
ously developed fault injector [11], which is able to
filter the bits of the bitstream for a particular design
block that are essential and utilized as Look-Up Ta-
ble (LUT) contents at the same time. The SW also
incorporates the SW counterpart of the CM, which is
implemented using the ChipScope Tcl Engine In-
terface [16]. The reconfiguration to the initial state
of the UUTs (i.e. reparation) is performed using the
iMPACT tool. All of these tools are controlled using
the experimental loop, which follows an experiment
flow and also implements the SEU cycle.

4. Experimental Setup

We decided to investigate if and how HLS influences
sensitivity to SEUs of circuits synthesized by it. This
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is useful not only for the designers using these tools
but also for researchers utilizing these tools in their
FT methods. We also decided to compare the results
of HLS tools with the classical approach utilizing the
VHDL language and conventional synthesis tool. For
the evaluation purposes, we decided to choose the well-
known benchmarking circuit set from the ITC’99 [1].
We selected five particular circuits from this set. The
selection is based primarily on the complexity of these
circuits, which influences the evaluation time needed
to fully test these circuits. The selected benchmarking
circuits include:

1. b01: Finite State Machine (FSM) that compares
serial flows,

2. b02: FSM that recognizes Binary Coded Decimal
(BCD) numbers,

3. b03: resource arbiter,

4. b04: minimum and maximum computation,

5. b05: elaboration of the contents of a memory.

As all these benchmarking circuits come in the for-
mat of a Hardware Description Language (HDL), we
used the original VHDL description to manually re-
implement them in the C++ language, which allows
us to process these circuits by HLS tool and compare
the results with the traditional (i.e. HDL) synthesis
flow. The overview of the original source code param-
eters and the reimplemented C++ code parameters,
including the number of source code lines and variable
instances, are shown in Table 1.

Table 1. Overview of the Original VHDL Codes
and the Reimplemented C++ Source Codes.

Circuit
Name

# In/Out
Pins

VHDL
Version Source

C/C++
Version Source

# Li-
nes

# Pro-
ce-
sses

# Li-
nes

# Va-
ri-
ables

# Vars.
Inside

IF
b01 2/2 110 1 108 1 16
b02 1/1 70 1 72 1 3
b03 4/4 141 1 128 14 12
b04 11/8 102 1 92 13 8
b05 1/36 332 3 334 14 41

The resulting source codes were synthesized using
the Catapult C HLS tools [3] to obtain the correspond-
ing RTL VHDL implementations. Each VHDL im-
plementation was then instantiated inside of the FT-
EST framework to support the evaluation and syn-
thesized using the Xilinx Integrated Synthesis Envi-
ronment (ISE) 14.7 [15]. The evaluation was held on
the ML506 FPGA board [19] utilizing Xilinx Virtex 5

FPGA technology. The flow of the experiments is sum-
marized in Figure 2.
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Figure 2. Overview of the experiments flow
the aim of which is to find out the differences
of FT properties between various circuits and
HLS tools.

The FT-EST framework is set up to perform one
verification (i.e. test cycle) per one utilized bit of the
LUTs content bits of the bitstream. The input stimuli
are generated inside of the IGU component, which uti-
lizes a Linear Feedback Shift Register (LFSR) that is
of 32 bits width length, although, each UUT’s number
of input pins is much smaller. UUT inputs are always
connected to the first n bits of the LFSR, considering
n equals the number of input pins of the UUT. The
framework is configured to make exactly 400 million
ticks of the clock signal before the counters inside of
the FCU are sent to the computer, which saves them
in a fault injection log file alongside with the address of
the particular SEU injection bit. This way we obtain
exact results of how many erroneous outputs out of the
400 million were generated for each injection scenario
(i.e. flip of bit of the bitstream in this case).

5. Experimental Results

After the synthesis, we obtained 2 implementations
per each of the selected benchmarking units. First,
the resulting parameters considering resource utiliza-
tion are shown in the first part of Table 2. We fo-
cused on LUTs, Flip-Flops (FFs) and MUltipleXers
(MUXs). As can be seen, the results show that for
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the first four units b01 – b04, the resource consump-
tion is at least equivalent, but, in some cases, the Cat-
apult C-generated units are even smaller. Consider-
ing the VHDL to C++ transcription being straight-
forward, without any code optimizations, the results
show, that the flow utilizing the Catapult C in com-
bination with the Xilinx ISE results in more efficient
implementations. For the b05 circuit, the number of
utilized FFs is slightly more than doubled. As can be
seen, the HLS flow did not utilize any MUX primitives
in these benchmarks.

As the second, more important part of our research,
we focused on the resulting reliability of the circuits.
These results are, also, for better comparison, shown
in the second part of Table 2. We monitored parame-
ters of the LUT content bits having the essential func-
tion in the design (i.e. LUT bits that are utilized).
We evaluated each of these essential bits using our FT-
EST approach and obtained the number of critical LUT
bits. The number of these critical bits serves as relia-
bility indicator, although, it is important to relate this
number to the essential bit utilization, which we did
using the percentage in a next row of the table. The
last row compares these results in the relation to the
VHDL implementation. A number < 1.0 in this row
indicates better reliability compared to the VHDL im-
plementation and vice versa. As can be seen, for b01
and b03, the HLS reliability is worse, while for b02
and b04, the reliability is better. The b05, however,
has significantly better reliability properties when syn-
thesized using HLS. We were trying to find the reason,
why some HLS-generated circuits achieved better reli-
ability than their VHDL variant, and, except for the
b05 circuit, we formed a hypothesis that this informa-
tion might be in correlation with the number of vari-
ables inside of the C++ if statements. To save space,
we added this information to Table 1. Generally, for
this set of circuits, VHDL versions together contained
9.33 % of critical bits, while for HLS the reliability
was better, counting 6.30 % of critical bits. For better
clarity, the numbers of essential and critical bits are
summarized in the chart shown in Figure 3. Critical
bits in this case serve as an environment-independent
unit to express the failure susceptibility of the design.
The actual parameters, such as Mean Time To Failure
(MTTF), can be calculated analytically or by a simula-
tion later, after the actual failure rate of the particular
circuit operation environment is determined.

6. Conclusions and Future Research

In this paper, our FT-EST framework was used to
evaluate and compare the differences in reliability prop-

b01 b02 b03 b04 b05

Figure 3. Chart comparing the levels of critical
bits representations for the VHDL and HLS
(i.e. Catapult C) flow; please note the Y-axis
uses logarithmic scale.

erties of systems generated using HLS tools and also us-
ing the traditional VHDL synthesis flow. In this evalu-
ation, a subset of the well-known and publicly available
benchmarking set, known under the name ITC’99, was
used. This subset was reimplemented in the C/C++
language and synthesized using HLS flow. For the HLS
synthesis, we used the Catapult C tools.

The results obtained in our experimentation show,
that, for this set of circuits, in general, the reliability
was better by 3.03 percentage points than the VHDL
implementations. We consider this to be caused by the
fact the HLS-generated circuit is processed twice (i.e.
for the first time by the HLS tool and for the second
time by the HW synthesis tool), and, thus, it has higher
potential to internal optimizations that might result in
a better performing circuit. Also, the consumption of
resources is generally-speaking lower for the HLS set.
We believe the HLS synthesis performs better during
the optimization process. Nonetheless, the conclusion
is that the realizations generated using HLS are almost
equivalent to the VHDL described circuits, and, thus,
a designer may expect similar behavior in terms of re-
liability, profiting from the higher level of abstraction.

As a part of our future work, we would like to eval-
uate our previously published approach to incorporate
redundancy to HLS-generated systems and possibly
tune the properties of the system to better suit multi-
ple environments (i.e. various HLS tools). This work
is part of a greater research focusing on FT system de-
sign automation. The actual information, whether the
abstraction level of the circuit description affects its
reliability, is very important prerequisite to be able to
automate the design on various abstraction levels. It
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Table 2. Comparison of Properties of Units Generated using Different Approaches.
Circuit Name b01 b02 b03 b04 b05

Variant VHDL Cat.C VHDL Cat.C VHDL Cat.C VHDL Cat.C VHDL Cat.C

Resources
Utilized

LUTs # [-] 10 6 4 5 38 37 129 121 183 131
FFs # [-] 10 6 4 5 35 35 67 67 36 85

MUX # [-] 0 0 0 0 1 0 2 0 1 0

Essential LUT bits [b] 704 576 384 512 2880 2624 8576 8768 13120 9856
Critical LUT bits [b] 118 171 64 67 252 283 1130 805 831 82

% of Critical LUT bits [%] 16.76 29.69 16.66 13.89 8.75 10.79 13.18 9.18 6.33 0.83
% of Critical LUT bits

Compared to VHDL [%]
1.0 1.79 1.0 0.83 1.0 1.23 1.0 0.70 1.0 0.13

should provide a little information to the whole puz-
zle and help to realize the idea of a source-description
independent FT automation system.
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