
ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume X, Number X, XXXX, XXX–XXX

On k#$-rewriting systems

Alexander Meduna1, Jǐŕı Kučera1, and Zbyněk Křivka1

1Brno University of Technology, Faculty of Information
Technology, Centre of Excellence IT4Innovations, Božetěchova 2,

612 66 Brno, Czech Republic
Email: {meduna, ikucera, krivka}@fit.vutbr.cz

Abstract. This paper introduces k#$-rewriting systems based on
early defined #-rewriting systems. It demonstrates that these systems
characterize the infinite hierarchy of language families resulting from k-
limited state grammars.

Keywords: k#$-rewriting systems, state grammars, infinite hier-
archy, finite index, n-limited state grammars

1 Introduction

The most used classes of formal models in the formal language theory are gram-
mars and automata. Grammars work as generative devices, while automata
work as accepting devices. Given a grammar, it uses its rules to derive the
string belonging to the language it describes from some initial string. Given
an automaton, it uses its rules to decide which actions should be performed,
based on its state, first symbol of its input string, and possibly on other additi-
onal information. Every string that drives the given automaton to its accepting
configuration belongs to the language characterized by that automaton.

In a modern formal language theory, some formal models that share pro-
perties both from the grammars and automata has been introduced. Such an
example are state grammars (see [1]), which were developed from context-free
grammars by adding finite-state control. Another example are rewriting systems
(see Chapter 2 in [2]), which are a generalization of grammars and automata
and hence, depending on their rules, they are able to simulate both of them.

In 2006, Meduna, Křivka, and Schönecker introduced a new modification
of rewriting systems, called #-rewriting systems (see [3]). While ordinary re-
writing systems rewrite just one substring to another during one computation
step, #-rewriting systems rewrite in fact two substrings, where the first sub-
string is always one symbol long and acts like state. Moreover, the success of
one computation step in #-rewriting systems depends also on the number of
occurrences of # in their sentential forms. If k is an upper bound limit of the
number of occurrences of #, #-rewriting systems are said to be of index k. Such

A. Meduna, J. Kučera, and Z. Křivka, On k#$-rewriting systems 2

a restriction has an important influence to their descriptive power. While or-
dinary rewriting systems characterize the Chomsky hierarchy of languages, the
power of #-rewriting systems of index k coincide with the power of programmed
grammars of the same index (see [3]).

In this paper, we extend #-rewriting systems about additional storage that
can contain both terminal and nonterminal symbols. More precisely, every #-
rewriting system will be now consisting of two parts that are delimited from each
other by the special symbol $. For some positive integer, k, the part on the $’s
left consists of terminal symbols and at most k # symbols. Conversely, the part
on the $’s right consists only of both terminal and nonterminal symbols but no
symbols. To differentiate between #-rewriting systems and their extended
versions, we will call #-rewriting systems modified in the mentioned way as k#$-
rewriting systems. Further in this paper, we show that for some positive integer,
k, a relation between k#$-rewriting systems and state grammars of index k, in
the terms of expressive power, is the relation of coincidence. In its conclusion,
this paper outlines some open problem areas for further investigation.

2 Preliminaries

This paper assumes that the reader is familiar with the fundamental notions of
formal language theory (see [4]).For a set X, card(X) denotes its cardinality and
2X denotes its power set. By I, we denote a set of all positive integers. Let Σ
be an alphabet. Then, Σ∗ represents the free monoid generated by Σ under the
operation of concatenation with ε as its identity element. Set Σ+ = Σ∗−{ε}. For
w ∈ Σ∗, |w| denotes the length of w, alph(w) = {x | w = uxv, x ∈ Σ, u, v ∈ Σ∗}
denotes the minimal subset of Σ such that w ∈ alph(w)∗. For a ∈ Σ, occur(w, a)
denotes the number of occurrences of a in w; mathematically, occur(w, a) =
card({u | w = uav, u, v ∈ Σ∗}). For W ⊆ Σ, occur(w,W) =

∑
a∈W occur(w, a).

For k ≥ 0, if w can be expressed as w = xy such that k = |x| and x, y ∈ Σ∗,
then prefix(w, k) = x; otherwise, prefix(w, k) = w.

Let A be a set and let σ be a (binary) relation over A. The k-fold product
of σ, where k ≥ 0, the transitive closure of σ, and the reflexive and transitive
closure of σ are denoted as σk, σ+, and σ∗, respectively. Instead of (x, y) ∈ σ,
we write x σ y.

By p : e, we express that e has p as its label, i.e. p is a unique symbol that is
associated with e and that can be used as an alternative name of e. By p : e ∈ D,
we express that p : e and e ∈ D.

A context-free grammar is a quadruple, G = (V, T, P, S), where V is a total
alphabet, T ⊂ V is an alphabet of terminals, P ⊆ (V − T) × V ∗ is a finite
set of rules, and S ∈ (V − T) is the start symbol. Instead of (A, x) ∈ P , we
write A → x ∈ P . Let ⇒ be a relation of direct derivation on V ∗ defined as
follows: uAv ⇒ uxv iff A → x ∈ P , where A ∈ (V − T) and u, x, v ∈ V ∗.
By uAv ⇒ uxv [A → x], we express that uAv directly derives uxv according
to A → x. By ⇒G, we express that a relation of direct derivation, ⇒, is
associated with a grammar G. The language generated by G, L(G), is defined as
L(G) = {w | S ⇒∗ w,w ∈ T ∗}. G is said to be propagating if P ⊆ (V −T)×V +.
The family of context-free languages is denoted as L (CF).

Let k ≥ 1 and Σn = {a1, b1, a2, b2, . . . , an, bn}. The Dyck language Dn over

A. Meduna, J. Kučera, and Z. Křivka, On k#$-rewriting systems 3

Σn is generated by the grammar

({S} ∪ Σn,Σn, {S → SS, S → ε, S → a1Sb1, . . . , S → anSbn}, S).

A programmed grammar (see page 28 in [5]) is a pair H = (G, σ), where
G = (V, T, P, S) is a context-free grammar and σ is a total mapping from P
to 2P . Let ⇒ be a relation of direct derivation on V ∗ × P defined as follows:
(x, p1)⇒ (y, p2) iff x⇒G y [p1] and p2 ∈ σ(p1), where x, y ∈ V ∗ and p1, p2 ∈ P .
In some circumstances and when no danger of confusion exists, we abbreviate
(x, p1) ⇒ (y, p2) to (x, p1) ⇒ y, or just x ⇒ y. The language generated by H,
L(H), is defined as L(H) = {w | (S, p1) ⇒∗ w, p1 ∈ P,w ∈ T ∗}. The family of
languages generated by programmed grammars is denoted as L (P).

Let G be a grammar of arbitrary type, and let V , T , and S be its total
alphabet, terminal alphabet, and start symbol, respectively. For a derivation
D : w1 ⇒ w2 ⇒ . . .⇒ wr, S = w1, wr ∈ T ∗, according to G, we set Ind(D,G) =
max{occur(wi, V − T) | 1 ≤ i ≤ r}, and for w ∈ T ∗, we define Ind(w,G) =
min{Ind(D,G) | D is a derivation for w in G}. The index of grammar G (see
page 151 in [5]) is defined as Ind(G) = sup{Ind(w,G) | w ∈ L(G)}. For a
language L in the family L (X) of languages generated by grammars of some
type X, we define IndX(L) = inf{Ind(G) | L(G) = L,G is of type X}. For a
family L (X), we set Ln(X) = {L | L ∈ L (X) and IndX(L) ≤ n}, n ≥ 1.

Let k ∈ I. Hence, the family of languages generated by programmed gram-
mars of index k is denoted as Lk(P).

A state grammar (see [1]) is a sixtuple G = (V, T,K, P, S, s), where V is a
total alphabet, T ⊂ V is an alphabet of terminals, K is a finite set of states,
V ∩K = ∅, P ⊆ (V − T)×K × V ∗ ×K is a finite set of rules, S ∈ (V − T) is
the start symbol, and s ∈ K is the start state. Instead of (A, p, x, q) ∈ P , we
write (A, p) → (x, q) ∈ P . Let ⇒ be a relation of direct derivation on V ∗ ×K
defined as follows: (uAv, p) ⇒ (uxv, q) iff (A, p) → (x, q) ∈ P and for every
(B, p) → (y, t) ∈ P , B /∈ alph(u), where p, q, t ∈ K, A,B ∈ (V − T), and
u, v, x, y ∈ V ∗. For some k ≥ 1 satisfying occur(uA, V −T) ≤ k, ⇒ is said to be
k-limited, denoted as k⇒. By (uAv, p) ⇒ (uxv, q) [(A, p) → (x, q)], we express
that (uAv, p) directly derives (uxv, q) according to (A, p)→ (x, q). Similarly for

k⇒. The language generated by G, L(G), is defined as L(G) = {w | (S, s) ⇒∗
(w, q), q ∈ K,w ∈ T ∗}. Let k ≥ 1. The language generated by G in k-limited
way, L(G, k), is defined as L(G, k) = {w | (S, s) k⇒∗ (w, q), q ∈ K,w ∈ T ∗}.
The families of languages generated by state grammars and by state grammars
in k-limited way are denoted as L (ST) and L (ST, k), respectively.

A #-rewriting system (see [3]) is a quadruple M = (Q,Σ, s, R), where Q is a
finite set of states, Σ is an alphabet containing special symbol # called bounder,
Q ∩ Σ = ∅, s ∈ Q is the start state and R ⊆ Q × I × {#} × Q × Σ∗ is a finite
set of rules. Instead of (p, n,#, q, x) ∈ R, we write p n# → qx. Let ⇒ be a
relation of direct rewriting step on QΣ∗ defined as follows: pu#v ⇒ quxv iff
p n# → qx ∈ R and occur(u,#) = n − 1, where p, q ∈ Q, u, v, x ∈ Σ∗, and
n ∈ I. By pu#v ⇒ quxv [p n# → qx], we express that pu#v directly rewrites
quxv according to p n#→ qx. The language generated by M , L(M), is defined
as L(M) = {w | s# ⇒∗ qw, q ∈ Q,w ∈ (Σ − {#})∗}. Let k ∈ I. A #-
rewriting system M is said to be of index k if and only if s# ⇒∗ qy implies
occur(y,#) ≤ k, where q ∈ Q and y ∈ Σ∗. Let k ∈ I. The family of languages
generated by #-rewriting systems and by #-rewriting systems of index k are
denoted as L (#RS) and Lk(#RS), respectively.

A. Meduna, J. Kučera, and Z. Křivka, On k#$-rewriting systems 4

3 Definitions and Examples

We are now ready to define k#$-rewriting systems.

Definition 3.1. Let k ∈ I. A k#$-rewriting system is a quintuple

M = (Q,V,Σ, s, R),

where Q is a finite set of states, V is a total alphabet, V ∩ Q = ∅, Σ is an
alphabet containing # and $ called bounders, Σ ⊆ V , s ∈ Q is a start state and

R ⊆ (Q× I× {#} ×Q× (Σ− {$})∗)
∪ (Q× {#} × {$} ×Q× {$} × (V − {#, $})∗)
∪ (Q× {$} × (V − Σ)×Q× {#} × {$})

is a finite set of rules.
Instead of (p, n,#, q, x) ∈ R, (p,#, $, q, $, y) ∈ R and (p, $, A, q,#, $) ∈ R,

we write p n#→ qx ∈ R, p#$→ q$y ∈ R and p$A→ q#$ ∈ R, respectively.
Let Ξ ⊆ Q(Σ − {$})∗{$}(V − {#, $})∗ be a set of all configurations of M

such that χ ∈ Ξ iff occur(χ,#) ≤ k.
Let ⇒ be a relation of direct rewriting step on Ξ defined as follows:

• pu#v$α ⇒ quxv$α iff p n# → qx ∈ R, occur(u,#) = n − 1, p, q ∈ Q,
u, v, x ∈ (Σ− {$})∗, α ∈ (V − {#, $})∗, and n ∈ I;

• pu#$α ⇒ qu$xα iff p#$ → q$x ∈ R, p, q ∈ Q, u ∈ (Σ − {$})∗, and
x, α ∈ (V − {#, $})∗;

• pu$Aα⇒ qu#$α iff p$A→ q#$ ∈ R, p, q ∈ Q, u ∈ (Σ−{$})∗, A ∈ V −Σ,
and α ∈ (V − {#, $})∗;

• pux$α ⇒ pu$xα iff p ∈ Q, u ∈ (Σ − {$})∗, x ∈ (Σ − {#, $})∗, and
α ∈ (V − {#, $})∗;

• pu$xα ⇒ pux$α iff p ∈ Q, u ∈ (Σ − {$})∗, x ∈ (Σ − {#, $})∗, and
α ∈ (V − {#, $})∗.

By x⇒ y [r], we express that x directly rewrites y according to r.
The language generated by M , L(M), is defined as

L(M) = {w | s#$⇒∗ qw$, q ∈ Q,w ∈ (Σ− {#, $})∗}.

The family of languages generated by k#$-rewriting systems is denoted as
Lk(#$RS).

Following example demonstrates a generative capacity of k#$-rewriting sy-
stems.

Example 3.2. Let M = (Q,V,Σ, s, R) be a 2#$-rewriting system, where

Q = {s, p, p′, p(1), p(2), p(X), p(Y), q, f, f (A), f (B)}
V = {A,B,X, a, b, c, d, 0, 1, 0̄, 1̄, [1, [2,]1,]2,#, $}
Σ = {a, b, c, d, 0, 1, 0̄, 1̄, [1, [2,]1,]2,#, $}

A. Meduna, J. Kučera, and Z. Křivka, On k#$-rewriting systems 5

and R contains rules

1: s 1#→ p## 9: p(Y)
1#→ q

2: p 1#→ p′a#b 10: q 1#→ f
3: p′ 2#→ p(1)c# 11: f$A→ f (A)#$
4: p′ 2#→ p(2)d# 12: f$B → f (B)#$
5: p(1)#$→ p(X)$X[1A]1 13: f (A)

1#→ f (A)0#1
6: p(2)#$→ p(X)$X[2B]2 14: f (B)

1#→ f (B)0̄#1̄
7 : p(X)$X → p#$ 15: f (A)

1#→ f01
8: p(X)$X → p(Y)#$ 16: f (B)

1#→ f 0̄1̄

First, M generates two # bounders. Second, M uses rules 2 to 7 to generate
the following structure

am#bmz1z2 . . . zm#$φ(zmzm−1 . . . z1)

where zi ∈ {c, d}, 1 ≤ i ≤ m, m ≥ 1 and φ is a homomorphism from {c, d}∗ to
{A,B, [1, [2,]1,]2}∗ such that φ(c) = [1A]1 and φ(d) = [2B]2. Finally, M uses
rules 8 to 16 to finish the rewriting. Thus, the language generated by M is

L(M) =

{
w

∣∣∣∣ w = anbnz1z2 . . . znh(zn, i1)h(zn−1, i2) . . . h(z1, in),
zi ∈ {c, d}, 1 ≤ i ≤ n, ij ≥ 1, 1 ≤ j ≤ n, n ≥ 1

}
where h is a mapping from {c, d}×I to {0, 1, 0̄, 1̄, [1, [2,]1,]2}∗ such that h(c, i) =
[10i1i]1 and h(d, i) = [20̄i1̄i]2.

For instance, M generates aabbdc[10011]1[20̄1̄]2 in the following way

s#$ ⇒ p##$ [1]
⇒ p′a#b#$ [2]
⇒ p(2)a#bd#$ [4]
⇒ p(X)a#bd$X[2B]2 [6]
⇒ pa#bd#$[2B]2 [7]
⇒ p′aa#bbd#$[2B]2 [2]
⇒ p(1)aa#bbdc#$[2B]2 [3]
⇒ p(X)aa#bbdc$X[1A]1[2B]2 [5]
⇒ p(Y)aa#bbdc#$[1A]1[2B]2 [8]
⇒ qaabbdc#$[1A]1[2B]2 [9]
⇒ faabbdc$[1A]1[2B]2 [10]
⇒ faabbdc[1$A]1[2B]2
⇒ f (A)aabbdc[1#$]1[2B]2 [11]
⇒ f (A)aabbdc[10#1$]1[2B]2 [13]
⇒ faabbdc[10011$]1[2B]2 [15]
⇒ faabbdc[10011]1[2$B]2
⇒ f (B)aabbdc[10011]1[2#$]2 [12]
⇒ faabbdc[10011]1[20̄1̄$]2 [16]
⇒ faabbdc[10011]1[20̄1̄]2$

4 Results

First, we prove the identity that for every k ≥ 1, L (ST, k) = Lk(#$RS).

A. Meduna, J. Kučera, and Z. Křivka, On k#$-rewriting systems 6

Lemma 4.1. Let k ≥ 1. Then, L (ST, k) ⊆ Lk(#$RS).

Proof. Let G = (V, T,K, P, S, s) be a state grammar. Without any loss on
generality, suppose that V ∩ {#, $} = ∅. Now, we construct from G a k#$-
rewriting system

M = (Q,V ′,Σ, s′, R)

such that L(G, k) = L(M). First, we set

Q =
⋃k
i=0{〈q; l;u〉 | q ∈ K,u ∈ (V − T)i, 0 ≤ l ≤ k}

V ′ = V ∪ {#, $}
Σ = T ∪ {#, $}
s′ = 〈s; 0;S〉

Every state from Q holds the current G’s state and the first k nonterminal
symbols from the current G’s sentential form. Additionally, it also holds a
number that has a meaning of a type of state—0 is for regular state and 1 to k
are for auxiliary states.

Next, we construct R. Let

rules(p, u) =

{
r

∣∣∣∣ r : (B, p)→ (x, q) ∈ P,B ∈ ((V − T) ∩ alph(u)),
p, q ∈ K,x ∈ V +, u ∈ V ∗

}
and let g and h be two homomorphisms from V ∗ to (Σ−{$})∗ and from V ∗ to
(V ′ − Σ)∗, respectively, defined as

g(x) =

{
for every x ∈ (V − T)
x for every x ∈ T

h(x) =

{
x for every x ∈ (V − T)
ε for every x ∈ T

Initially, set R = ∅. For every rule (A, p) → (x, q) ∈ P and for every state
〈p; 0;uAv〉 ∈ Q such that rules(p, u) = ∅ perform the following steps:

(A) If k − |uv| ≥ |h(x)|, then add 〈p; 0;uAv〉 |uA|#→ 〈q; 0;uh(x)v〉g(x) to R.

(B) If k − |uv| < |h(x)|, then express v as v = Xm−1Xm−2 . . . X0, where Xi ∈
(V ′ − Σ), 0 ≤ i ≤ m− 1, m = |v|, and

(i) for every i such that 0 ≤ i ≤ m − 1, add 〈p; i;uAv〉#$ → 〈p; i +
1;uAv〉$Xi to R;

(ii) add 〈p;m;uAv〉#$→ 〈q; 0;u〉$x to R.

Finally, for every state 〈p; 0;u〉 ∈ Q such that |u| ≤ k − 1 and for every B ∈
(V ′ − Σ) add rule

〈p; 0;u〉$B → 〈p; 0;uB〉#$

to R.
Due to the lack of space, we leave the proofs of the following claims to

the kind reader. Both of them can be proved by induction on the number of
derivation steps.

Claim 4.2. Let (S, p) k⇒m (wy, q) in G, where p, q ∈ K, w ∈ T ∗, y ∈ ((V −
T)T ∗)∗, and m ≥ 0. Then, 〈p; 0;S〉#$⇒∗ 〈q; 0; prefix(h(y), k)〉wg(α)$β in M ,
where y = αβ, α ∈ (T ∗(V − T))|prefix(h(y),k)|, and β ∈ V ∗.

A. Meduna, J. Kučera, and Z. Křivka, On k#$-rewriting systems 7

Claim 4.3. Let 〈p; 0;S〉#$ ⇒m 〈q; i;h(αᾱ)〉wg(α)$ᾱβ in M , where p, q ∈ K,
0 ≤ i ≤ k, w ∈ (Σ − {#, $})∗, α ∈ ((V ′ − Σ)(V ′ − {#, $})∗)∗, occur(α, V ′ −
Σ) ≤ k, ᾱ, β ∈ (V ′ − {#, $})∗, occur(ᾱ, V ′ − Σ) = i, and m ≥ 0. Then,
(S, p) k⇒∗ (wαᾱβ, q) in G.

If we set p = s and y = ε in Claim 4.2, then (S, s) k⇒∗ (w, q) in G implies
〈s; 0;S〉#$ ⇒∗ 〈q; 0; ε〉w$ in M which proves L(G, k) ⊆ L(M). Conversely, for
p = s, i = 0, and α = ᾱ = β = ε in Claim 4.3, 〈s; 0;S〉#$ ⇒∗ 〈q; 0; ε〉w$
in M implies (S, s) k⇒∗ (w, q) in G which proves L(M) ⊆ L(G, k). Hence,
L(G, k) = L(M) and the lemma holds.

Lemma 4.4. Let k ≥ 1. Then, Lk(#$RS) ⊆ L (ST, k).

Proof. Let M = (Q,V,Σ, s, R) be a k#$-rewriting system. Without any loss
on generality, suppose that ? /∈ V and #i /∈ V , for all 1 ≤ i ≤ k. From M , we
construct a state grammar

G = (V ′, T,K, P,#1, s
′)

such that L(M) = L(G, k). First, we set

V ′ = (V − {#, $}) ∪ {#i | 1 ≤ i ≤ k}
T = Σ− {#, $}
K = {〈p; i〉 | p ∈ Q, 0 ≤ i ≤ k}
∪ {〈p; i; Jr, jK〉 | p ∈ Q, r ∈ R, 0 ≤ i ≤ k, 1 ≤ j ≤ k}
∪ {〈p; i; Jr,XK〉 | p ∈ Q, r ∈ R,X ∈ (V − Σ) ∪ {?}, 0 ≤ i ≤ k}
∪ {qfail}

s′ = 〈s; 1〉

Every state from K holds the M ’s current state, the number of #’s in the current
M ’s configuration and occasionally the simulated rule together with information
either about leftmost non-# nonterminal symbol or simulation progress. There
is also a special state qfail in K that brings G to configuration that makes the
next derivation step in G impossible and in this way the simulation of M is
abnormally stopped.

Let τ be a mapping from (Σ−{$})∗×{1, 2, . . . , k} to (T ∪{#i | 1 ≤ i ≤ k})∗
defined recursively as follows

• τ(ε, i) = ε, for every 1 ≤ i ≤ k

• τ(ax, i) = aτ(x, i), for every a ∈ (Σ − {#, $}), x ∈ (Σ − {$})∗, and
1 ≤ i ≤ k

• τ(#x, i) = #iτ(x, i+ 1), for every x ∈ (Σ− {$})∗ and 1 ≤ i ≤ k − 1

We are now ready to construct P . Initially, set P = ∅. For every rule r : p n#→
qx ∈ R and for every state 〈p;κ〉 ∈ K such that n ≤ κ and κ−1+occur(x,#) ≤ k
perform the following steps:

(A) If occur(x,#) = 0 and κ− n = 0, then add

(#κ, 〈p;κ〉)→ (x, 〈q;κ− 1〉)

to P .

A. Meduna, J. Kučera, and Z. Křivka, On k#$-rewriting systems 8

(B) If occur(x,#) = 0 and κ− n ≥ 1, then

• add (#n, 〈p;κ〉)→ (x, 〈q;κ− 1; Jr, 1K〉) to P ;

• for every 1 ≤ i ≤ κ− n− 1, add

(#n+i, 〈q;κ− 1; Jr, iK〉)→ (#n+i−1, 〈q;κ− 1; Jr, i+ 1K〉)

to P ;

• add (#κ, 〈q;κ− 1; Jr, κ− nK〉)→ (#κ−1, 〈q;κ− 1〉) to P .

(C) If occur(x,#) = 1, then add

(#n, 〈p;κ〉)→ (τ(x, n), 〈q;κ〉)

to P .

(D) If occur(x,#) ≥ 2, then

• add (#n, 〈p;κ〉)→ (#n, 〈p;κ; Jr, 1K〉) to P ;

• for every 0 ≤ i ≤ κ− n− 1, add

(#κ−i, 〈p;κ; Jr, i+ 1K〉)→ (#κ+η−i, 〈p;κ; Jr, i+ 2K〉)

to P , where η = occur(x,#)− 1;

• add (#n, 〈p;κ; Jr, κ − n + 1K〉) → (τ(x, n), 〈q;κ + η〉) to P , where
η = occur(x,#)− 1.

Next, for every rule p#$ → q$x ∈ R and for every state 〈p;κ〉 ∈ K such
that κ ≥ 1, add

(#κ, 〈p;κ〉)→ (x, 〈q;κ− 1〉)

to P .
Finally, for every rule r : p$A → q#$ ∈ R and for every state 〈p;κ〉 ∈ K

such that κ ≤ k − 1, add

• (A, 〈p;κ〉)→ (A, 〈p;κ; Jr, ?K〉)

• (X, 〈p;κ; Jr, ?K〉)→ (X, 〈p;κ; Jr,XK〉), for all X ∈ (V − Σ)

• (Y, 〈p;κ; Jr, Y K〉)→ (Y, qfalse), for all Y ∈ (V − Σ), where Y 6= A

• (A, 〈p;κ; Jr,AK〉)→ (#κ+1, 〈q;κ+ 1〉)

to P .
As in the proof of Lemma 4.1, both following claims can be proved by in-

duction on the number of derivation steps and we leave the proofs to the kind
reader.

Claim 4.5. Let p#$ ⇒m qwα$β in M , where p, q ∈ Q, w ∈ (Σ − {#, $})∗,
α ∈ ({#}(Σ− {$})∗)∗, β ∈ (V − {#, $})∗, and m ≥ 0. Then,

(#1, 〈p; 1〉) k⇒∗ (wτ(α, 1)β, 〈q; occur(α,#)〉)

in G.

A. Meduna, J. Kučera, and Z. Křivka, On k#$-rewriting systems 9

Claim 4.6. Set Ω = {Jr,XK | r ∈ R,X ∈ ({1, 2, . . . , k} ∪ (V − Σ) ∪ {?})} and
express K as K = KQ ∪KΩ ∪ {qfalse}, where

KQ = {〈p; i〉 | p ∈ Q, 0 ≤ i ≤ k}
KΩ = {〈p; i;Z〉 | p ∈ Q, 0 ≤ i ≤ k, Z ∈ Ω}

Define a binary operation • from KQ × (Ω ∪ {λ}) to K such that

〈p; i〉 • Z = 〈p; i;Z〉, for all Z ∈ Ω
〈p; i〉 • λ = 〈p; i〉

Furthermore, set N# = {#i | 1 ≤ i ≤ k} and define a homomorphism τ̄ from
(N# ∪ T) to (Σ − {$}) such that τ̄(a) = a for every a ∈ T and τ̄(X) = # for
every X ∈ N#.

Based on a state to which G enters, the following two cases are considered:

(a) Let (#1, 〈p, 1〉) k⇒m (wαβ, 〈q, occur(τ̄(α),#)〉 • Z) in G, where p, q ∈ Q,
w ∈ T ∗, α ∈ (N#(N# ∪ T)∗)∗, β ∈ (V − {#, $})∗, Z ∈ (Ω ∪ {λ}), and
m ≥ 0. Then, p#$⇒∗ qwτ̄(α)$β in M .

(b) Let (#1, 〈p, 1〉) k⇒m (wαβ, qfalse) in G, where p ∈ Q, w ∈ T ∗, α ∈
(N#(N# ∪T)∗)∗, β ∈ (V −{#, $})∗, and m ≥ 0. Then, p#$⇒∗ q̄wτ̄(α)$β
in M , where q̄ ∈ Q, β = z1Y z2Az3, Y,A ∈ (V − Σ), Y 6= A, z1 ∈
(Σ−{#, $})∗, z2 ∈ (V −{A,#, $})∗, z3 ∈ (V −{#, $})∗, and there is a rule
r̄ : q̄$A→ q′#$ ∈ R, q′ ∈ Q, such that r̄ is not applicable on q̄wτ̄(α)$β.

If we set p = s and α = β = ε in Claim 4.5, then s#$⇒∗ qw$ in M implies
(#1, 〈s; 1〉) k⇒∗ (w, 〈q; 0〉) in G which proves L(M) ⊆ L(G, k). Conversely, for
p = s, α = β = ε, and Z = λ in Claim 4.6, (#1, 〈s; 1〉) k⇒∗ (w, 〈q; 0〉) in G
implies s#$ ⇒∗ qw$ in M which proves L(G, k) ⊆ L(M). Hence, L(M) =
L(G, k) and the lemma holds.

Corollary 4.7. Let k ≥ 1. Then, Lk(#$RS) = L (ST, k).

Proof. It directly follows from Lemma 4.1 and Lemma 4.4.

Next, we show that for every k ≥ 1, Lk(#RS) ⊂ Lk(#$RS).

Theorem 4.8. Let k ≥ 1. Then, Lk(#RS) ⊂ Lk(#$RS).

Proof. The inclusion Lk(#RS) ⊆ Lk(#$RS) follows directly from the definiti-
ons of #-rewriting system of index k and k#$-rewriting system. It remains to
find a language from Lk(#$RS) that is not contained in Lk(#RS).

For k = 1, such a language is D2. As L1(#$RS) = L (CF) (by [1] and
Corollary 4.7), D2 ∈ Lk(#$RS), but D2 /∈ Lk(#RS) (see [5]).

For k ≥ 2, let Σk = {a1, a2, . . . , a4k−2} be an alphabet. Define a language
Lk over Σk as

Lk = {ai1ai2 . . . ai4k−2 | i ≥ 1}.

By Theorem 4 in [1], Lk ∈ L (ST, k) and since Lk(#$RS) = L (ST, k), Lk ∈
Lk(#$RS) as well.

It is easy to see that matrix grammars of finite index k generates the same
language family as Lk(#RS) (see [3] and Theorem 3.1.2 on page 155 in [5]).

A. Meduna, J. Kučera, and Z. Křivka, On k#$-rewriting systems 10

L1(#$RS) ⊂ L2(#$RS) ⊂ · · · ⊂ Lk(#$RS)
∪ ∪ ∪

L1(#RS) ⊂ L2(#RS) ⊂ · · · ⊂ Lk(#RS)

Fig. 1: The relations between #-rewriting systems with finite index and #$-
rewriting systems.

By an application of pumping lemma for matrix grammars of finite index (see
Lemma 3.1.6 on page 159 in [5]), we can proof that Lk /∈ Lk(#RS). Assume
that Lk ∈ Lk(#RS). Then there exists z ∈ Lk such that

z = u1v1w1x1u2v2w2x2 . . . ulvlwlxlul+1

with l ≤ k, |v1x1v2x2 . . . vlxl| > 0, and

u1v
i
1w1x

i
1u2v

i
2w2x

i
2 . . . ulv

i
lwlx

i
lul+1 ∈ Lk

for every i ≥ 1. Now, consider the following cases:

• There exists y ∈ {v1, x1, v2, x2, . . . , vl, xl} such that card(alph(y)) ≥ 2. In
this case, there exists i ≥ 1 such that

u1v
i
1w1x

i
1u2v

i
2w2x

i
2 . . . ulv

i
lwlx

i
lul+1 /∈ Lk.

• All v1, x1, v2, x2, . . . , vl, xl are strings over one-letter alphabet. As for k ≥
2 it is always true that 4k − 2 > 2k, there will be always symbols from
alph(z) that are not contained in alph(v1x1v2x2 . . . vlxl). Hence there
must exist i ≥ 1 such that

u1v
i
1w1x

i
1u2v

i
2w2x

i
2 . . . ulv

i
lwlx

i
lul+1 /∈ Lk.

Such z ∈ Lk does not exist and therefore Lk /∈ Lk(#RS) for every k ≥ 2.

The relationship between infinite hierarchies of #-rewriting systems of finite
index and #$-rewriting systems is summed in Figure 1.

Acknowledgment

This work was supported by The Ministry of Education, Youth and Sports
of the Czech Republic from the National Programme of Sustainability (NPU
II), project IT4Innovations excellence in science – LQ1602; the TAČR grant
TE01020415; and the BUT grant FIT-S-17-3964.

References

[1] T. Kasai, “An hierarchy between context-free and context-sensitive languages,”
Journal of Computer and System Sciences, vol. 4, pp. 497–508, 1970.

[2] A. Salomaa, Computation and Automata. Cambridge University Press, New York,
1985.

A. Meduna, J. Kučera, and Z. Křivka, On k#$-rewriting systems 11

[3] Z. Křivka, A. Meduna, and R. Schönecker, “Generation of languages by rewri-
ting systems that resemble automata,” International Journal of Foundations of
Computer Science, vol. 17, no. 5, pp. 1223–1229, 2006.

[4] G. Rozenberg and A. Salomaa, eds., Handbook of Formal Languages: Word, Lan-
guage, Grammar, vol. 1. Berlin: Springer-Verlag, 1997.

[5] J. Dassow and G. Păun, Regulated Rewriting in Formal Language Theory. Springer-
Verlag, Berlin, 1989.

