
Approximate Computing: An Old Job

for Cartesian Genetic Programming?

Lukas Sekanina

Abstract Miller’s Cartesian genetic programming (CGP) has significantly influ-

enced the development of evolutionary circuit design and evolvable hardware. We

present key ingredients of CGP with respect to the efficient search in the space of

digital circuits. We then show that approximate computing, which is currently one of

the promising approaches used to reduce power consumption of computer systems,

is a natural application for CGP. We briefly survey typical applications of CGP in

approximate circuit design and outline new directions in approximate computing that

could benefit from CGP.

1 Introduction

Julian F. Miller, a pioneer of genetic programming (GP), evolvable hardware (EHW),

evolution in materio and other approaches that could be together classified as uncon-

ventional computing paradigms, is best known as the (co)inventor of Cartesian

genetic programming (CGP) [25]. Genetic programming is a computational intel-

ligence method capable of the automated designing of programs. It has been devel-

oped since the eighties, with the significant contribution of John Koza who mainly

worked on a tree-based GP in which candidate solutions are syntactic trees [20]. In

Miller’s version of genetic programming, CGP, candidate solutions are represented

using directed acyclic graphs encoded as finite-size strings of integers. This repre-

sentation is especially useful for evolving electronic circuits as it naturally captures

the circuit physical structure and supports multiple outputs, subgraph sharing and

various types of elementary circuit components.

CGP has predominantly been developed within two research communities: genetic

programming and evolvable hardware. For the genetic programming community,

interesting concepts behind CGP are the specific genotype-phenotype mapping,

mutation-driven search over small populations, role of neutrality and bloat free

L. Sekanina (✉)

Faculty of Information Technology, Brno University of Technology,

IT4Innovations Centre of Excellence, Brno, Czech Republic

e-mail: sekanina@fit.vutbr.cz

© Springer International Publishing AG 2018

S. Stepney and A. Adamatzky (eds.), Inspired by Nature, Emergence,

Complexity and Computation 28, https://doi.org/10.1007/978-3-319-67997-6_9

195

sekanina@fit.vutbr.cz



196 L. Sekanina

search. In the last decade, CGP was extended in various directions, for example,

the evolution of modular code was supported and self-modifying CGP enabled the

evolved programs to change themselves as a function of time. For the evolvable hard-

ware community, CGP has represented a natural way to model and evolve digital cir-

cuits, not only in a circuit simulator but also directly on a chip. New circuit designs,

including patented solutions,1 were routinely obtained by means of CGP. Digital

architectures capable of autonomous adaptation and self-repair were constructed,

where CGP was responsible for autonomous changes of the circuits involved. CGP-

based results have also been published outside the major evolutionary computing

or evolvable hardware events, thus influencing people focusing on the mainstream

circuit design approach.

In computer engineering, the following trends can be observed [7, 22]:

∙ Energy efficiency is strongly requested, especially for omnipresent wireless

battery-powered systems (such as smart phones, consumer electronics and wire-

less sensor networks) and, on the other hand, for energy demanding data and super-

computer centers processing Big Data.

∙ Computationally-demanding applications (e.g. those based on deep neural net-

works) are implemented even in small battery powered embedded systems.

∙ Integrated circuits developed using recent fabrication technology exhibit reliabil-

ity issues and uncertainties, especially when operated at low voltages.

∙ Massive parallelism available by implementing billions of transistors on a single

die cannot be fully employed as only a fraction of them can be activated at the

same time in order to prevent burning the chip.

One of the approaches capable of coping (at least partly) with the aforementioned

issues is approximate computing [31]. It exploits the fact that many applications are

inherently error resilient. If some errors can be tolerated, then the underlying hard-

ware and software can be simplified to be faster or less energy consuming. Multi-

media, datamining and machine learning applications are good candidates for the

approximation because possible small imperfections in data processing usually have

only a small impact on the quality of result. The approximate hardware and software

system design can be viewed as an optimization problem in which a good trade-off

is sought among key design variables—performance, energy and error. This opti-

mization problem can be attacked with CGP [60, 61]. A real challenge is to employ

approximate computing for the most advanced technology nodes, where transistors

parameters exhibit unusual variability. One of the approaches is, by graceful per-

formance degradation at run-time and in the presence of uncertainties or errors, to

deliver the best possible trade-off between the quality of result and energy consump-

tion for all components on a chip. It has to be noted that this new notion of approx-

imation, which was established around 2010, is different from the approximations

that have been conducted for decades in the fields of computer engineering (such as

approximate signal processing by [38]) and computer science (such as approximate

algorithms by [64]).

1Nonlinear image filter, Patent No. 304181, Czech Republic, 2013.

sekanina@fit.vutbr.cz



Approximate Computing: An Old Job for Cartesian Genetic Programming? 197

The aim of this chapter is to emphasize Miller’s contribution to the evolutionary

design of gate level circuits. In particular, we highlight some of the ingredients of

CGP that are crucial for an efficient search, especially in the space of digital circuits

(Sect. 2). We show that some of Miller’s results in the area of evolutionary circuit

design that were obtained over 15 years ago can be interpreted as vital contributions

to the current research in approximate computing (Sect. 3). We briefly survey current

applications of CGP in approximate circuit design (Sect. 4). The last part of this

chapter is devoted to new directions in approximate computing that could benefit

from CGP (Sect. 5). Final remarks are given in Sect. 6.

2 Cartesian Genetic Programming

According to Julian F. Miller:

Cartesian genetic programming grew from a method of evolving digital circuits developed by

Miller et al. in 1997 [29]. However the term ‘Cartesian genetic programming’ first appeared

in 1999 [23] and was proposed as a general form of genetic programming in 2000 [28].

In CGP, candidate solutions are represented in a two-dimensional array of pro-

grammable nodes. While the phenotype is represented using a directed oriented

graph, the genotype is encoded in a fixed-size string of integers. In this section,

key ingredients of CGP are briefly introduced. The aim is not to provide a detailed

description (which is available in [25]), but to emphasize important consequences

for practical evolutionary circuit design. We primarily deal with combinational gate-

level circuits.

2.1 Circuit Representation

An ni-input and no-output combinational circuit is modelled using an array of nc ⋅ nr

programmable nodes forming a Cartesian grid. A set of available na-input node func-

tions is denoted Γ, where elementary logic functions are included for gate-level cir-

cuits. The levels-back parameter l constraints which columns a node can get its inputs

from. No feedbacks are allowed in the basic version of CGP. The primary inputs

and programmable nodes are uniquely numbered. For each node the chromosome

contains (na+1) values that represent the node function and na addresses specify-

ing the input connections. The chromosome also contains no values specifying the

gates connected to the primary outputs. The chromosome size is ncnr(na + 1) + no

integers.

The circuit representation used by CGP was not invented by Miller as there are

papers from the early nineties utilizing the same concept [21, 37]. An important

property of this representation is its extensibility to support different types of com-

ponents (such as gates, 3-electrode transistors, or 6-input look-up tables), recurrent

sekanina@fit.vutbr.cz



198 L. Sekanina

networks [51], transistor-level circuits [68], modular circuits [14, 67], decomposi-

tion strategies [49] and self-modifying code [8].

No restrictions on resulting circuits are given if nr = 1 and l = nc, which is the

most common setting used in the literature. However, this setting is not suitable for

an on-chip implementation of CGP as many options for interconnecting the nodes are

allowed and must be supported by the underlying hardware platform. On the other

hand, if l = 1 then pipeline circuits can naturally be evolved and implemented.

After decoding the genotype, each node is labelled as active or inactive according

to its utilization in the phenotype. Regarding the size of the array, one of the conclu-

sions in the literature is that more is better (i.e. the number of evaluations is minimal

when the genome size far exceeds what is necessary for the problem at hand [27]). A

recent work showed that there is a problem-dependent limit in the number of nodes

that makes sense to employ in the array [52]. However, all results were obtained for

relatively small problem instances (such as 4-bit multiplier or 8-bit parity requiring

tens of gates to be implemented). It is an open question if this high redundancy is

useful for the evolution of real-world circuits containing thousands of gates.

2.2 Genetic Operators

Despise several attempts to introduce a useful crossover operator to CGP [2, 47],

mutation is the only genetic operator employed in almost all studies and applica-

tions conducted with CGP. The structure of fitness landscapes was studied and it

has been shown that the landscapes are vastly neutral with sharply differentiated

plateaus [30]. The search space is considered as very difficult, especially for circuits

such as parallel multipliers. The recent work of Goldman and Punch analysed several

types of mutation and their impact of the quality of search, stressing the importance

of mutations on active over inactive genes [6]. Vasicek showed that there is no rea-

son to support neutral mutations for evolutionary optimization of complex circuits

(hundreds of inputs, thousands of gates) if the task is to minimize the number of

gates in a fully functional circuit [53].

2.3 Seeding the Initial Population

If the initial population is randomly generated, we speak about evolutionary circuit

design. The task for CGP is to provide a circuit structure. If conventional solutions

are used in the initial population (i.e. the circuit structure is known), the goal of

CGP is to optimize circuit parameters (as well as structure) and then we speak about

evolutionary circuit optimization. While it is very time consuming to evolve non-

trivial circuits from scratch, the question is whether it makes sense to evolve them at

all. We believe that there are at least two reasons.

sekanina@fit.vutbr.cz



Approximate Computing: An Old Job for Cartesian Genetic Programming? 199

Firstly, the approach seems to be promising for adaptive embedded systems. If

a new logic function has to be implemented in reconfigurable hardware, employing

CGP could be a good choice in the case of simple logic circuits. The reason is that it

is usually impossible to perform a standard circuit design and synthesis procedure by

means of common circuit design software executed directly in the embedded system

because of its high time and resources requirements. On the other hand, CGP, which

is generating and testing candidate solutions directly in the reconfigurable device,

can provide a suitable solution in a reasonable time, even if some circuit compo-

nents are faulty [40]. This is impossible using conventional synthesis, placement

and routing algorithms which expect fault-free chips.

Secondly, the circuit design problem can serve as a useful test problem for the

performance evaluation and comparison of genetic programming systems. It is also

occasionally possible to obtain new useful implementations of these circuits, unbi-

ased with respect to conventional circuit designs. The most complex circuits evolved

from scratch (without any decomposition) were reported in [58] and they contain less

than 30 inputs and a thousand gates.

However, in the circuit design and optimization practice, there is no reason to start

from scratch. A fully functional solution can always be generated from the specifi-

cation by means of a basic conventional circuit design method. The most complex

circuits optimized by CGP that was seeded with the best known conventional imple-

mentations were reported by [53]. They contained hundreds of inputs and thousands

of gates.

It should be noted that the approach discussed so far assumes that a circuit fully

compliant with the specification must be delivered. This scenario is referred to as

the evolution of completely specified circuits and is primarily relevant for arithmetic

circuits and control logic. On the other hand, incompletely specified circuits are used

in applications (such as classification, filtering, hashing and prediction) in which the

correctness can only be evaluated using a subset of all possible input vectors because

verifying responses for all possible input combinations is intractable. According to

the applications reported in the literature, it seems that the evolutionary circuit design

is more successful for the incompletely specified circuits. We see in Sect. 3.1 that

both approaches are relevant for approximate computing.

2.4 Search Algorithm

While the problem representation used in CGP is not an original invention of Julian

F. Miller, the mutation-based search algorithm operating over this representation

is fundamental in Miller’s contribution. The search algorithm utilized by CGP is a

simple (1 + �) search strategy. Every new population consists of the parent and its

� offspring created by a mutation operator. The parent is always the highest-scored

candidate circuit. The parent from the previous generation is never selected as a new

parent if there is another offspring with the same fitness value. This rule is crucial for

an efficient search as it introduces new genetic material into the population through

sekanina@fit.vutbr.cz



200 L. Sekanina

the neutral mutations. The algorithm is terminated when the maximum number of

generations is exhausted or a sufficiently working solution is obtained.

It was observed in [5] that if CGP is minimizing the number of gates in an already

fully functional circuit, then a modified parent selection mechanism is more efficient

than the standard one. Quite unintuitively, the selection of the parent individual based

solely on its functionality (i.e. all fully functional offspring can then become the new

parent independent of their size) instead of compactness, led to smaller phenotypes

at the end of evolution.

Contrasted to the tree-based GP, CGP employs a very small population (� is usu-

ally between 1 and 10), but many generations are produced. Introducing a multi-

objective or co-evolutionary CGP is then problematic as the populations are very

small. Despite this fact, several multiobjective CGP implementations [11, 13, 16]

and co-evolutionary CGP implementations [46] have been proposed.

2.5 Fitness Evaluation and Its Acceleration

Since its introduction, CGP has been promoted as a universal form of GP, but is

especially useful for circuit design and optimization. Many authors reported digital

circuits that can be evolved from scratch or optimized by CGP and at the same time

these circuits show some improvements in terms of the number of gates (and delay

in some cases) against conventional implementations (one of the first results in this

direction was reported by [63]). The most common approach to construct the fitness

function f () is as follows:

f =

{

b when b < no2
ni ,

b + (ncnr − z) otherwise,
(1)

where b is the number of correct output bits obtained as response for all possi-

ble assignments to the inputs, z denotes the number of gates utilized in a partic-

ular candidate circuit and nc ⋅ nr is the total number of available gates. It can be

seen that the last term ncnr − z is considered only if the circuit behavior is perfect

sekanina@fit.vutbr.cz



Approximate Computing: An Old Job for Cartesian Genetic Programming? 201

(i.e. b = bmax = no2
ni ). We can observe that the evolution has to discover a perfectly

working solution firstly, while the size of circuit is not important. Then, the number

of gates is optimized.

For the incompletely specified problems, the fitness is usually calculated on the

basis of candidate circuit responses for a given training data set. The evolved circuit

has to be validated using a test set. This approach has been widely adopted in the

evolutionary design of image filters [42], classifiers [17], hash functions [15] and

other circuits.

As the fitness calculation is the most time consuming procedure of CGP, var-

ious accelerators have been proposed to reduce the circuit evaluation time. The

approaches include bit-level parallel circuit simulation and fitness function precom-

pilation [62], parallel CGP [13], and FPGA [3, 54] and GPU [9] based accelerators.

2.6 Practical Aspects of Evolutionary Circuit Design

CGP for logic synthesis and optimization, as discussed so far, has not been widely

accepted by the circuit design community. The reason is that this approach is far

from the practical needs of the community. The main criticism addressed the issues

of the (1) initial solution selection (i.e. there is usually no reason to evolve a circuit

from scratch, see Sect. 2.3), (2) simplified modelling of circuit parameters, (3) poor

scalability of the method, (4) non-deterministic behaviour of the method and (5)

validation of the method using a few benchmark circuits only. We elaborate (2) and

(3) in greater detail in the following paragraphs.

The fitness function according to Eq. 1 would be acceptable for logic synthesis,

where the goal is to minimize the number of gates. It is insufficient for circuits that

have to be implemented on a chip, where detailed information about the area on a

chip, delay and power consumption are important. In order to estimate parameters

of a given circuit, a detailed circuit analysis is requested. As many candidate circuits

have to be evaluated it is very time consuming to call a professional circuit simulator

for each circuit. Hence parameters of candidate circuits are estimated in the fitness

function and a complete measurement is performed for the best circuits at the end

of evolution. This methodology was implemented, for example, in paper [33, 59],

in which the area and delay were estimated using the parameters defined in the lib-

erty timing file available for a given semiconductor technology. Delay of a gate was

modelled as a function of its input transition time and the output capacitive load.

The delay of the whole circuit was then determined as a delay along the longest

path. The total area was calculated as the sum of areas of all gates involved in the

circuit. Finally, power consumption was estimated according to the methodology

introduced for gate- and transistor-level circuits in [33]. In another transistor-level

approach, power consumption and other circuit parameters were computed for all

candidate designs using a circuit simulator of the Spice family [69].

Coping with the scalability problems is a more serious issue. The problem is that

the circuit evaluation time (Eq. 1) grows exponentially with the number of inputs.

sekanina@fit.vutbr.cz



202 L. Sekanina

Hence the method is only applicable to the evolution of relatively small circuits.

Because the specification is given in the form of a truth table, it is impossible to

specify complex circuits in practice. Several methods have been proposed to elimi-

nate these problems (see the overview in [43]). However, the most complex circuits

evolved in this scenario are, for example, 6-bit multipliers, 9-bit adders, and 17-bit

parity circuits [13, 49].

A promising solution to the fitness evaluation scalability problem is based on a

completely different strategy to the fitness evaluation. In practice, a common sit-

uation is that a highly unoptimized, but fully functional circuit implementation, is

always available. Such a circuit can be used in the initial population of CGP. The new

fitness evaluation procedure then exploits the fact that efficient algorithms, which

allow us to decide relatively quickly on whether two circuits are functionally equiv-

alent, were developed in the field of formal verification. In our context, the task is

to decide whether the parent and its offspring (created by a mutation operator) are

functionally equivalent, assuming that the evolutionary algorithm is seeded by a fully

functional solution and that the current parent is also fully functional. If the equiv-

alence holds, the fitness of the offspring is given by the number of gates if the task

is to minimize the number of gates. An evolutionary circuit optimization method

was introduced in [55], which employs a satisfiability problem solver (SAT solver)

in the fitness function in order to decide the functional equivalence. An average gate

reduction of 25% was reported for benchmark circuits containing thousands of gates

and having tens of inputs in comparison with state of the art academia, as well as

commercial tools [56]. This result was improved in [53] by using a circuit simulator

prior to a SAT solver to disprove the equivalence between a candidate solution and

its parent. If the equivalence checking is based on binary decision diagrams (BDD),

the circuits can also be evolved from scratch because it is possible and relatively easy

to obtain the Hamming distance between the outputs of the candidate circuit and the

specification [58]. However, the BDD-based approach seems to be less scalable than

the SAT-based fitness evaluation.

We can summarize that CGP is currently applicable in the evolutionary design

and optimization of relatively complex combinational circuits. CGP can work as a

multi-objective design method in which key circuit parameters are directly estimated

in the fitness evaluation procedure and optimized in the course of evolution. While

improving conventionally optimized circuits is the clear advantage of CGP, its huge

execution time is the main drawback.

3 Approximate Computing and Evolvable Hardware

The research dealing with approximate computing has been substantially growing

since 2010. We briefly introduce this concept in this section. We emphasize that

some research performed in CGP and evolvable hardware community over 10 years

ago is currently very relevant for approximate computing.

sekanina@fit.vutbr.cz



Approximate Computing: An Old Job for Cartesian Genetic Programming? 203

3.1 Approximate Computing

According to [31]:

Approximate computing exploits the gap between the level of accuracy required by the appli-

cations/users and that provided by the computing system, for achieving diverse optimiza-

tions.

Approximate computing was established with the goal of providing more energy

efficient, faster, and less complex computer-based systems by allowing some errors

in computations. One of motivations for approximate computing is that the exact

computing utilizing nanometer transistors provided by recent technology nodes is

extremely expensive in terms of energy requirements and reliable behavior. An open

question is how to effectively and reliably compute with a huge amount of unreliable

components. Another motivation is that many applications (typically in the areas of

multimedia, graphics, data mining, and big data processing) are inherently error

resilient. This resilience can be exploited in such a way that the error is exchanged

for improvements in power consumption, throughput or implementation cost.

One of the approximation techniques is functional approximation whose prin-

ciple is to implement a slightly different function with respect to the original one,

provided that the error is acceptable and key system parameters are improved. The

functional approximation can be conducted at the level of software as well as hard-

ware. An approximate solution is typically obtained by a heuristic procedure that

modifies the original implementation. For example, artificial neural networks were

used to approximate software modules [4] and search-based methods allowed us to

approximate some hardware components [39].

In addition to functional approximations, timing induced approximations (voltage

over scaling) and components showing “unreliable” behavior (such as approximate

memory elements) are often employed. The aim is to support approximate computing

at the level of programming languages [41] and exploit new features of specialized

approximate processors [1].

3.2 Approximations with CGP Before the Approximate

Computing Era

Two main directions in approximate computing are (1) energy-efficient computing

with unreliable components that are present in the new chips, and (2) approximation

of circuits and programs on conventional platforms in order to reduce energy require-

ments. Interestingly, both directions can be traced in Miller’s research on evolvable

hardware and CGP.

sekanina@fit.vutbr.cz



204 L. Sekanina

3.2.1 Evolution in Materio

In the mid-1990s, Adrian Thompson evolved a tone discriminator circuit directly

in the XC6216 FPGA chip. The discriminator required significantly less resources

than usual conventionally designed solutions would occupy in the same FPGA [50].

Despite a huge effort, Thompson has never fully understood the evolved design. The

evolved discriminator was fully functional, but its robustness was limited. For exam-

ple, a higher sensitivity to fluctuations in environment (external temperature, power

supply voltage) and dependence on a particular piece of FPGA were reported. This

result, showing an innovative trade-off between the robustness and the amount of

resources in the FPGA, can be considered as an early approach to approximate cir-

cuit design by means of evolutionary algorithms.

Thompson’s work was for Julian F. Miller and his collaborators a starting point

in continuing the investigation of the exploitation of physical properties of suitable

substrates using artificial evolution. They have developed a new concept which is

currently referred to as the evolution in materio (i.e. evolving useful functions in

a physical system without understanding the rules of the game [26]). The idea is

that there is a material to which physical signals can be applied or measured via

a set of electrodes. A computer controls the application of physical inputs applied

to the material, reading of physical signals from the material and the application to

the material of other physical inputs known as physical configurations. Successful

examples include evolved logic functions in liquid crystals [10] and carbon nan-

otubes materials [32].

In order to study and exploit “physics” (known from the evolution in materio) in

computer simulation, Miller contributed to the development of the so-called messy

gates. A messy gate is a gate-like component with added noise. CGP was extended to

support noise modelling and then used to evolve small combinational circuits com-

posed of messy gates. Evolved circuits exhibited implicit fault tolerance. Moreover,

surprisingly efficient and robust designs were obtained for small combinational cir-

cuits.

The above-mentioned studies show that reliable computing on unknown and unre-

liable platforms has been one of Miller’s central research topics for a long time. This

topic has been further explored within an EU-funded project, NASCENCE.2

3.2.2 Functional Approximation and Approximation of Functions

The functional approximation is frequently used to approximate digital circuits such

as adders, multipliers, filters and general logic. In 1999, Miller introduced a CGP-

based method for a finite impulse response (FIR) filter design [24] that would be

called functional approximation nowadays. In this method, candidate filters are com-

posed of elementary logic gates, thus ignoring completely the well-developed tech-

niques based on multiply–and–accumulate structures. Evolved networks of gates are

extremely area-efficient (and thus potentially energy efficient) in comparison with

2NAnoSCale Engineering for Novel Computation using Evolution, http://www.nascence.eu.

sekanina@fit.vutbr.cz



Approximate Computing: An Old Job for Cartesian Genetic Programming? 205

conventional filters. However, only partial functionally has been obtained because

of the overall simplicity of the logic networks. The evolved circuits are not, in fact,

filters. In most cases, they are combinational quasi-linear circuits trained on some

data. They are not able to generalize for the input signals unseen during the evolu-

tion. In order to obtain real filters, the design process must guarantee that the evolved

circuits are linear, which is not the case in this method. One of the possible benefits of

the method is that circuits can be evolved to perform filtering task, even if sufficient

resources are not available (e.g. a part of chip is damaged). Furthermore, as Miller

noted, “The origin of the quasi-linearity is at present quite mysterious . . .Currently

there is no known mathematical way of designing filters directly at this level”.

In mathematics, it is investigated how certain (usually complex) functions can best

be approximated by means of basic functions that are inexpensive or suitable accord-

ing to a given purpose, and with quantitatively characterizing the errors thereby intro-

duced. CGP (and GP in general) is a method capable of performing the so-called sym-

bolic regression (i.e. providing an expression which represents (with some error) an

unknown function for a given data set). Miller was one of the core persons who estab-

lished a self-modifying CGP (SMCGP), which can find general solutions to classes of

problems and mathematical algorithms such as arbitrary parity, n-bit binary addition,

sequences that compute � and e, etc. [8]. SMCGP is a developmental form of CGP

that supports self-modification functions in addition to computational functions and

enables phenotypes to vary over time. By means of the phenotype development, the

degree of approximation of the target behaviour (and thus the corresponding error)

can be tuned.

4 Circuit Approximation by Means of CGP

This section briefly surveys recent applications of CGP is which approximate com-

puting is explicitly mentioned as the target application. The approximate circuit

design problem is formulated as a multi-objective optimization problem in which

the accuracy, area, delay (or performance) and power consumption are conflicting

design objectives. The CGP-based approximation methods typically include the fol-

lowing attributes:

∙ Circuit parameters (delay, area, power consumption) are modelled more precisely

than in the applications discussed in the previous sections.

∙ The search algorithm is typically constructed as multiobjective and seeded by con-

ventional implementations showing different circuit parameters. It is assumed that

the user will choose the most suitable trade-off from the Pareto front for a partic-

ular application.

∙ Different types of error metrics are employed. If a candidate circuit is evaluated

using all possible input combinations, an arbitrary error metric can be computed.

In the case of complex circuits, formal methods based on SAT solving or BDDs

are currently applicable for evaluating only a few relevant error metrics [12].

sekanina@fit.vutbr.cz



206 L. Sekanina

In the following sections, three CGP-based approaches for circuit approximation are

presented. Finally, CGP utilizing relaxed equivalence checking in the fitness function

is discussed.

4.1 Resources-Oriented Method

This method exploits the fact that CGP can produce a partially working solution even

if sufficient resources for constructing an accurate circuit are not available. The idea

is to evolve a circuit showing a minimum error using ki components (gates) pro-

vided that ki < K and K is the number of components (gates) required to implement

a correct circuit. CGP is considered as a single-objective method which is executed

several times with different ki as the parameter. It provides a set of approximate cir-

cuits, each of which typically exhibits a different trade-off between the functionality

and the number of gates. The main advantage is that the user can control the used

area (and power consumption) more comfortably than by means of the error-oriented

methods. The method was employed to approximate small multipliers and 9-input

and 25-input median circuits operating over 8 bits [60]. Approximate software imple-

mentations of the median function were evaluated for microcontrollers by [34].

4.2 Error-Oriented Method

Vasicek and Sekanina [57] proposed a complementary design approach. The user is

supposed to define the required error level emax (e.g. the average error magnitude).

In the first step, CGP, which is seeded by a conventional fully functional implemen-

tation, is utilized to modify the seed in order to obtain a circuit with a predefined

emax. After obtaining that circuit, in the second step, CGP can minimize the num-

ber of gates or other criteria providing that emax is left unchanged. The method is

again a single objective and multiple runs are required to construct the Pareto front.

The method was evaluated in the task of approximate multipliers design. The error-

oriented approach tends to be less computationally demanding than the resources

oriented method.

Approximate multipliers showing specific properties were evolved for artificial

neural networks implemented on a chip. Their utilization led to a significant power

consumption reduction and only a very small loss in the accuracy of the image clas-

sification [35].

4.3 Multi-objective CGP

In the multi-objective method, the error and other key circuit parameters (area, delay

and power consumption) are optimized together by an algorithm combining CGP

with NSGA-II [36, 59]. For example, in [36], the initial population was seeded using

sekanina@fit.vutbr.cz



Approximate Computing: An Old Job for Cartesian Genetic Programming? 207

13 different conventional 8-bit adders and 6 different conventional 8-bit multipliers

in the task of the adder and multiplier approximation. The gate set contained compo-

nents of a 180 nm process library, including half and full adders. The mean relative

error was used in the fitness function while the predefined worst case error and worst

case relative error constrained the search space. As the task is very computation-

ally demanding, a highly parallel implementation of CGP, exploiting a vectorised

and multi-threaded code, was employed. This approach enabled us to evolve a rich

library of adders and multipliers (showing different errors and parameters) that can

be utilized in future applications of approximate computing.

4.4 Relaxed Equivalence Checking

So far we have discussed the approximation methods that evaluate the candidate solu-

tions by applying a set of (all) input vectors and measuring the error of the output

vectors with respect to an exact solution. This approach is not, however, applica-

ble when approximating complex circuits. If the exact error of the approximation

has to be determined, formal relaxed equivalence checking is requested, stressing

the fact that the considered systems will be checked to be equal up to some bound

w.r.t., a suitably chosen distance metric. This research area is rather unexplored as

almost all formal approaches have been developed for (exact) equivalence check-

ing [12]. Checking the worst error can be based on satisfiability (SAT) solving as

demonstrated in [66]. However, while violating the worst error can be detected, no

efficient method capable of establishing, for example, the average error using a SAT

solver has been proposed up to now. Approaches based on binary decision diagrams

(BDDs) in order to determine the average arithmetic error, worst error, and error rate

were introduced [48].

In the context of CGP, a fitness function based on the average Hamming distance

computed by means of BDD was introduced by [61]. The method enabled us to

approximate combinational circuits consisting of hundreds of gates and up to 50

inputs (i.e. the circuits whose evolution and approximation is impossible with a direct

implementation of the fitness function defined in Eq. 1).

5 New Directions

Although evolutionary approximation of arithmetic circuits [36] and general logic

[61] is possible with CGP, and CGP seems to be a quite competitive method,

there are other promising areas for CGP in approximate computing. If a candidate

sekanina@fit.vutbr.cz



208 L. Sekanina

approximate circuit is evaluated using a data set (e.g. in applications such as image

filtering, classification and prediction), then the scalability issues of CGP are not as

burning as in the case of arithmetic circuits. Hence, we expect that CGP would be

very successful in these domains.

5.1 Quality Configurable Circuits

In applications such as signal processing or image compression, it is useful when

the quality of approximation (and a corresponding circuit error) can dynamically be

adapted in “situ” as a response to variable requirements on the quality of results and

available resources. This adaptive quality control is addressed by methods recently

developed in the area of approximate computing [45, 65].

This concept has, however, been explored by the evolvable hardware community

in the past. For example, a polymorphic FIR filter was proposed which can operate

in two modes: a standard one and one with a reduced power budget. When the filter

operates with a reduced power budget, some filter coefficients are reconfigured and

some parts of the filter are disconnected. The goal is to reconfigure the filter in such

a way that its original function is approximated as precisely as possible. The recon-

figuration of coefficients is implemented using multiplierless polymorphic constant

multipliers whose implementation was evolved using CGP [44]. In another study,

Kneiper et al. investigated the robustness of EHW-based classifiers that are able

to cope with changing resources at run-time. The performance and accuracy was

recognized as sufficient as long as a certain amount of resources are present in the

system [19]. It seems to be a natural task for CGP to automatically divide a target

circuit into several sections and optimize these sections in such a way that a quality

configurable solution is obtained.

5.2 Approximate Neural Networks

CGP has already been used in order to approximate neural networks, in particular,

the multipliers involved in computing the product of the inputs and synaptic weights

were approximated by [35]. However, there is a new opportunity for CGP in approxi-

mate neural networks. Miller has managed CGP to encode and evolve artificial neural

networks. CGP is able to simultaneously evolve the networks connections weights,

topology and neuron transfer functions [18]. It is also compatible with recurrent-

CGP enabling the evolution of recurrent neural networks. It seems straightforward

to evolve approximate neural network implementations by means of CGP and find a

good trade-off between the network error and power consumption.

sekanina@fit.vutbr.cz



Approximate Computing: An Old Job for Cartesian Genetic Programming? 209

6 Final Remarks

In this chapter, we highlighted Julian F. Miller’s contribution to the evolutionary

circuit design and identified a strong connection and relevance of his research to

approximate computing.

It is fair to say that this chapter could be seen as a bit biased as many of the results

and studies referenced were developed by the Evolvable hardware group at Faculty of

Information Technology, Brno University of Technology. However, it indicates how

strongly our work was influenced by the concepts and methods proposed by Julian

F. Miller. We hope that Miller’s ideas were exploited by us in a good way and that

we helped to disseminate these ideas to other communities, outside the evolutionary

computing (Miller’s home), such as mainstream circuit design conferences (DATE,

ICCAD, FPL and DDECS).

Thank you, Julian!

Acknowledgements This work was supported by The Ministry of Education, Youth and Sports of

the Czech Republic from the National Programme of Sustainability (NPU II); project

IT4Innovations excellence in science—LQ1602.

References

1. Chippa, V., Venkataramani, S., Chakradhar, S., Roy, K., Raghunathan, A.: Approximate com-

puting: an integrated hardware approach. In: 2013 Asilomar Conference on Signals, Systems

and Computers, pp. 111–117. IEEE (2013)
2. Clegg, J., Walker, J.A., Miller, J.F.: A new crossover technique for cartesian genetic program-

ming. In: Proceedings of GECCO, pp. 1580–1587. ACM (2007)
3. Dobai, R., Sekanina, L.: Low-level flexible architecture with hybrid reconfiguration for evolv-

able hardware. ACM Trans. Reconfig. Technol. Syst. 8(3), 1–24 (2015)
4. Esmaeilzadeh, H., Sampson, A., Ceze, L., Burger, D.: Neural acceleration for general-purpose

approximate programs. Commun. ACM 58(1), 105–115 (2015)
5. Gajda, Z., Sekanina, L.: An efficient selection strategy for digital circuit evolution. In: Evolv-

able Systems: From Biology to Hardware, LNCS, vol. 6274, pp. 13–24. Springer (2010)
6. Goldman, B.W., Punch, W.F.: Analysis of Cartesian genetic programming’s evolutionary

mechanisms. IEEE Trans. Evol. Comput. 19(3), 359–373 (2015)
7. Gupta, P., Agarwal, Y., Dolecek, L., Dutt, N., Gupta, R.K., Kumar, R., Mitra, S., Nicolau, A.,

Rosing, T.S., Srivastava, M.B., Swanson, S., Sylvester, D.: Underdesigned and opportunistic

computing in presence of hardware variability. IEEE Trans. CAD Integr. Circuits Syst. 32(1),

8–23 (2013)
8. Harding, S., Miller, J.F., Banzhaf, W.: Developments in cartesian genetic programming: self-

modifying CGP. Genet. Program. Evolvable Mach. 11(3–4), 397–439 (2010)
9. Harding, S.L., Banzhaf, W.: Hardware acceleration for CGP: graphics processing units. In:

Cartesian Genetic Programming, pp. 231–253. Springer (2011)
10. Harding, S.L., Miller, J.F.: Evolution in materio: evolving logic gates in liquid crystal. Int. J.

Unconv. Comput. 3(4), 243–257 (2007)
11. Hilder, J., Walker, J., Tyrrell, A.: Use of a multi-objective fitness function to improve cartesian

genetic programming circuits. In: NASA/ESA Conference on Adaptive Hardware and Systems,

pp. 179–185. IEEE (2010)

sekanina@fit.vutbr.cz



210 L. Sekanina

12. Holik, L., Lengal, O., Rogalewicz, A., Sekanina, L., Vasicek, Z., Vojnar, T.: Towards formal

relaxed equivalence checking in approximate computing methodology. In: 2nd Workshop on

Approximate Computing (WAPCO 2016), HiPEAC, pp. 1–6 (2016)

13. Hrbacek, R., Sekanina, L.: Towards highly optimized cartesian genetic programming: from

sequential via SIMD and thread to massive parallel implementation. In: Proceedings of the

2014 Conference on Genetic and Evolutionary Computation, pp. 1015–1022. ACM(2014)

14. Kaufmann, P., Platzner, M.: Advanced techniques for the creation and propagation of modules

in cartesian genetic programming. In: Genetic and Evolutionary Computation (GECCO), pp.

1219–1226. ACM Press (2008)

15. Kaufmann, P., Plessl, C., Platzner, M.: EvoCaches: application-specific adaptation of cache

mappings. In: Proceedings of the NASA/ESA Conference on Adaptive Hardware and Systems,

pp. 11–18. IEEE Computer Society, Los Alamitos, CA, USA (2009)

16. Kaufmann, P., Knieper, T., Platzner, M.: A novel hybrid evolutionary strategy and its peri-

odization with multi-objective genetic optimizers. In: 2010 IEEE Congress on Evolutionary

Computation (CEC), pp. 1–8. IEEE (2010)

17. Kaufmann, P., Glette, K., Gruber, T., Platzner, M., Torresen, J., Sick, B.: Classification of

electromyographic signals: comparing evolvable hardware to conventional classifiers. IEEE

Trans. Evol. Comput. 17(1), 46–63 (2013)

18. Khan, G.M., Miller, J.F., Halliday, D.M.: Evolution of Cartesian genetic programs for devel-

opment of learning neural architecture. Evol. Comput. 19(3), 469–523 (2011)

19. Knieper, T., Kaufmann, P., Glette, K., Platzner, M., Torresen, J.: Coping with resource fluctu-

ations: the run-time reconfigurable functional unit row classifier architecture. In: Proceedings

of the 9th International Conference on Evolvable Systems: From Biology to Hardware, LNCS,

vol. 6274, pp. 250–261. Springer (2010)

20. Koza, J.R.: Genetic Programming: On The Programming of Computers by Means of Natural

Selection. MIT press (1992)

21. Louis, S., Rawlins, G.J.E.: Designer genetic algorithms: genetic algorithms in structure design.

In: Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 53–60.

Morgan Kauffman (1991)

22. Markov, I.: Limits on fundamental limits to computation. Nature 512, 147–154 (2014)

23. Miller, J.F.: An empirical study of the efficiency of learning Boolean functions using a cartesian

genetic programming approach. In: Proceedings of the 1st Annual Conference on Genetic and

Evolutionary Computation, vol. 2, pp. 1135–1142. Morgan Kaufmann Publishers Inc. (1999)

24. Miller, J.F.: On the filtering properties of evolved gate arrays. In: 1st NASA-DoD Workshop

on Evolvable Hardware, pp. 2–11. IEEE Computer Society (1999)

25. Miller, J.F.: Cartesian Genetic Programming. Springer (2011)

26. Miller, J.F., Downing, K.: Evolution in materio: looking beyond the silicon box. In: Proceed-

ings of the 2002 NASA/DoD Conference on Evolvable Hardware (EH’02), pp. 167–176. IEEE

Computer Society (2002)

27. Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian genetic pro-

gramming. IEEE Trans. Evol. Comput. 10(2), 167–174 (2006)

28. Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Proceedings of the 3rd European

Conference on Genetic Programming EuroGP2000, LNCS, vol. 1802, pp. 121–132. Springer

(2000)

29. Miller, J.F., Thomson, P., Fogarty, T.: Designing electronic circuits using evolutionary algo-

rithms. Arithmetic circuits: A case study. In: Genetic algorithms and evolution strategy in engi-

neering and computer science. Wiley (1998)

30. Miller, J.F., Job, D., Vassilev, V.K.: Principles in the evolutionary design of digital circuits—

part II. Genet. Program. Evolvable Mach. 1(3), 259–288 (2000)

31. Mittal, S.: A survey of techniques for approximate computing. ACM Comput. Surv. 48(4),

62:1–62:33 (2016)

32. Mohid, M., Miller, J.F., Harding, S.L., Tufte, G., Massey, M.K., Petty, M.C.: Evolution-in-

materio: solving computational problems using carbon nanotube-polymer composites. Soft

Comput. 20(8), 3007–3022 (2016)

sekanina@fit.vutbr.cz



Approximate Computing: An Old Job for Cartesian Genetic Programming? 211

33. Mrazek, V., Vasicek, Z.: Automatic design of low-power vlsi circuits: Accurate and approxi-

mate multipliers. In: Proceedings of 13th IEEE/IFIP International Conference on Embedded

and Ubiquitous Computing, pp. 106–113. IEEE (2015)

34. Mrazek, V., Vasicek, Z., Sekanina, L.: Evolutionary approximation of software for embedded

systems: median function. In: GECCO Companion ’15 Proceedings of the Companion Publi-

cation of the 2015 on Genetic and Evolutionary Computation Conference, pp. 795–801. ACM

(2015)

35. Mrazek, V., Sarwar, S.S., Sekanina, L., Vasicek, Z., Roy, K.: Design of power-efficient approx-

imate multipliers for approximate artificial neural networks. In: 2016 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD). pp. 811–817 (2016)

36. Mrazek, V., Hrbacek, R., Vasicek, Z., Sekanina, L.: Evoapprox8b: library of approximate

adders and multipliers for circuit design and benchmarking of approximation methods. In:

2017 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 258–261

(2017)

37. Murakawa, M., Yoshizawa, S., Kajitani, I., Furuya, T., Iwata, M., Higuchi, T.: Evolvable hard-

ware at function level. In: Parallel Problem Solving from Nature—PPSN IV, LNCS, vol. 1141,

pp. 62–71. Springer (1996)

38. Nawab, S., Oppenheim, A., Chandrakasan, A., Winograd, J., Ludwig, J.: Approximate signal

processing. J. VLSI Signal Process. 15(1–2), 177–200 (1997)

39. Nepal, K., Li, Y., Bahar, R.I., Reda, S.: ABACUS: a technique for automated behavioral synthe-

sis of approximate computing circuits. In: Proceedings of the Conference on Design, Automa-

tion and Test in Europe, EDA Consortium, DATE’14, pp. 1–6 (2014)

40. Salvador, R., Otero, A., Mora, J., la De, E.T., Riesgo, T., Sekanina, L.: Self-reconfigurable

evolvable hardware system for adaptive image processing. IEEE Trans. Comput. 62(8), 1481–

1493 (2013)

41. Sampson, A., Dietl, W., Fortuna, E., Gnanapragasam, D., Ceze, L., Grossman, D.: EnerJ:

approximate data types for safe and general low-power computation. In: Proceedings of the

32nd ACM SIGPLAN Conference on Programming Language Design and Implementation,

pp. 164–174. ACM (2011)

42. Sekanina, L.: Evolvable components: from theory to hardware implementations. Nat. Comput.

Ser. (2004)

43. Sekanina, L.: Evolvable hardware. In: Handbook of Natural Computing, pp. 1657–1705.

Springer (2012)

44. Sekanina, L., Ruzicka, R., Gajda, Z.: Polymorphic fir filters with backup mode enabling power

savings. In: Proceedings of the 2009 NASA/ESA Conference on Adaptive Hardware and Sys-

tems, pp. 43–50. IEEE Computer Society (2009)

45. Shubham, J., Venkataramani, S., Raghunathan, A.: Approximation through logic isolation for

the design of quality configurable circuits. In: Proceedings of the 2016 Design, Automation &

Test in Europe Conference and Exhibition (DATE), pp. 1–6. EDA Consortium (2016)

46. Sikulova, M., Sekanina, L.: Acceleration of evolutionary image filter design using coevolution

in Cartesian GP. In: Parallel Problem Solving from Nature-PPSN XII, no. 7491 in LNCS, pp.

163–172. Springer (2012)

47. Slany, K., Sekanina, L.: Fitness landscape analysis and image filter evolution using functional-

level CGP. In: Proceedings of European Conference on Genetic Programming. LNCS, vol.

4445, pp. 311–320. Springer (2007)

48. Soeken, M., Grosse, D., Chandrasekharan, A., Drechsler, R.: BDD minimization for approx-

imate computing. In: 21st Asia and South Pacific Design Automation Conference ASP-DAC

2016, pp. 474–479. IEEE (2016)

49. Stomeo, E., Kalganova, T., Lambert, C.: Generalized disjunction decomposition for evolvable

hardware. IEEE Trans. Syst. Man Cybern. Part B 36(5), 1024–1043 (2006)

50. Thompson, A., Layzell, P., Zebulum, S.: Explorations in design space: unconventional elec-

tronics design through artificial evolution. IEEE Trans. Evol. Comput. 3(3), 167–196 (1999)

51. Turner, A.J., Miller, J.F.: Recurrent cartesian genetic programming. In: Parallel Problem Solv-

ing from Nature—PPSN XIII, pp. 476–486. Springer (2014)

sekanina@fit.vutbr.cz



212 L. Sekanina

52. Turner, A.J., Miller, J.F.: Neutral genetic drift: an investigation using cartesian genetic pro-

gramming. Genet. Program. Evolvable Mach. 16(4), 531–558 (2015)

53. Vasicek, Z.: Cartesian GP in optimization of combinational circuits with hundreds of inputs

and thousands of gates. In: Proceedings of the 18th European Conference on Genetic

Programming—EuroGP. LCNS 9025, pp. 139–150. Springer International Publishing (2015)

54. Vasicek, Z., Sekanina, L.: An evolvable hardware system in Xilinx Virtex II Pro FPGA. Int. J.

Innov. Comput. Appl. 1(1), 63–73 (2007)

55. Vasicek, Z., Sekanina, L.: Formal verification of candidate solutions for post-synthesis evolu-

tionary optimization in evolvable hardware. Genet. Program. Evolvable Mach. 12(3), 305–327

(2011)

56. Vasicek, Z., Sekanina, L.: A global postsynthesis optimization method for combinational cir-

cuits. In: Proceedings of the Design, Automation and Test in Europe, DATE, pp. 1525–1528.

IEEE Computer Society (2011)

57. Vasicek, Z., Sekanina, L.: Evolutionary design of approximate multipliers under different error

metrics. In: IEEE International Symposium on Design and Diagnostics of Electronic Circuits

and Systems 2013, pp. 135–140. IEEE (2014)

58. Vasicek, Z., Sekanina, L.: How to evolve complex combinational circuits from scratch? In:

2014 IEEE International Conference on Evolvable Systems Proceedings, pp. 133–140. IEEE

(2014)

59. Vasicek, Z., Sekanina, L.: Circuit approximation using single- and multi-objective cartesian

GP. In: Genetic Programming. LNCS 9025, pp. 217–229. Springer (2015)

60. Vasicek, Z., Sekanina, L.: Evolutionary approach to approximate digital circuits design. IEEE

Trans. Evol. Comput. 19(3), 432–444 (2015)

61. Vasicek, Z., Sekanina, L.: Evolutionary design of complex approximate combinational circuits.

Genet. Program. Evolvable Mach. 17(2), 169–192 (2016)

62. Vasicek, Z., Slany, K.: Efficient phenotype evaluation in cartesian genetic programming. In:

Proceedings of the 15th European Conference on Genetic Programming. LNCS 7244, pp. 266–

278. Springer (2012)

63. Vassilev, V., Job, D., Miller, J.F.: Towards the automatic design of more efficient digital circuits.

In: Proceedings of the 2nd NASA/DoD Workshop on Evolvable Hardware, pp. 151–160. IEEE

Computer Society (2000)

64. Vazirani, V.V.: Approximation Algorithms. Springer (2001)

65. Venkataramani, S., Roy, K., Raghunathan, A.: Substitute-and-simplify: a unified design par-

adigm for approximate and quality configurable circuits. Design, Automation and Test in

Europe, DATE’13, pp. 1367–1372. EDA Consortium San Jose, CA, USA (2013)

66. Venkatesan, R., Agarwal, A., Roy, K., Raghunathan, A.: MACACO: modeling and analy-

sis of circuits for approximate computing. In: 2011 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), pp. 667–673. IEEE (2011)

67. Walker, J.A., Miller, J.F.: The automatic acquisition, evolution and reuse of modules in carte-

sian genetic programming. IEEE Trans. Evol. Comput. 12(4), 397–417 (2008)

68. Walker, J.A., Hilder, J.A., Tyrrell, A.M.: Evolving Variability-Tolerant CMOS Designs.

Springer, Berlin Heidelberg (2008)

69. Walker, J.A., Hilder, J.A., Reid, D., Asenov, A., Roy, S., Millar, C., Tyrrell, A.M.: The evolution

of standard cell libraries for future technology nodes. Genet. Program. Evolvable Mach. 12(3),

235–256 (2011)

sekanina@fit.vutbr.cz


