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1 Introduction

The most used classes of formal models in the formal language theory are gram-
mars and automata. Grammars work as generative devices, while automata
work as accepting devices. Given a grammar, it uses its rules to derive the
string belonging to the language it describes from some initial string. Given
an automaton, it uses its rules to decide which actions should be performed,
based on its state, first symbol of its input string, and possibly on other additi-
onal information. Every string that drives the given automaton to its accepting
configuration belongs to the language characterized by that automaton.

In a modern formal language theory, some formal models that share pro-
perties both from the grammars and automata has been introduced. Such an
example are state grammars (see [1]), which were developed from context-free
grammars by adding finite-state control. Another example are rewriting systems
(see Chapter 2 in [2]), which are a generalization of grammars and automata
and hence, depending on their rules, they are able to simulate both of them.

In 2006, Meduna, Křivka, and Schönecker introduced a new modification
of rewriting systems, called #-rewriting systems (see [3]). While ordinary re-
writing systems rewrite just one substring to another during one computation
step, #-rewriting systems rewrite in fact two substrings, where the first sub-
string is always one symbol long and acts like state. Moreover, the success of
one computation step in #-rewriting systems depends also on the number of
occurrences of # in their sentential forms. If k is an upper bound limit of the
number of occurrences of #, #-rewriting systems are said to be of index k. Such
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a restriction has an important influence to their descriptive power. While or-
dinary rewriting systems characterize the Chomsky hierarchy of languages, the
power of #-rewriting systems of index k coincide with the power of programmed
grammars of the same index (see [3]).

In this paper, we extend #-rewriting systems with additional storage that
can contain both terminals and nonterminals and we call them k#$-rewriting
systems. More precisely, every configuration consists of three parts: (1) the cur-
rent state, (2) a string of terminals (including #), and, newly, (3) a pushdown
string of terminals and nonterminals (excluding #). Below, in the string repre-
sentation of such configuration, part (2) and (3) are separated by $ symbol.

After giving some preliminaries in Section 2 and introducing the formal
definition with an example in Section 3, in Section 4, we show that for some
positive integer, k, k#$-rewriting systems and k-limited state grammars have
the same expressive power. Finally, the concluding section outlines an open
problem for further investigation.

2 Preliminaries

This paper assumes that the reader is familiar with the fundamental notions of
formal language theory (see [4, 5]). For a set X, card(X) denotes its cardinality
and 2X denotes its power set. By I, we denote a set of all positive integers. Let Σ
be an alphabet. Then, Σ∗ represents the free monoid generated by Σ under the
operation of concatenation with ε as its identity element. Set Σ+ = Σ∗−{ε}. For
w ∈ Σ∗, |w| denotes the length of w, alph(w) = {x | w = uxv, x ∈ Σ, u, v ∈ Σ∗}
denotes the minimal subset of Σ such that w ∈ alph(w)∗. For a ∈ Σ, occur(w, a)
denotes the number of occurrences of a in w; mathematically, occur(w, a) =
card({u | w = uav, u, v ∈ Σ∗}). For W ⊆ Σ, occur(w,W ) =

∑
a∈W occur(w, a).

For k ≥ 0, if w can be expressed as w = xy such that k = |x| and x, y ∈ Σ∗,
then prefix(w, k) = x; otherwise, prefix(w, k) = w.

Let A be a set and let σ be a (binary) relation over A. The k-fold product
of σ, where k ≥ 0, the transitive closure of σ, and the reflexive and transitive
closure of σ are denoted as σk, σ+, and σ∗, respectively. Instead of (x, y) ∈ σ,
we write x σ y.

By p : e, we express that e has p as its label, i.e. p is a unique symbol that is
associated with e and that can be used as an alternative name of e. By p : e ∈ D,
we express that p : e and e ∈ D.

A context-free grammar is a quadruple, G = (V, T, P, S), where V is a total
alphabet, T ⊂ V is an alphabet of terminals, P ⊆ (V − T ) × V ∗ is a finite
set of rules, and S ∈ (V − T ) is the start symbol. Instead of (A, x) ∈ P , we
write A → x ∈ P . Let ⇒ be a relation of direct derivation on V ∗ defined as
follows: uAv ⇒ uxv iff A → x ∈ P , where A ∈ (V − T ) and u, x, v ∈ V ∗.
By uAv ⇒ uxv [A → x], we express that uAv directly derives uxv according
to A → x. By ⇒G, we express that a relation of direct derivation, ⇒, is
associated with a grammar G. The language generated by G, L(G), is defined
as L(G) = {w | S ⇒∗ w,w ∈ T ∗}. The family of context-free languages is
denoted as L (CF).

Let k ≥ 1 and Σn = {a1, b1, a2, b2, . . . , an, bn}. The Dyck language Dn over
Σn is generated by the grammar

({S} ∪ Σn,Σn, {S → SS, S → ε, S → a1Sb1, . . . , S → anSbn}, S).
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Let G be a grammar of arbitrary type, and let V , T , and S be its total
alphabet, terminal alphabet, and start symbol, respectively. For a derivation
D : w1 ⇒ w2 ⇒ . . .⇒ wr, S = w1, wr ∈ T ∗, according to G, we set Ind(D,G) =
max{occur(wi, V − T ) | 1 ≤ i ≤ r}, and for w ∈ T ∗, we define Ind(w,G) =
min{Ind(D,G) | D is a derivation for w in G}. The index of grammar G (see
page 151 in [6]) is defined as Ind(G) = sup{Ind(w,G) | w ∈ L(G)}. For a
language L in the family L (X) of languages generated by grammars of some
type X, we define IndX(L) = inf{Ind(G) | L(G) = L,G is of type X}. For a
family L (X), we set Ln(X) = {L | L ∈ L (X) and IndX(L) ≤ n}, n ≥ 1.

A state grammar (see [1]) is a sixtuple G = (V, T,K, P, S, s), where V is a
total alphabet, T ⊂ V is an alphabet of terminals, K is a finite set of states,
V ∩K = ∅, P ⊆ (V − T )×K × V ∗ ×K is a finite set of rules, S ∈ (V − T ) is
the start symbol, and s ∈ K is the start state. Instead of (A, p, x, q) ∈ P , we
write (A, p) → (x, q) ∈ P . Let ⇒ be a relation of direct derivation on V ∗ ×K
defined as follows: (uAv, p) ⇒ (uxv, q) iff (A, p) → (x, q) ∈ P and for every
(B, p) → (y, t) ∈ P , B /∈ alph(u), where p, q, t ∈ K, A,B ∈ (V − T ), and
u, v, x, y ∈ V ∗. For some k ≥ 1 satisfying occur(uA, V −T ) ≤ k, ⇒ is said to be
k-limited, denoted as k⇒. By (uAv, p) ⇒ (uxv, q) [(A, p) → (x, q)], we express
that (uAv, p) directly derives (uxv, q) according to (A, p)→ (x, q). Similarly for

k⇒. The language generated by G, L(G), is defined as L(G) = {w | (S, s) ⇒∗
(w, q), q ∈ K,w ∈ T ∗}. Let k ≥ 1. The language generated by G in k-limited
way, L(G, k), is defined as L(G, k) = {w | (S, s) k⇒∗ (w, q), q ∈ K,w ∈ T ∗}.
The families of languages generated by state grammars and by state grammars
in k-limited way are denoted as L (ST) and L (ST, k), respectively.

A #-rewriting system (see [3]) is a quadruple M = (Q,Σ, s, R), where Q is a
finite set of states, Σ is an alphabet containing special symbol # called bounder,
Q ∩ Σ = ∅, s ∈ Q is the start state and R ⊆ Q × I × {#} × Q × Σ∗ is a finite
set of rules. Instead of (p, n,#, q, x) ∈ R, we write p n# → qx. Let ⇒ be a
relation of direct rewriting step on QΣ∗ defined as follows: pu#v ⇒ quxv iff
p n# → qx ∈ R and occur(u,#) = n − 1, where p, q ∈ Q, u, v, x ∈ Σ∗, and
n ∈ I. By pu#v ⇒ quxv [p n# → qx], we express that pu#v directly rewrites
quxv according to p n#→ qx. The language generated by M , L(M), is defined
as L(M) = {w | s# ⇒∗ qw, q ∈ Q,w ∈ (Σ − {#})∗}. Let k ∈ I. A #-
rewriting system M is said to be of index k if and only if s# ⇒∗ qy implies
occur(y,#) ≤ k, where q ∈ Q and y ∈ Σ∗. Let k ∈ I. The family of languages
generated by #-rewriting systems and by #-rewriting systems of index k are
denoted as L (#RS) and Lk(#RS), respectively.

3 Definitions

We are now ready to define k#$-rewriting systems.

Definition 3.1. Let k ∈ I. A k#$-rewriting system is a quintuple

M = (Q,V,Σ, s, R),

where Q is a finite set of states, V is a total alphabet, V ∩ Q = ∅, Σ is an
alphabet containing # and $ called bounders, Σ ⊆ V , s ∈ Q is a start state and

R ⊆ (Q× I× {#} ×Q× (Σ− {$})∗)
∪ (Q× {#} × {$} ×Q× {$} × (V − {#, $})∗)
∪ (Q× {$} × (V − Σ)×Q× {#} × {$})
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is a finite set of rules.
Instead of (p, n,#, q, x) ∈ R, (p,#, $, q, $, y) ∈ R and (p, $, A, q,#, $) ∈ R,

we write p n#→ qx ∈ R, p#$→ q$y ∈ R and p$A→ q#$ ∈ R, respectively.
Let Ξ ⊆ Q(Σ − {$})∗{$}(V − {#, $})∗ be a set of all configurations of M

such that χ ∈ Ξ iff occur(χ,#) ≤ k.
Let ⇒ be a relation of direct rewriting step on Ξ defined as follows:

• pu#v$α ⇒ quxv$α iff p n# → qx ∈ R, occur(u,#) = n − 1, p, q ∈ Q,
u, v, x ∈ (Σ− {$})∗, α ∈ (V − {#, $})∗, and n ∈ I;

• pu#$α ⇒ qu$xα iff p#$ → q$x ∈ R, p, q ∈ Q, u ∈ (Σ − {$})∗, and
x, α ∈ (V − {#, $})∗;

• pu$Aα⇒ qu#$α iff p$A→ q#$ ∈ R, p, q ∈ Q, u ∈ (Σ−{$})∗, A ∈ V −Σ,
and α ∈ (V − {#, $})∗;

• pux$α ⇒ pu$xα iff p ∈ Q, u ∈ (Σ − {$})∗, x ∈ (Σ − {#, $})∗, and
α ∈ (V − {#, $})∗;

• pu$xα ⇒ pux$α iff p ∈ Q, u ∈ (Σ − {$})∗, x ∈ (Σ − {#, $})∗, and
α ∈ (V − {#, $})∗.

By x⇒ y [r], we express that x directly rewrites y according to r.
The language generated by M , L(M), is defined as

L(M) = {w | s#$⇒∗ qw$, q ∈ Q,w ∈ (Σ− {#, $})∗}.

The family of languages generated by k#$-rewriting systems is denoted as
Lk(#$RS).

The following example demonstrates a generative capacity of k#$-rewriting
systems.

Example 3.2. Let M = (Q,V,Σ, s, R) be a 2#$-rewriting system, where

Q = {s, p, p′, p(1), p(2), p(X), p(Y ), q, f, f (A), f (B)}
V = {A,B,X, a, b, c, d, 0, 1, 0̄, 1̄, [1, [2, ]1, ]2,#, $}
Σ = {a, b, c, d, 0, 1, 0̄, 1̄, [1, [2, ]1, ]2,#, $}

and R contains rules

1: s 1#→ p## 9: p(Y )
1#→ q

2: p 1#→ p′a#b 10: q 1#→ f
3: p′ 2#→ p(1)c# 11: f$A→ f (A)#$
4: p′ 2#→ p(2)d# 12: f$B → f (B)#$
5: p(1)#$→ p(X)$X[1A]1 13: f (A)

1#→ f (A)0#1
6: p(2)#$→ p(X)$X[2B]2 14: f (B)

1#→ f (B)0̄#1̄
7 : p(X)$X → p#$ 15: f (A)

1#→ f01
8: p(X)$X → p(Y )#$ 16: f (B)

1#→ f 0̄1̄

First, M generates two # bounders. Second, M uses rules 2 to 7 to generate
the following structure

am#bmz1z2 . . . zm#$φ(zmzm−1 . . . z1)
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where zi ∈ {c, d}, 1 ≤ i ≤ m, m ≥ 1 and φ is a homomorphism from {c, d}∗ to
{A,B, [1, [2, ]1, ]2}∗ such that φ(c) = [1A]1 and φ(d) = [2B]2. Finally, M uses
rules 8 to 16 to finish the rewriting. Thus, the language generated by M is

L(M) =

{
w

∣∣∣∣ w = anbnz1z2 . . . znh(zn, i1)h(zn−1, i2) . . . h(z1, in),
zi ∈ {c, d}, 1 ≤ i ≤ n, ij ≥ 1, 1 ≤ j ≤ n, n ≥ 1

}
where h is a mapping from {c, d}×I to {0, 1, 0̄, 1̄, [1, [2, ]1, ]2}∗ such that h(c, i) =
[10i1i]1 and h(d, i) = [20̄i1̄i]2.

For instance, M generates aabbdc[10011]1[20̄1̄]2 in the following way

s#$ ⇒ p##$ [1]
⇒ p′a#b#$ [2]
⇒ p(2)a#bd#$ [4]
⇒ p(X)a#bd$X[2B]2 [6]
⇒ pa#bd#$[2B]2 [7]
⇒ p′aa#bbd#$[2B]2 [2]
⇒ p(1)aa#bbdc#$[2B]2 [3]
⇒ p(X)aa#bbdc$X[1A]1[2B]2 [5]
⇒ p(Y )aa#bbdc#$[1A]1[2B]2 [8]
⇒ qaabbdc#$[1A]1[2B]2 [9]
⇒ faabbdc$[1A]1[2B]2 [10]
⇒ faabbdc[1$A]1[2B]2
⇒ f (A)aabbdc[1#$]1[2B]2 [11]
⇒ f (A)aabbdc[10#1$]1[2B]2 [13]
⇒ faabbdc[10011$]1[2B]2 [15]
⇒ faabbdc[10011]1[2$B]2
⇒ f (B)aabbdc[10011]1[2#$]2 [12]
⇒ faabbdc[10011]1[20̄1̄$]2 [16]
⇒ faabbdc[10011]1[20̄1̄]2$

4 Results

First, we prove the identity of L (ST, k) and Lk(#$RS) for every k ≥ 1.

Lemma 4.1. Let k ≥ 1. Then, L (ST, k) ⊆ Lk(#$RS).

Proof. Let G = (V, T,K, P, S, s) be a state grammar. Without any loss on
generality, suppose that V ∩ {#, $} = ∅. Now, we construct from G a k#$-
rewriting system

M = (Q,V ′,Σ, s′, R)

such that L(G, k) = L(M). First, we set

Q =
⋃k
i=0{〈q; l;u〉 | q ∈ K,u ∈ (V − T )i, 0 ≤ l ≤ k}

V ′ = V ∪ {#, $}
Σ = T ∪ {#, $}
s′ = 〈s; 0;S〉

Every state from Q holds the current G’s state and the first k nonterminal
symbols from the current G’s sentential form. The positions of these k symbols
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correspond to #’s in the simulation. Additionally, it also holds a number that
has a meaning of a type of state—0 is for regular state and 1 to k are for
auxiliary states.

Next, we construct R. Let

rules(p, u) =

{
r

∣∣∣∣ r : (B, p)→ (x, q) ∈ P,B ∈ ((V − T ) ∩ alph(u)),
p, q ∈ K,x ∈ V +, u ∈ V ∗

}
and let g and h be two homomorphisms from V ∗ to (Σ−{$})∗ and from V ∗ to
(V ′ − Σ)∗, respectively, defined as

g(x) =

{
# for every x ∈ (V − T )
x for every x ∈ T

h(x) =

{
x for every x ∈ (V − T )
ε for every x ∈ T

Initially, set R = ∅. For every rule (A, p) → (x, q) ∈ P and for every state
〈p; 0;uAv〉 ∈ Q such that rules(p, u) = ∅ perform the following steps:

(A) If k − |uv| ≥ |h(x)|, then add 〈p; 0;uAv〉 |uA|#→ 〈q; 0;uh(x)v〉g(x) to R.

(B) If k − |uv| < |h(x)|, then express v as v = Xm−1Xm−2 . . . X0, where Xi ∈
(V ′ − Σ), 0 ≤ i ≤ m− 1, m = |v|, and

(i) for every i such that 0 ≤ i ≤ m − 1, add 〈p; i;uAv〉#$ → 〈p; i +
1;uAv〉$Xi to R;

(ii) add 〈p;m;uAv〉#$→ 〈q; 0;u〉$x to R.

Finally, for every state 〈p; 0;u〉 ∈ Q such that |u| ≤ k − 1 and for every B ∈
(V ′ − Σ) add rule

〈p; 0;u〉$B → 〈p; 0;uB〉#$

to R.
Due to the lack of space, we leave the proofs of the following claims to

the kind reader. Both of them can be proved by induction on the number of
derivation or rewriting steps, respectively.

Claim 4.2. Let (S, p) k⇒m (wy, q) in G, where p, q ∈ K, w ∈ T ∗, y ∈ ((V −
T )T ∗)∗, and m ≥ 0. Then, 〈p; 0;S〉#$⇒∗ 〈q; 0; prefix(h(y), k)〉wg(α)$β in M ,
where y = αβ, α ∈ (T ∗(V − T ))|prefix(h(y),k)|, and β ∈ V ∗.

Claim 4.3. Let 〈p; 0;S〉#$ ⇒m 〈q; i;h(αᾱ)〉wg(α)$ᾱβ in M , where p, q ∈ K,
0 ≤ i ≤ k, w ∈ (Σ − {#, $})∗, α ∈ ((V ′ − Σ)(V ′ − {#, $})∗)∗, occur(α, V ′ −
Σ) ≤ k, ᾱ, β ∈ (V ′ − {#, $})∗, occur(ᾱ, V ′ − Σ) = i, and m ≥ 0. Then,
(S, p) k⇒∗ (wαᾱβ, q) in G.

If we set p = s and y = ε in Claim 4.2, then (S, s) k⇒∗ (w, q) in G implies
〈s; 0;S〉#$ ⇒∗ 〈q; 0; ε〉w$ in M which proves L(G, k) ⊆ L(M). Conversely, for
p = s, i = 0, and α = ᾱ = β = ε in Claim 4.3, 〈s; 0;S〉#$ ⇒∗ 〈q; 0; ε〉w$
in M implies (S, s) k⇒∗ (w, q) in G which proves L(M) ⊆ L(G, k). Hence,
L(G, k) = L(M) and the lemma holds.

Lemma 4.4. Let k ≥ 1. Then, Lk(#$RS) ⊆ L (ST, k).
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Proof. Let M = (Q,V,Σ, s, R) be a k#$-rewriting system. Without any loss
on generality, suppose that ? /∈ V and #i /∈ V , for all 1 ≤ i ≤ k. From M , we
construct a state grammar

G = (V ′, T,K, P,#1, s
′)

such that L(M) = L(G, k). First, we set

V ′ = (V − {#, $}) ∪ {#i | 1 ≤ i ≤ k}
T = Σ− {#, $}
K = {〈p; i〉 | p ∈ Q, 0 ≤ i ≤ k}
∪ {〈p; i; Jr, jK〉 | p ∈ Q, r ∈ R, 0 ≤ i ≤ k, 1 ≤ j ≤ k}
∪ {〈p; i; Jr,XK〉 | p ∈ Q, r ∈ R,X ∈ (V − Σ) ∪ {?}, 0 ≤ i ≤ k}
∪ {qfail}

s′ = 〈s; 1〉

Every state from K holds the M ’s current state, the number of #’s in the current
M ’s configuration and occasionally the simulated rule together with information
either about leftmost non-# nonterminal symbol or simulation progress. There
is also a special state qfail in K that brings G to configuration that makes the
next derivation step in G impossible and in this way the simulation of M is
abnormally stopped.

Let τ be a mapping from (Σ−{$})∗×{1, 2, . . . , k} to (T ∪{#i | 1 ≤ i ≤ k})∗
defined recursively as follows

• τ(ε, i) = ε, for every 1 ≤ i ≤ k

• τ(ax, i) = aτ(x, i), for every a ∈ (Σ − {#, $}), x ∈ (Σ − {$})∗, and
1 ≤ i ≤ k

• τ(#x, i) = #iτ(x, i+ 1), for every x ∈ (Σ− {$})∗ and 1 ≤ i ≤ k − 1

We are now ready to construct P . Initially, set P = ∅. For every rule r : p n#→
qx ∈ R and for every state 〈p;κ〉 ∈ K such that n ≤ κ and κ−1+occur(x,#) ≤ k
perform the following steps:

(A) If occur(x,#) = 0 and κ− n = 0, then add

(#κ, 〈p;κ〉)→ (x, 〈q;κ− 1〉)

to P .

(B) If occur(x,#) = 0 and κ− n ≥ 1, then

• add (#n, 〈p;κ〉)→ (x, 〈q;κ− 1; Jr, 1K〉) to P ;

• for every 1 ≤ i ≤ κ− n− 1, add

(#n+i, 〈q;κ− 1; Jr, iK〉)→ (#n+i−1, 〈q;κ− 1; Jr, i+ 1K〉)

to P ;

• add (#κ, 〈q;κ− 1; Jr, κ− nK〉)→ (#κ−1, 〈q;κ− 1〉) to P .

(C) If occur(x,#) = 1, then add

(#n, 〈p;κ〉)→ (τ(x, n), 〈q;κ〉)

to P .
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(D) If occur(x,#) ≥ 2, then

• add (#n, 〈p;κ〉)→ (#n, 〈p;κ; Jr, 1K〉) to P ;

• for every 0 ≤ i ≤ κ− n− 1, add

(#κ−i, 〈p;κ; Jr, i+ 1K〉)→ (#κ+η−i, 〈p;κ; Jr, i+ 2K〉)

to P , where η = occur(x,#)− 1;

• add (#n, 〈p;κ; Jr, κ − n + 1K〉) → (τ(x, n), 〈q;κ + η〉) to P , where
η = occur(x,#)− 1.

Next, for every rule p#$ → q$x ∈ R and for every state 〈p;κ〉 ∈ K such
that κ ≥ 1, add

(#κ, 〈p;κ〉)→ (x, 〈q;κ− 1〉)

to P .
Finally, for every rule r : p$A → q#$ ∈ R and for every state 〈p;κ〉 ∈ K

such that κ ≤ k − 1, add

• (A, 〈p;κ〉)→ (A, 〈p;κ; Jr, ?K〉)

• (X, 〈p;κ; Jr, ?K〉)→ (X, 〈p;κ; Jr,XK〉), for all X ∈ (V − Σ)

• (Y, 〈p;κ; Jr, Y K〉)→ (Y, qfalse), for all Y ∈ (V − Σ), where Y 6= A

• (A, 〈p;κ; Jr,AK〉)→ (#κ+1, 〈q;κ+ 1〉)

to P .
As in the proof of Lemma 4.1, both following claims can be proved by in-

duction on the number of rewriting or derivation steps, respectively, and we
leave the proofs to the kind reader.

Claim 4.5. Let p#$ ⇒m qwα$β in M , where p, q ∈ Q, w ∈ (Σ − {#, $})∗,
α ∈ ({#}(Σ− {$})∗)∗, β ∈ (V − {#, $})∗, and m ≥ 0. Then,

(#1, 〈p; 1〉) k⇒∗ (wτ(α, 1)β, 〈q; occur(α,#)〉)

in G.

Claim 4.6. Set Ω = {Jr,XK | r ∈ R,X ∈ ({1, 2, . . . , k} ∪ (V − Σ) ∪ {?})} and
express K as K = KQ ∪KΩ ∪ {qfalse}, where

KQ = {〈p; i〉 | p ∈ Q, 0 ≤ i ≤ k}
KΩ = {〈p; i;Z〉 | p ∈ Q, 0 ≤ i ≤ k, Z ∈ Ω}

Define a binary operation • from KQ × (Ω ∪ {λ}) to K such that

〈p; i〉 • Z = 〈p; i;Z〉, for all Z ∈ Ω
〈p; i〉 • λ = 〈p; i〉

Furthermore, set N# = {#i | 1 ≤ i ≤ k} and define a homomorphism τ̄ from
(N# ∪ T ) to (Σ − {$}) such that τ̄(a) = a for every a ∈ T and τ̄(X) = # for
every X ∈ N#.

Based on a state to which G enters, the following two cases are considered:
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(a) Let (#1, 〈p, 1〉) k⇒m (wαβ, 〈q, occur(τ̄(α),#)〉 • Z) in G, where p, q ∈ Q,
w ∈ T ∗, α ∈ (N#(N# ∪ T )∗)∗, β ∈ (V − {#, $})∗, Z ∈ (Ω ∪ {λ}), and
m ≥ 0. Then, p#$⇒∗ qwτ̄(α)$β in M .

(b) Let (#1, 〈p, 1〉) k⇒m (wαβ, qfalse) in G, where p ∈ Q, w ∈ T ∗, α ∈
(N#(N# ∪T )∗)∗, β ∈ (V −{#, $})∗, and m ≥ 0. Then, p#$⇒∗ q̄wτ̄(α)$β
in M , where q̄ ∈ Q, β = z1Y z2Az3, Y,A ∈ (V − Σ), Y 6= A, z1 ∈
(Σ−{#, $})∗, z2 ∈ (V −{A,#, $})∗, z3 ∈ (V −{#, $})∗, and there is a rule
r̄ : q̄$A→ q′#$ ∈ R, q′ ∈ Q, such that r̄ is not applicable on q̄wτ̄(α)$β.

If we set p = s and α = β = ε in Claim 4.5, then s#$⇒∗ qw$ in M implies
(#1, 〈s; 1〉) k⇒∗ (w, 〈q; 0〉) in G which proves L(M) ⊆ L(G, k). Conversely, for
p = s, α = β = ε, and Z = λ in Claim 4.6, (#1, 〈s; 1〉) k⇒∗ (w, 〈q; 0〉) in G
implies s#$ ⇒∗ qw$ in M which proves L(G, k) ⊆ L(M). Hence, L(M) =
L(G, k) and the lemma holds.

Corollary 4.7. Let k ≥ 1. Then, Lk(#$RS) = L (ST, k).

Proof. It directly follows from Lemma 4.1 and Lemma 4.4.

Next, we show that Lk(#RS) is properly included in Lk(#$RS) for every
k ≥ 1.

Theorem 4.8. For every k ≥ 1. Then, Lk(#RS) ⊂ Lk(#$RS).

Proof. The inclusion Lk(#RS) ⊆ Lk(#$RS) follows directly from the definiti-
ons of #-rewriting system of index k and k#$-rewriting system. It remains to
find a language from Lk(#$RS) that is not contained in Lk(#RS).

For k = 1, such a language is D2. As L1(#$RS) = L (CF) (by [1] and
Corollary 4.7), D2 ∈ L1(#$RS), but D2 /∈ L1(#RS) (see page 169 in [6]).

For k ≥ 2, let Σk = {a1, a2, . . . , a4k−2} be an alphabet. Define a language
Lk over Σk as

Lk = {ai1ai2 . . . ai4k−2 | i ≥ 1}.

By Theorem 4 in [1], Lk ∈ L (ST, k) and since Lk(#$RS) = L (ST, k), Lk ∈
Lk(#$RS) as well.

It is easy to see that matrix grammars of finite index k generates the same
language family as Lk(#RS) (see [3] and Theorem 3.1.2 on page 155 in [6]).
By an application of pumping lemma for matrix grammars of finite index (see
Lemma 3.1.6 on page 159 in [6]), we can proof that Lk /∈ Lk(#RS). Assume
that Lk ∈ Lk(#RS). Then there exists z ∈ Lk such that

z = u1v1w1x1u2v2w2x2 . . . ulvlwlxlul+1

with l ≤ k, |v1x1v2x2 . . . vlxl| > 0, and

u1v
i
1w1x

i
1u2v

i
2w2x

i
2 . . . ulv

i
lwlx

i
lul+1 ∈ Lk

for every i ≥ 1. Now, consider the following cases:

• There exists y ∈ {v1, x1, v2, x2, . . . , vl, xl} such that card(alph(y)) ≥ 2. In
this case, there exists i ≥ 1 such that

u1v
i
1w1x

i
1u2v

i
2w2x

i
2 . . . ulv

i
lwlx

i
lul+1 /∈ Lk.
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L1(#$RS) ⊂ L2(#$RS) ⊂ · · · ⊂ Lk(#$RS)
∪ ∪ ∪

L1(#RS) ⊂ L2(#RS) ⊂ · · · ⊂ Lk(#RS)

Fig. 1: The relations between #-rewriting systems with finite index and #$-
rewriting systems.

• All v1, x1, v2, x2, . . . , vl, xl are strings over one-letter alphabet. As for k ≥
2 it is always true that 4k − 2 > 2k, there will be always symbols from
alph(z) that are not contained in alph(v1x1v2x2 . . . vlxl). Hence there
must exist i ≥ 1 such that

u1v
i
1w1x

i
1u2v

i
2w2x

i
2 . . . ulv

i
lwlx

i
lul+1 /∈ Lk.

Such z ∈ Lk does not exist and therefore Lk /∈ Lk(#RS) for every k ≥ 2.

The relationship between infinite hierarchies of #-rewriting systems of finite
index and k#$-rewriting systems is summed in Figure 1.

5 Conclusion

Since we have new characterization of L (ST, k), for some k ≥ 1, in the future
investigation, we can naturally study the relationship between k#$-rewriting
systems and generalized #-rewriting systems (studied in Sections 4.1.4 and 5.1.3
of [7]).

Acknowledgment

This work was supported by The Ministry of Education, Youth and Sports
of the Czech Republic from the National Programme of Sustainability (NPU
II), project IT4Innovations excellence in science – LQ1602; the TAČR grant
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Appendix

In this section, we recall the claims from the paper together with their proofs
that have to be omitted from the paper due to the page limit. Since we assume
that the appendix will not be part of the final version of the paper, we include
no references into the appendix from the text of the paper.

Claim 4.2. Let (S, p) k⇒m (wy, q) in G, where p, q ∈ K, w ∈ T ∗, y ∈ ((V −
T )T ∗)∗, and m ≥ 0. Then, 〈p; 0;S〉#$⇒∗ 〈q; 0; prefix(h(y), k)〉wg(α)$β in M ,
where y = αβ, α ∈ (T ∗(V − T ))|prefix(h(y),k)|, and β ∈ V ∗.

Proof. This claim is proved by induction on m ≥ 0.

Basis. Let m = 0, so (S, p) k⇒0 (S, p) in G, w = ε and y = S. Then,

〈p; 0;S〉#$⇒0 〈p; 0; prefix(h(S), k)〉g(α)$β

in M . Since prefix(h(S), k) = S, it holds that α = S and β = ε, so we have

〈p; 0; prefix(h(S), k)〉g(α)$β = 〈p; 0;S〉#$

and the basis holds.

Induction Hypothesis. Suppose that the claim holds for all 0 ≤ m ≤ l, where l
is a non-negative integer.

Induction Step. Let (S, p) k⇒l+1 (wy, q) in G, where p, q ∈ K, w ∈ T ∗,
and y ∈ ((V − T )T ∗)∗. Since l + 1 ≥ 1, express (S, p) k⇒l+1 (wy, q) as
(S, p) k⇒l (w′uAv, t) k⇒ (w′uxv, q), where t ∈ K, w′ ∈ T ∗, u ∈ ((V − T )T ∗)∗,
|h(u)| ≤ k − 1, A ∈ (V − T ), x, v ∈ V ∗, (A, t) → (x, q) ∈ P , w = w′ŵ,
and ŵy = uxv with ŵ ∈ T ∗. By the induction hypothesis, 〈p; 0;S〉#$ ⇒∗
〈t; 0; prefix(h(uAv), k)〉w′g(uAz)$z̄ inM , where v = zz̄, z ∈ (T ∗(V−T ))|prefix(h(uAv),k)|−|h(uA)|,
and z̄ ∈ V ∗. As (A, t)→ (x, q) ∈ P , the following rules were added to R during
its construction, based on the relation between k − |prefix(h(uAv), k)| + 1 and
|h(x)|:

(A) k − |prefix(h(uAv), k)|+ 1 ≥ |h(x)|. Then, based on construction of R,

〈t; 0; prefix(h(uAv), k)〉 |h(uA)|#→ 〈q; 0; prefix(h(uxv), k)〉g(x) ∈ R.

Now, we must consider the following three cases:

1. occur(uAv, V − T ) ≥ k and occur(x, V − T ) = 1. Then,

〈t; 0; prefix(h(uAv), k)〉w′g(uAz)$z̄ ⇒∗ 〈q; 0; prefix(h(uxv), k)〉w′g(uxz)$z̄

in M . Clearly, uxz can be expressed as ŵα. As h(uxv) = h(ŵy) = h(y),
g(uxz) = g(ŵα) = ŵg(α), w = w′ŵ, and β = z̄, we have

〈q; 0; prefix(h(uxv), k)〉w′g(uxz)$z̄ = 〈q; 0; prefix(h(y), k)〉wg(α)$β.

2. occur(uAv, V − T ) ≥ k and occur(x, V − T ) = 0. Then,

〈t; 0; prefix(h(uAv), k)〉w′g(uAz)$z̄ ⇒∗ 〈q; 0;h(uxz)〉w′g(uxz)$z̄
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in M and since for every B ∈ (V ′ − Σ),

〈q; 0;h(uxz)〉$B → 〈q; 0;h(uxzB)〉#$ ∈ R

there exists

〈q; 0;h(uxz)〉w′g(uxz)$z̄ ⇒∗ 〈q; 0; prefix(h(uxv), k)〉w′g(uxz′)$z̄′

in M with z′ ∈ (T ∗(V −T ))|prefix(h(uxv),k)|−|h(ux)|, z̄′ ∈ V ∗, and v = z′z̄′.
Again, we can express uxz′ as ŵα and with β = z̄′, we have

〈q; 0; prefix(h(uxv), k)〉w′g(uxz′)$z̄′ = 〈q; 0; prefix(h(y), k)〉wg(α)$β.

3. occur(uAv, V − T ) < k and occur(uxv, V − T ) ≤ k. Then,

〈t; 0; prefix(h(uAv), k)〉w′g(uAz)$z̄ ⇒∗ 〈q; 0; prefix(h(uxv), k)〉w′g(uxz)$z̄

in M . As in previous cases, set ŵα = uxz and β = z̄. Therefore,

〈q; 0; prefix(h(uxv), k)〉w′g(uxz)$z̄ = 〈q; 0; prefix(h(y), k)〉wg(α)$β.

(B) k − |prefix(h(uAv), k)| + 1 < |h(x)|. Express prefix(h(uAv), k) as h(uA)δ,
where δ = D1D2 . . . D|δ|, Di ∈ (V −T ), 1 ≤ i ≤ |δ|. Furthermore, express z
as d1D1d2D2 . . . d|δ|D|δ|, where di ∈ T ∗, 1 ≤ i ≤ |δ|. As there are following
rules in R introduced by step (B.i) of the construction of R

〈t; 0;h(uA)δ〉#$ → 〈t; 1;h(uA)δ〉$D|δ|
〈t; 1;h(uA)δ〉#$ → 〈t; 2;h(uA)δ〉$D|δ|−1

...
〈t; |δ| − 1;h(uA)δ〉#$ → 〈t; |δ|;h(uA)δ〉$D1

there exists

〈t; 0; prefix(h(uAv), k)〉w′g(uAd1D1 . . . d|δ|D|δ|)$z̄
⇒∗ 〈t; 1;h(uA)δ〉w′g(uAd1D1 . . . d|δ|−1D|δ|−1)$d|δ|D|δ|z̄

...
⇒∗ 〈t; |δ|;h(uA)δ〉w′g(uA)$zz̄

in M . Since step (B.ii) of the construction of R introduces a rule

〈t; |δ|;h(uA)δ〉#$→ 〈q; 0;h(u)〉$x

to R, there also exists

〈t; |δ|;h(uA)δ〉w′g(uA)$zz̄ ⇒∗ 〈q; 0;h(u)〉w′g(u)$xzz̄

in M . Finally, for every state 〈o; 0; γ〉 ∈ Q such that |γ| ≤ k − 1 and for
every B ∈ (V ′ − Σ), there is a rule

〈o; 0; γ〉$B → 〈o; 0; γB〉#$

in R and hence

〈q; 0;h(u)〉w′g(u)$xzz̄ ⇒∗ 〈q; 0; prefix(h(uxv), k)〉w′g(uz′)$z̄′

in M , where z′ ∈ (T ∗(V −T ))|prefix(h(uxv),k)|−|h(u)|, z̄′ ∈ V ∗, and xv = z′z̄′.
Express uz′ as ŵα and set z̄′ = β. Thus,

〈q; 0; prefix(h(uxv), k)〉w′g(uz′)$z̄′ = 〈q; 0; prefix(h(y), k)〉wg(α)$β

and the claim holds.
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Claim 4.3. Let 〈p; 0;S〉#$ ⇒m 〈q; i;h(αᾱ)〉wg(α)$ᾱβ in M , where p, q ∈ K,
0 ≤ i ≤ k, w ∈ (Σ − {#, $})∗, α ∈ ((V ′ − Σ)(V ′ − {#, $})∗)∗, occur(α, V ′ −
Σ) ≤ k, ᾱ, β ∈ (V ′ − {#, $})∗, occur(ᾱ, V ′ − Σ) = i, and m ≥ 0. Then,
(S, p) k⇒∗ (wαᾱβ, q) in G.

Proof. This claim is proved by induction on m ≥ 0.

Basis. Let m = 0, so 〈p; 0;S〉#$⇒0 〈p; 0;S〉#$ in M , w = ε, α = S, ᾱ = ε and
β = ε. Then, (S, p) k⇒∗ (S, p) in G and the basis holds.

Induction Hypothesis. Suppose that the claim holds for all 0 ≤ m ≤ l, where l
is a non-negative integer.

Induction Step. Let 〈p; 0;S〉#$⇒l+1 〈q; ̂;h(αᾱ)〉wg(α)$ᾱβ in M , where p, q ∈
K, 0 ≤ ̂ ≤ k, w ∈ (Σ− {#, $})∗, α ∈ ((V ′ −Σ)(V ′ − {#, $})∗)∗, occur(α, V ′ −
Σ) ≤ k, and ᾱ, β ∈ (V ′−{#, $})∗, occur(ᾱ, V ′−Σ) = ̂. Since l+1 ≥ 1, express
〈p; 0;S〉#$⇒l+1 〈q; ̂;h(αᾱ)〉wg(α)$ᾱβ as

〈p; 0;S〉#$⇒l 〈t; ı̂;h(uAvα̂)〉w′g(uAv)$α̂z ⇒ 〈q; ̂;h(uxv′ᾱ)〉w′g(uxv′)$ᾱβ

where t ∈ K, 0 ≤ ı̂ ≤ k, w′ ∈ (Σ − {#, $})∗, A ∈ (V ′ − Σ) ∪ {ε}, u ∈
((V ′−Σ)(V ′−{#, $})∗)∗, x, v, v′, α̂, z ∈ (V ′−{#, $})∗, occur(uAv, V ′−Σ) ≤ k,
occur(α̂, V ′ − Σ) = ı̂, w = w′ŵ, and ŵα = uxv′ with ŵ ∈ (Σ − {#, $})∗.
By the induction hypothesis, (S, p) k⇒∗ (w′uAvα̂z, t) in G. M can rewrite
〈t; ı̂;h(uAvα̂)〉w′g(uAv)$α̂z to 〈q; ̂;h(uxv′ᾱ)〉w′g(uxv′)$ᾱβ according to the
one of following cases:

Case 1. t = q, ı̂ = ̂, A = x, v = v′v̄, ᾱ = v̄α̂, z = β, and v̄ ∈ (Σ− {#, $})∗. In
this case, we have

(w′uAv′v̄α̂z, t) k⇒∗ (wαᾱβ, q)

in G.

Case 2. t = q, ı̂ = ̂, A = x, v′ = vv̄, α̂ = v̄ᾱ, z = β, and v̄ ∈ (Σ− {#, $})∗. In
this case, we have

(w′uAvv̄ᾱz, t) k⇒∗ (wαᾱβ, q)

in G.

Case 3. t = q, ı̂ = ̂ = 0, A = x, α̂ = ᾱ = ε, z = Bβ, v′ = vB, and
B ∈ (V ′ − Σ). In this case, the rewriting step was performed by rule
〈q; 0;h(uv)〉$B → 〈q; 0;h(uvB)〉#$ which was introduced toR for every
state 〈q; 0;h(uv)〉 ∈ Q, |h(uv)| ≤ k − 1, and for every B ∈ (V ′ − Σ).
Since this rule only changes symbol B to # and updates M ’s state to
remember #’s meaning, we have

(w′uAvα̂Bβ, t) k⇒∗ (w′uxv′ᾱβ, q) k⇒∗ (wαᾱβ, q)

in G.
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Case 4. ı̂ = ̂ = 0, v = v′, α̂ = ᾱ and z = β. In this case, 〈t; 0;h(uAv)〉 |h(uA)|#→
〈q; 0;h(uxv)〉g(x) ∈ R was used, so there exists a rule (A, t)→ (x, q) in
P such that rules(t, u) = ∅ and hence

(w′uAvα̂z, t) k⇒ (w′uxvα̂z, q) k⇒∗ (wαᾱβ, q)

in G.

Case 5. t = q, ı̂ = ̂− 1, A = x, v = v′B, ᾱ = Bα̂, z = β, and B ∈ (V ′−Σ). In
this case, 〈t; ı̂;h(uAvα̂)〉#$→ 〈t; ı̂+1;h(uAv′ᾱ)〉$B ∈ R introduced in
step (B.i) was used and hence

(w′uAv′Bα̂z, t) k⇒∗ (wαᾱβ, q)

in G.

Case 6. ̂ = 0, v = x = v′ = ᾱ = ε, β = yα̂z, and y ∈ (V ′ − {#, $})∗. In this
case, 〈t; ı̂;h(uAα̂)〉#$ → 〈q; 0;h(u)〉$y ∈ R introduced in step (B.ii)
was used which means that there is a rule (A, t) → (y, q) in P such
that rules(t, u) = ∅. Therefore,

(w′uAvα̂z, t) k⇒ (w′uyvα̂z, q) k⇒∗ (wαᾱβ, q)

in G, which completes the induction step.

Claim 4.5. Let p#$ ⇒m qwα$β in M , where p, q ∈ Q, w ∈ (Σ − {#, $})∗,
α ∈ ({#}(Σ− {$})∗)∗, β ∈ (V − {#, $})∗, and m ≥ 0. Then,

(#1, 〈p; 1〉) k⇒∗ (wτ(α, 1)β, 〈q; occur(α,#)〉)

in G.

Proof. This claim is proved by induction on m ≥ 0.

Basis. Let m = 0, p#$ ⇒0 p#$ in M , w = ε, α = #, and β = ε. Then,
(#1, 〈p; 1〉) k⇒∗ (#1, 〈p; 1〉) in G and the basis holds.

Induction Hypothesis. Suppose that the claim holds for all 0 ≤ m ≤ l, where l
is a non-negative integer.

Induction Step. Let p#$⇒l+1 qwα$β in M , where p, q ∈ Q, w ∈ (Σ−{#, $})∗,
α ∈ ({#}(Σ − {$})∗)∗, and β ∈ (V − {#, $})∗. Since l + 1 ≥ 1, express
p#$⇒l+1 qwα$β as

p#$⇒l tw′uA#v$z ⇒ qw′uxv′$β

where t ∈ Q, w′ ∈ (Σ− {#, $})∗, u ∈ ({#}(Σ− {$})∗)∗, A# ∈ {#, ε}, x, v, v′ ∈
(Σ−{$})∗, z ∈ (V −{#, $})∗, w = w′ŵ, and ŵα = uxv′ with ŵ ∈ (Σ−{#, $})∗.
By the induction hypothesis, (#1, 〈p; 1〉) k⇒∗ (w′τ(uA#v, 1)z, 〈t; occur(uA#v,#)〉)
in G. M can perform tw′uA#v$z ⇒ qw′uxv′$β in the following ways:
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(I) tw′uA#v$z ⇒ qw′uxv′$β, where t = q, A# = x, v = v′v̄, β = v̄z, and
v̄ ∈ (Σ − {#, $})∗. This rewriting step only transfers terminal symbols
from the left to the right, relatively to $. Clearly,

(w′τ(uA#v, 1)z, 〈t; occur(uA#v,#)〉)
k⇒∗ (w′τ(uxv′, 1)β, 〈q; occur(uxv′,#)〉)
k⇒∗ (wτ(α, 1)β, 〈q; occur(α,#)〉)

in G.

(II) tw′uA#v$z ⇒ qw′uxv′$β, where t = q, A# = x, v′ = vv̄, v̄ = v̄β, and
v̄ ∈ (Σ − {#, $})∗. This rewriting step only transfers terminal symbols
from the right to the left, relatively to $. Thus,

(w′τ(uA#v, 1)z, 〈t; occur(uA#v,#)〉)
k⇒∗ (w′τ(uxv′, 1)β, 〈q; occur(uxv′,#)〉)
k⇒∗ (wτ(α, 1)β, 〈q; occur(α,#)〉)

in G.

(III) tw′uA#v$z ⇒ qw′uxv′$β, where A# = #, v = v′, z = β, occur(u,#) =
n − 1, and 1 ≤ n ≤ k. This rewriting step was performed by applying a
rule r : t n#→ qx ∈ R. Set κ = occur(uA#v,#). G simulates application
of r in the following ways:

(1) κ− n = 0 and occur(x,#) = 0. Then, (#κ, 〈t;κ〉)→ (x, 〈q;κ− 1〉) ∈
P , so

(w′τ(uA#v, 1)z, 〈t; occur(uA#v,#)〉)
k⇒ (w′τ(uxv′, 1)β, 〈q; occur(uxv′,#)〉)
k⇒∗ (wτ(α, 1)β, 〈q; occur(α,#)〉)

in G, where occur(uA#v,#)− 1 = κ− 1 = occur(uxv′,#).

(2) κ − n ≥ 1 and occur(x,#) = 0. Then, (#n, 〈t;κ〉) → (x, 〈q;κ −
1; Jr, 1K〉) ∈ P , so

(w′τ(uA#v, 1)z, 〈t; occur(uA#v,#)〉)
k⇒ (w′τ(ux, 1)τ(v′, n+ 1)β, 〈q;κ− 1; Jr, 1K〉)

in G. If κ− n ≥ 2, then there are rules

(#n+1, 〈q;κ− 1; Jr, 1K〉) → (#n, 〈q;κ− 1; Jr, 2K〉)
(#n+2, 〈q;κ− 1; Jr, 2K〉) → (#n+1, 〈q;κ− 1; Jr, 3K〉)

...
(#κ−1, 〈q;κ− 1; Jr, κ− n− 1K〉) → (#κ−2, 〈q;κ− 1; Jr, κ− nK〉)

in P . Set η̄ = κ − n = occur(v′,#). Since κ − n ≥ 2, it follows
that also η̄ ≥ 2, so v′ can be expressed as v′ = δ1δ2 . . . δη̄, where
δi ∈ (Σ − {#, $})∗{#}(Σ − {#, $})∗, for all 1 ≤ i ≤ η̄, and G can
perform the following sequence of derivation steps:

(w′τ(ux, 1)τ(δ1δ2 . . . δη̄, n+ 1)β, 〈q;κ− 1; Jr, 1K〉)
k⇒ (w′τ(uxδ1, 1)τ(δ2δ3 . . . δη̄, n+ 2)β, 〈q;κ− 1; Jr, 2K〉)
k⇒ (w′τ(uxδ1δ2, 1)τ(δ3δ4 . . . δη̄, n+ 3)β, 〈q;κ− 1; Jr, 3K〉)

...

k⇒ (w′τ(uxδ1δ2 . . . δη̄−1, 1)τ(δη̄, n+ η̄)β, 〈q;κ− 1; Jr, η̄K〉)
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The simulation of r is finished by the rule

(#κ, 〈q;κ− 1; Jr, κ− nK〉)→ (#κ−1, 〈q;κ− 1〉) ∈ P

If κ− n ≥ 2, then

(w′τ(uxδ1δ2 . . . δη̄−1, 1)τ(δη̄, n+ η̄)β, 〈q;κ− 1; Jr, η̄K〉)
k⇒ (w′τ(uxδ1δ2 . . . δη̄, 1)β, 〈q;κ− 1〉)
k⇒∗ (wτ(α)β, 〈q; occur(α,#)〉)

in G. Otherwise, κ− n = 1, and

(w′τ(ux, 1)τ(v′, n+ 1)β, 〈q;κ− 1; Jr, 1K〉)
k⇒ (w′τ(uxv′, 1)β, 〈q;κ− 1〉)
k⇒∗ (wτ(α)β, 〈q; occur(α,#)〉)

in G, where τ(v′, n+ 1) = v1#κv2, v1, v2 ∈ T ∗, and occur(uxv′,#) =
κ− 1 = occur(α,#).

(3) occur(x,#) = 1. Then, (#n, 〈t;κ〉)→ (τ(x, n), 〈q;κ〉) ∈ P , so

(w′τ(uA#v, 1)z, 〈t; occur(uA#v,#)〉)
k⇒ (w′τ(uxv, 1)z, 〈q; occur(uxv,#)〉)
k⇒∗ (wτ(α, 1)β, 〈q; occur(α,#)〉)

in G.

(4) occur(x,#) ≥ 2. Set η = occur(x,#) − 1. If κ − n ≥ 1, then the
following rules were introduced to P :

(#n, 〈t;κ〉) → (#n, 〈t;κ; Jr, 1K〉)
(#κ, 〈t;κ; Jr, 1K〉) → (#κ+η, 〈t;κ; Jr, 2K〉)

(#κ−1, 〈t;κ; Jr, 2K〉) → (#κ+η−1, 〈t;κ; Jr, 3K〉)
...

(#n+1, 〈t;κ; Jr, κ− nK〉) → (#η+n+1, 〈t;κ; Jr, κ− n+ 1K〉)
(#n, 〈t;κ; Jr, κ− n+ 1K〉) → (τ(x, n), 〈q;κ+ η〉)

Set η̄ = κ− n and express v as v = δ1δ2 . . . δη̄, where

δi ∈ (Σ− {#, $})∗{#}(Σ− {#, $})∗

for all 1 ≤ i ≤ η̄. Then, G is able to perform the following sequence
of derivation steps:

(w′τ(uA#v, 1)z, 〈t;κ〉)
k⇒ (w′τ(uA#δ1δ2 . . . δη̄, 1)z, 〈t;κ; Jr, 1K〉)
k⇒ (w′τ(uA#δ1δ2 . . . δη̄−1, 1)τ(δη̄, κ+ η)z, 〈t;κ; Jr, 2K〉)
k⇒ (w′τ(uA#δ1δ2 . . . δη̄−2, 1)τ(δη̄−1δη̄, κ+ η − 1)z, 〈t;κ; Jr, 3K〉)
...k⇒
k⇒ (w′τ(uA#, 1)τ(δ1δ2 . . . δη̄, η + n+ 1)z, 〈t;κ; Jr, κ− n+ 1K〉)
k⇒ (w′τ(uxv, 1)z, 〈q;κ+ η〉)
k⇒∗ (wτ(α, 1)β, 〈q; occur(α,#)〉)

Observe that κ+η−(κ−n−1) = η+n+1 and occur(uxv,#) = κ+η =
occur(α,#) since r removes one and add occur(x,#) # symbols.
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If κ− n = 0, only the rules

(#n, 〈t;κ〉) → (#n, 〈t;κ; Jr, 1K〉)
(#n, 〈t;κ; Jr, 1K〉) → (τ(x, n), 〈q;κ+ η〉)

from P were used during the simulation of r by G as the following
sequence of derivation steps in G demonstrates:

(w′τ(uA#v, 1)z, 〈t;κ〉)
k⇒ (w′τ(uA#v, 1)z, 〈t;κ; Jr, 1K〉)
k⇒ (w′τ(uxv, 1)z, 〈q;κ+ η〉)
k⇒∗ (wτ(α, 1)β, 〈q; occur(α,#)〉)

(IV) tw′uA#v$z ⇒ qw′uxv′$β, where A# = #, x = v = v′ = ε, β = yz, and
y ∈ (V − {#, $})∗. Then, a rule t#$ → q$y ∈ R was applied and hence
(#κ, 〈t;κ〉)→ (x, 〈q;κ− 1〉) ∈ P . This gives

(w′τ(uA#v, 1)z, 〈t;κ〉)
k⇒ (w′τ(u, 1)yz, 〈q;κ− 1〉)
k⇒∗ (wτ(α, 1)β, 〈q; occur(α,#)〉)

in G.

(V) tw′uA#v$z ⇒ qw′uxv′$β, where A# = ε, x = v = ε, v′ = #, z = Aβ,
and A ∈ (V − Σ). In this case, a rule r : t$A→ q#$ ∈ R was applied, so
for every X,Y ∈ (V − Σ), where Y 6= A, the following rules

(A, 〈t;κ〉) → (A, 〈t;κ; Jr, ?K〉)
(X, 〈t;κ; Jr, ?K〉) → (X, 〈t;κ; Jr,XK〉)
(Y, 〈t;κ; Jr, Y K〉) → (Y, qfalse)
(A, 〈t;κ; Jr,AK〉) → (#κ+1, 〈q;κ+ 1〉)

were introduced in P . Hence, G simulates the application of r in the
following way:

(w′τ(uA#v, 1)Aβ, 〈t;κ〉)
k⇒ (w′τ(uA#v, 1)Aβ, 〈t;κ; Jr, ?K〉)
k⇒ (w′τ(uA#v, 1)Aβ, 〈t;κ; Jr,AK〉)
k⇒ (w′τ(ux#, 1)β, 〈q;κ+ 1〉)
k⇒∗ (wτ(α, 1)β, 〈q; occur(α,#)〉)

Observe that A must be the first nonterminal symbol just behind #i

nonterminals, 1 ≤ i ≤ k. When z = BAβ, with B ∈ (V −Σ) and B 6= A,
then G reach the state qfalse and the simulation is blocked.

Claim 4.6. Set Ω = {Jr,XK | r ∈ R,X ∈ ({1, 2, . . . , k} ∪ (V − Σ) ∪ {?})} and
express K as K = KQ ∪KΩ ∪ {qfalse}, where

KQ = {〈p; i〉 | p ∈ Q, 0 ≤ i ≤ k}
KΩ = {〈p; i;Z〉 | p ∈ Q, 0 ≤ i ≤ k, Z ∈ Ω}
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Define a binary operation • from KQ × (Ω ∪ {λ}) to K such that

〈p; i〉 • Z = 〈p; i;Z〉, for all Z ∈ Ω
〈p; i〉 • λ = 〈p; i〉

Furthermore, set N# = {#i | 1 ≤ i ≤ k} and define a homomorphism τ̄ from
(N# ∪ T ) to (Σ − {$}) such that τ̄(a) = a for every a ∈ T and τ̄(X) = # for
every X ∈ N#.

Based on a state to which G enters, the following two cases are considered:

(a) Let (#1, 〈p, 1〉) k⇒m (wαβ, 〈q, occur(τ̄(α),#)〉 • Z) in G, where p, q ∈ Q,
w ∈ T ∗, α ∈ (N#(N# ∪ T )∗)∗, β ∈ (V − {#, $})∗, Z ∈ (Ω ∪ {λ}), and
m ≥ 0. Then, p#$⇒∗ qwτ̄(α)$β in M .

(b) Let (#1, 〈p, 1〉) k⇒m (wαβ, qfalse) in G, where p ∈ Q, w ∈ T ∗, α ∈
(N#(N# ∪T )∗)∗, β ∈ (V −{#, $})∗, and m ≥ 0. Then, p#$⇒∗ q̄wτ̄(α)$β
in M , where q̄ ∈ Q, β = z1Y z2Az3, Y,A ∈ (V − Σ), Y 6= A, z1 ∈
(Σ−{#, $})∗, z2 ∈ (V −{A,#, $})∗, z3 ∈ (V −{#, $})∗, and there is a rule
r̄ : q̄$A→ q′#$ ∈ R, q′ ∈ Q, such that r̄ is not applicable on q̄wτ̄(α)$β.

Proof. This claim is proved by induction on m ≥ 0.

Basis. Let m = 0, so (#1, 〈p; 1〉) k⇒0 (#1, 〈p; 1〉) in G, where w = ε, α = #1,
β = ε, and Z = λ. Then, p#$ ⇒∗ p#$ in M and the basis holds. Observe
that the basis also holds for the case (b) of this claim. Since 〈p; 1〉 6= qfalse,
(#1, 〈p; 1〉) k⇒0 (#1, qfalse) not in G and the implication is automatically true.

Induction Hypothesis. Suppose that the claim holds for all 0 ≤ m ≤ l, where l
is a non-negative integer.

Induction Step. Let (#1, 〈p; 1〉) k⇒l+1 (wαβ,Z ) in G, where p ∈ Q, w ∈ T ∗,
α ∈ (N#(N#∪T )∗)∗, β ∈ (V −{#, $})∗, and either Z = 〈q; occur(τ̄(α),#)〉•Z,
q ∈ Q, Z ∈ (Ω ∪ {λ}), or Z = qfalse. Since l+ 1 ≥ 1, express (#1, 〈p; 1〉) k⇒l+1

(wαβ,Z ) as (#1, 〈p; 1〉) k⇒l (w′uA#vz,Z ′) k⇒ (w′uxv′β,Z ), where w′ ∈ T ∗,
u ∈ (N#(N# ∪T )∗)∗, A# ∈ (N# ∪{ε}), x, v, v′ ∈ (N# ∪T )∗, z ∈ (V −{#, $})∗,
ŵα = uxv′, w = w′ŵ, ŵ ∈ T ∗, and either Z ′ = 〈t; occur(τ̄(uA#v),#)〉 • Z ′,
t ∈ Q, Z ′ ∈ (Ω ∪ {λ}), or Z ′ = qfalse.

By the induction hypothesis, p#$ ⇒∗ χ in M , where χ = tw′τ̄(uA#v)$z,
if Z ′ = 〈t; occur(τ̄(uA#v),#)〉 • Z ′, or χ = q̄w′τ̄(uA#v)$z, if Z ′ = qfalse,
and there is a rule r̄ : q̄$A → q′#$ ∈ R such that r̄ is not applicable on χ,
where q̄, q′ ∈ Q, z = z1Y z2Az3, Y,A ∈ (V − Σ), Y 6= A, z1 ∈ (Σ − {#, $})∗,
z2 ∈ (V − {A,#, $})∗, and z3 ∈ (V − {#, $})∗.

Set κ = occur(τ̄(uA#v),#). Based on a forms of applied rules, G can
perform

(w′uA#vz,Z
′) k⇒ (w′uxv′β,Z )

according to the following cases:

Case 1 G performs (w′uA#vz,Z ′) k⇒ (w′uxv′β,Z ) using (#κ, 〈t;κ〉)→ (x, 〈q;κ−
1〉) ∈ P , where x ∈ T ∗. In this case, Z ′ = 〈t; occur(τ̄(uA#v),#)〉 • Z ′,
Z = 〈q; occur(τ̄(uxv),#)〉 • Z, Z ′ = Z = λ, occur(τ̄(u),#) = κ − 1,
A# = #κ, v = v′, occur(τ̄(v),#) = 0, and z = β. Based on a con-
struction of P , there must be t κ#→ qx ∈ R and therefore

tw′τ̄(uA#v)$z ⇒ qw′τ̄(uxv)$z ⇒∗ qwτ̄(α)$β
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in M .

Case 2 G performs (w′uA#vz,Z ′) k⇒ (w′uxv′β,Z ) using (#n, 〈t;κ〉)→ (x, 〈q;κ−
1; Jr, 1K〉) ∈ P , where 1 ≤ n ≤ κ − 1, x ∈ T ∗, and r = t n# → qx.
In this case, Z ′ = 〈t; occur(τ̄(uA#v),#)〉 • Z ′, Z = 〈q;κ − 1〉 • Z,
Z ′ = λ, Z = Jr, 1K, occur(τ̄(u),#) = n − 1, A# = #n, v = v′,
occur(τ̄(v),#) = κ− n, z = β, and r ∈ R. Thus,

tw′τ̄(uA#v)$z ⇒ qw′τ̄(uxv)$z ⇒∗ qwτ̄(α)$β

in M .

Case 3 G performs (w′uA#vz,Z ′) k⇒ (w′uxv′β,Z ) using (#n+i, 〈t;κ; Jr, iK〉)→
(#n+i−1, 〈t;κ; Jr, i + 1K〉) ∈ P , where 1 ≤ n ≤ κ, 1 ≤ i ≤ κ − n,
2 ≤ n + i ≤ κ, and r is a rule of the form t′ n# → tx′ with t′ ∈ Q and
x′ ∈ T ∗. In this case, Z ′ = 〈t; occur(τ̄(uA#v),#)〉 •Z ′, Z = 〈q;κ〉 •Z,
t = q, Z ′ = Jr, iK, Z = Jr, i+1K, occur(τ̄(u),#) = (n+i)−1, A# = #n+i,
x = #n+i−1, v = v′, occur(τ̄(v),#) = κ − (n + i), z = β, and r ∈ R.
Clearly, τ̄(#n+i) = τ̄(#n+i−1) and then

tw′τ̄(uA#v)$z ⇒∗ qw′τ̄(uxv)$z ⇒∗ qwτ̄(α)$β

in M .

Case 4 G performs (w′uA#vz,Z ′) k⇒ (w′uxv′β,Z ) using (#κ+1, 〈t;κ; Jr, κ−
n + 1K〉) → (#κ, 〈t;κ〉) ∈ P , where 1 ≤ n ≤ κ and r is a rule of
the form t′ n# → tx′ with t′ ∈ Q and x′ ∈ T ∗. In this case, Z ′ =
〈t; occur(τ̄(uA#v),#)〉 • Z ′, Z = 〈q;κ〉 • Z, t = q, Z ′ = Jr, κ − n +
1K, Z = λ, occur(τ̄(u),#) = κ − 1, A# = #κ+1, x = #κ, v = v′,
occur(τ̄(v),#) = 0, z = β, and r ∈ R. Clearly, as in previous case,

tw′τ̄(uA#v)$z ⇒∗ qw′τ̄(uxv)$z ⇒∗ qwτ̄(α)$β

in M .

Case 5 G performs (w′uA#vz,Z ′) k⇒ (w′uxv′β,Z ) using

(#n, 〈t;κ〉)→ (x, 〈q;κ〉) ∈ P

where 1 ≤ n ≤ κ and x = x1#nx2 with x1, x2 ∈ T ∗. In this case,
Z ′ = 〈t; occur(τ̄(uA#v),#)〉 • Z ′, Z = 〈q;κ〉 • Z, Z ′ = Z = λ,
occur(τ̄(u),#) = n− 1, A# = #n, v = v′, occur(τ̄(v),#) = κ− n, and
z = β. Following the construction of P , there is a rule t n#→ qτ̄(x) ∈ R
and then

tw′τ̄(uA#v)$z ⇒ qw′τ̄(uxv)$z ⇒∗ qwτ̄(α)$β

in M .

Case 6 G performs (w′uA#vz,Z ′) k⇒ (w′uxv′β,Z ) using

(#n, 〈t;κ〉)→ (#n, 〈t;κ; Jr, 1K〉) ∈ P

where 1 ≤ n ≤ κ and r is a rule of the form t n#→ q′x′ with q′ ∈ Q, x′ ∈
(Σ−{$})∗, and occur(x′,#) ≥ 2. In this case, Z ′ = 〈t; occur(τ̄(uA#v),#)〉•
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Z ′, Z = 〈q;κ〉 • Z, t = q, Z ′ = λ, Z = Jr, 1K, occur(τ̄(u),#) = n − 1,
A# = x = #n, v = v′, occur(τ̄(v),#) = κ − n, z = β, and r ∈ R.
Clearly,

tw′τ̄(uA#v)$z ⇒∗ qw′τ̄(uxv)$z ⇒∗ qwτ̄(α)$β

in M .

Case 7 G performs (w′uA#vz,Z ′) k⇒ (w′uxv′β,Z ) using (#κ−i, 〈t;κ; Jr, i +
1K〉)→ (#κ+η−i, 〈t;κ; Jr, i+ 2K〉) ∈ P , where 0 ≤ i ≤ κ−n− 1, 1 ≤ n ≤
κ− 1, r is a rule of the form t n#→ q′x′ with q′ ∈ Q, x′ ∈ (Σ− {$})∗,
and occur(x′,#) ≥ 2, and η = occur(x′,#) − 1. In this case, Z ′ =
〈t; occur(τ̄(uA#v),#)〉 • Z ′, Z = 〈q;κ〉 • Z, t = q, Z ′ = Jr, i + 1K,
Z = Jr, i + 2K, occur(τ̄(u),#) = (κ − i) − 1, A# = #κ−i, x = #κ+η−i,
v = v′, occur(τ̄(v),#) = i, z = β, and r ∈ R. As τ̄(A#) = τ̄(x), it holds

tw′τ̄(uA#v)$z ⇒∗ qw′τ̄(uxv)$z ⇒∗ qwτ̄(α)$β

in M .

Case 8 G performs (w′uA#vz,Z ′) k⇒ (w′uxv′β,Z ) using

(#n, 〈t;κ; Jr, κ− n+ 1K〉)→ (x, 〈q;κ+ η〉) ∈ P

where 1 ≤ n ≤ κ, x ∈ (N# ∪ T )∗, η = occur(τ̄(x),#) − 1, η ≥ 1,
and r = t n# → qτ̄(x). In this case, Z ′ = 〈t; occur(τ̄(uA#v),#)〉 • Z ′,
Z = 〈q;κ+ η〉 • Z, Z ′ = Jr, κ− n+ 1K, Z = λ, occur(τ̄(u),#) = n− 1,
A# = #n, v = v′, occur(τ̄(v),#) = κ − n, and z = β. As r ∈ R, it is
clear that

tw′τ̄(uA#v)$z ⇒ qw′τ̄(uxv)$z ⇒∗ qwτ̄(α)$β

in M .

Case 9 G performs (w′uA#vz,Z ′) k⇒ (w′uxv′β,Z ) using (#κ, 〈t;κ〉)→ (y, 〈q;κ−
1〉) ∈ P , where x ∈ (V ′−N#)∗. In this case, Z ′ = 〈t; occur(τ̄(uA#v),#)〉•
Z ′, Z = 〈q;κ− 1〉 • Z, Z ′ = Z = λ, occur(τ̄(u),#) = κ− 1, A# = #κ,
x = v = v′ = ε, and β = yz. Following the construction of P , there is a
rule t#$→ q$y ∈ R and then

tw′τ̄(uA#v)$z ⇒ qw′τ̄(uxv′)$yz ⇒∗ qwτ̄(α)$β

in M .

Case 10 G performs (w′uA#vz,Z ′) k⇒ (w′uxv′β,Z ) using

(A, 〈t;κ〉)→ (A, 〈t;κ; Jr, ?K〉) ∈ P

where A ∈ (V ′ −N# − T ) and r is a rule of the form t$A→ q′#$ with
q′ ∈ Q. In this case, Z ′ = 〈t; occur(τ̄(uA#v),#)〉 • Z ′, Z = 〈q;κ〉 • Z,
t = q, Z ′ = λ, Z = Jr, ?K, A# = x = ε, v = v′, z = β = z1Az2,
z1, z2 ∈ (V ′ − N#)∗, κ + occur(z1, V

′ − N# − T ) ≤ k − 1, and r ∈ R.
Hence,

tw′τ̄(uA#v)$z ⇒∗ qw′τ̄(uxv′)$β ⇒∗ qwτ̄(α)$β

in M .
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Case 11 G performs (w′uA#vz,Z ′) k⇒ (w′uxv′β,Z ) using

(X, 〈t;κ; Jr, ?K〉)→ (X, 〈t;κ; Jr,XK〉) ∈ P

where X ∈ (V ′−N#−T ) and r is a rule of the form t$A′ → q′#$ with
A′ ∈ (V ′−N#−T ) and q′ ∈ Q. In this case, Z ′ = 〈t; occur(τ̄(uA#v),#)〉•
Z ′, Z = 〈q;κ〉 • Z, t = q, Z ′ = Jr, ?K, Z = Jr,XK, A# = x = ε, v = v′,
z = β = z1Xz2, z1 ∈ T ∗, z2 ∈ (V ′−N#)∗, κ ≤ k−1, and r ∈ R. Hence,

tw′τ̄(uA#v)$z ⇒∗ qw′τ̄(uxv′)$β ⇒∗ qwτ̄(α)$β

in M .

Case 12 G performs (w′uA#vz,Z ′) k⇒ (w′uxv′β,Z ) using

(Y, 〈t;κ; Jr, Y K〉)→ (Y, qfalse) ∈ P

where Y ∈ (V ′ − N# − T ) and r is a rule of the form t$A′ → q′#$
with A′ ∈ (V ′ − N# − T ), A′ 6= Y , and q′ ∈ Q. In this case, Z ′ =
〈t; occur(τ̄(uA#v),#)〉•Z ′, Z = qfalse, Z ′ = Jr, Y K, A# = x = ε, v = v′,
z = β = z1Y z2A

′z3, z1 ∈ T ∗, z2 ∈ (V ′−N#−{A′})∗, z3 ∈ (V ′−N#)∗,
κ + occur(z1Y z2, V

′ − N# − T ) ≤ k − 1, and r ∈ R. With q̄ = t, it
follows that

tw′τ̄(uA#v)$z ⇒∗ tw′τ̄(uxv′)$β ⇒∗ q̄wτ̄(α)$β

in M and there is a rule r : q̄$A′ → q′#$ ∈ R such that r is not appli-
cable on q̄wτ̄(α)$β.

Case 13 G performs (w′uA#vz,Z ′) k⇒ (w′uxv′β,Z ) using

(A, 〈t;κ; Jr,AK〉)→ (#κ+1, 〈q;κ+ 1〉) ∈ P

where A ∈ (V ′ − N# − T ) and r = t$A → q#$. In this case, Z ′ =
〈t; occur(τ̄(uA#v),#)〉 • Z ′, Z = 〈q;κ + 1〉 • Z, Z ′ = Jr,AK, Z = λ,
A# = x = ε, v′ = v#κ+1, and z = Aβ. Following the construction of
P , r ∈ R and then

tw′τ̄(uA#v)$z ⇒ qw′τ̄(uxv′)$β ⇒∗ qwτ̄(α)$β

in M .


