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Abstract. Conceptually, jumping scattered context grammars coincide with their standard coun-
terparts, but they work differently. Indeed, a jumping version can apply a rule of the form (A1, A2,
. . . , An)→ (x1, x2, . . . , xn) so it simultaneously erases A1, A2, . . . , An in the current sentential
form while inserting x1, x2, . . . , xn possibly at different positions than the erased nonterminals.
In fact, this paper introduces and studies scattered context grammars working under nine different
jumping derivation modes, all of which give rise to the computational completeness. Indeed, the
paper characterize the family of recursively enumerable languages by scattered context grammars
working under any of these jumping modes. In its conclusion, the paper sketches application
perspectives and formulates several open problems.

Keywords: scattered context grammars, jumping derivation modes, generative power, compu-
tational completeness

1. Introduction

First, this introductory section explains the reason for introducing jumping scattered context gram-
mars. Then, it informally describes nine jumping derivation modes in terms of these grammars. In
addition, it sketches their expected application areas. Finally, it described how the paper is organized.

At present, processing information in a largely discontinuous way represents a common computa-
tional phenomenon today [1, 2, 3]. Consider a process that works with information in this way. During
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a single computational step, the process usually reads a fragment of the information, erase it, generate
a new piece of information, and insert this newly generated piece into the entire information possibly
far away from the original occurrence of the erased fragment. Therefore, intuitively speaking, during
its computation, the process keeps jumping across the information as a whole. To explore computation
like this mathematically, informatics needs formal models that reflect it in an adequate way.

Traditionally, formal language theory has always provided computer science with rewriting sys-
tems, which work on words and define languages. In this way, these systems explore various infor-
mation processors strictly mathematically, so they should formalize the above-sketched information
processing, too. However, the classical versions of these systems, such as automata and grammars,
work on words so they erase and insert subwords at the same position, hence they necessarily fail
to serve as appropriate rewriting systems for this purpose. Consequently, a proper formalization of
processors that work in the way described above needs an adaptation of some classical well-known
grammars so they reflect the above-described computation more adequately. Of course, simultane-
ously, any adaptation of this kind should conceptually maintain the original structure of these models
as much as possible so computer science can quite naturally base its investigation upon these newly
adapted grammatical models by analogy with the standard approach based upon their classical ver-
sions. To put it simply, while keeping their conceptualization unchanged, these formal models should
work on words in newly introduced ways, which more properly reflect the above-mentioned modern
computation. Therefore, in this way, formal language theory has recently introduced jumping versions
of automata and grammars, such as jumping finite automata (see [4]) and jumping grammars (see [5]),
which formalize the computation sketched above adequately. The present paper continues with this
new and vivid topic in terms of scattered context grammars (see [6]).

To give an insight into the key motivation and reason for this study, let us take a closer look at a
more specific kind of information processing in a discontinuous way. Consider a process p that deals
with information i. Typically, during a single computational step, p (i) reads n pieces of information,
x1 through xn, in i, (ii) erases them, (iii) generate n new pieces of information, y1 through yn, and
(iv) inserts them into i possibly at different positions than the original occurrence of x1 through xn,
which was erased. To explore computation like this systematically and rigorously, the present paper
introduces and discusses jumping versions of scattered context grammars (see [7]), which represent
suitable grammatical models of computation like this.

To see this suitability, recall that the notion of a scattered context grammar G represents a language-
generating rewriting system based upon an alphabet of symbols and a finite set of rules. The alphabet
of symbols is divided into two disjoint subalphabets—the alphabet of terminal symbols and the alpha-
bet of nonterminal symbols. In G, a rule r is of the form

(A1, A2, . . . , An) → (x1, x2, . . . , xn),

for some positive integer n. On the left-hand side of r, the As are nonterminals. On the right-hand
side, the xs are strings. G can apply r to any string u of the form

u = u0A1u1 . . . un−1Anun

where us are any strings. Notice that A1 through An are scattered throughout u, but they occur in the
order prescribed by the left-hand side of r. In essence, G applies r to u so
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(a) it deletes A1, A2, . . . , An in u, after which
(b) it inserts x1, x2, . . . , xn into the string resulting from the deletion (a).

By this application, G makes a derivation step from u to a string v of the form

v = v0x1v1 . . . vn−1xnvn

Notice that x1, x2, . . . , xn are inserted in the order prescribed by the right-hand side of r. However,
they are inserted in a scattered way—that is, in between the inserted xs, some substrings vs occur.

To formalize the above-described computation, consisting of phases (i) through (iv), the present
paper introduces and studies several jumping derivation modes in scattered context grammars. How-
ever, a complete variety of all possible modes is so enormous that its exhaustive coverage is ruled
out in a single paper. Therefore, we narrow our attention only to a restricted variety of these modes.
More precisely, all jumping derivation modes under consideration in this paper simultaneously satisfy
requirements (A) and (B), given next.

(A) In essence, this restriction requires that the simultaneous jumps never cross over each other. To
explain this requirement more precisely, reconsider (A1, A2, . . . , An) → (x1, x2, . . . , xn) as a
rule r in G (see above). In all the jumping modes discussed in this paper, the insertion of each xi
occurs somewhere in between the insertion of xi−1 and that of xi+1, so G inserts the strings x1,
x2, . . . , xn in this order into the produced string. Consequently, G never inserts any xi somewhere
in front of xi−1 or behind xi+1.

(B) G inserts x1 and xn in the way described either in (B1) or in (B2).

(B1) G inserts x1 somewhere behind the original position of A1, and simultaneously, it inserts
xn somewhere in front of the position of An.

(B2) G inserts x1 somewhere in front of the position of A1, and simultaneously, it inserts xn
somewhere behind the position of An.

Under restrictions (A) and (B), we next classify the jumping modes discussed in this paper into
the following four types—I through IV, some of which consist of several modes, however. In total,
the paper includes nine modes, Modes 1 through 9, described below in a greater detail.

I. As obvious, the standard derivation step, sketched above, can be seen as a special jumping mode.
Indeed, this mode actually requires that G applies (A1, A2, . . . , An)→ (x1, x2, . . . , xn) in such
a way that during the n simultaneous jumps, each xi is placed exactly at the position of the
deleted Ai (Mode 1).

II. G satisfies restrictions (A) and (B); otherwise, it places no other restriction on the n simultaneous
jumps. As a result, within this type, (B1) and (B2) give rise to Modes 2 and 3, respectively.

III. In essence, G makes the n simultaneous jumps so each of them jumps exactly at the positions of
the neighbouring rewritten nonterminals. As a matter of fact, this type gives rise to four specific
jumping modes, Modes 4 through 7, described below in a greater detail.
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IV. G makes each jump anywhere, but its distance is limited by the rewritten neighbouring nonter-
minals. By analogy with II, (B1) and (B2) give rise to Modes 8 and 9, respectively.

Of course, even under restrictions (A) and (B), these nine modes should not be considered as
their exhaustive list because as obvious, some of them might be further modified. In the authors’
opinion, however, they cover the essential variants of jumping modes under restrictions (A) and (B)
in terms of scattered context grammar. (In the conclusion of this paper, as an inspiration for the future
investigation, we briefly suggest more jumping modes, including a mode that drops (A) and (B); in
fact, some of them can make the simultaneous jumps that cross over each other in either direction.)

Next, we sketch the nine modes in a greater detail.

(1) Mode 1 requires that ui = vi for all i = 0, . . . , n in the above described derivation step.
(2) Mode 2 obtains v from u as follows:

(a) A1, A2, . . . , An are deleted;
(b) x1 through xn are inserted in between u0 and un.

(3) Mode 3 obtains v from u so it changes u by performing (3a) through (3c), described next:

(a) A1, A2, . . . , An are deleted;
(b) x1 and xn are inserted into u0 and un, respectively;
(c) x2 through xn−1 are inserted in between the newly inserted x1 and xn.

(4) In mode 4, the derivation from u to v is performed by the following steps:

(a) A1, A2, . . . , An are deleted;
(b) a central ui is nondeterministically chosen, for some 0 ≤ i ≤ n;
(c) xi and xi+1 are inserted into ui;
(d) xj is inserted between uj and uj+1, for all j < i;
(e) xk is inserted between uk−2 and uk−1, for all k > i + 1.

(5) In mode 5, v is obtained from u by (5a) through (5e), given next:

(a) A1, A2, . . . , An are deleted;
(b) a central ui is nondeterministically chosen, for some 0 ≤ i ≤ n;
(c) x1 and xn are inserted into u0 and un, respectively;
(d) xj is inserted between uj−2 and uj−1, for all 1 < j ≤ i;
(e) xk is inserted between uk and uk+1, for all i + 1 ≤ k < n.

(6) Mode 6 derives v from u applying the next steps:

(a) A1, A2, . . . , An are deleted;
(b) a central ui is nondeterministically chosen, for some 0 ≤ i ≤ n;
(c) xj is inserted between uj and uj+1, for all j < i;
(d) xk is inserted between uk−2 and uk−1, for all k > i + 1.

(7) Mode 7 obtains v from u performing the steps stated below:

(a) A1, A2, . . . , An are deleted;
(b) a central ui is nondeterministically chosen, for some 0 ≤ i ≤ n;
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(c) xj is inserted between uj−2 and uj−1, for all 1 < j ≤ i;
(d) xk is inserted between uk and uk+1, for all i + 1 ≤ k < n.

(8) In mode 8, v is produced from u by following the given steps:

(a) A1, A2, . . . , An are deleted;
(b) x1 and xn are inserted into u1 and un−1, respectively;
(c) xi is inserted into ui−1ui, for all 1 < i < n, to the right of xi−1 and to the left of xi+1.

(9) Mode 9 derives v from u by the next procedure:

(a) A1, A2, . . . , An are deleted;
(b) x1 and xn are inserted into u0 and un, respectively;
(c) xi is inserted into ui−1ui, for all 1 < i < n, to the right of xi−1 and to the left of xi+1.

As obvious, all these jumping derivation modes reflect and formalize the above-described four-
phase computation performed in a discontinuous way more adequately than their standard counterpart.
Consequently, applications of these grammars are expected in any scientific area involving this kind
of computation, ranging from applied mathematics through computational linguistics and compiler
writing up to data mining and bioinformatics. In terms of the latter, a more specific application is
described in the final section of this paper.

This paper is organized as follows. Section 2 gives all the necessary notation and terminology
to follow the rest of the paper and formally introduces scattered context grammars. Then, Section 3
considers all the nine jumping modes, each of which is illustrated and investigated in a separate sub-
section. Most importantly, it is demonstrated that scattered context grammars working under any of
the newly introduced derivation modes are computationally complete–that is, they characterize the
family of recursively enumerable languages. Finally, Section 4 sketches application perspectives of
scattered context grammars working under the nine jumping derivation modes and suggests four open
problem areas to be discussed in the future.

2. Preliminaries and definitions

We assume that the reader is familiar with formal language theory (see [8, 9, 10, 11]). For a set W ,
card(W ) denotes its cardinality. Let V be an alphabet—that is, a finite nonempty set. V ∗ denotes
the set of all strings over V; algebraically, V ∗ represents the free monoid generated by V under the
operation of concatenation. The identity element is denoted by ε. Set V + = V ∗ − {ε}; algebraically,
V + is thus the free semigroup generated by V under the operation of concatenation. For w ∈ V ∗,
|w| and reversal(w) denote the length of w and the reversal of w, respectively. For L ⊆ V ∗,
reversal(L) = {reversal(w) | w ∈ L}. The alphabet of w, denoted by alph(w), is the set of
symbols appearing in w. For v ∈ Σ and w ∈ Σ∗, occur(v, w) denotes the number of occurrences of v
in w.

Let % be a relation over V ∗. The transitive and transitive—reflexive closure of % are denoted by
%+ and %∗, respectively. Unless explicitly stated otherwise, we write x % y instead (x, y) ∈ %.

The family of recursively enumerable languages is denoted by RE. Recall that scattered context
grammars with erasing rules characterize RE (see [12]).
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Definition 1. A scattered context grammar (an SCG for short) is a quadruple G = (V, T, P, S), where

V is an alphabet, T ⊂ V , set N = V − T , S ∈ N is the start symbol, and P ⊆
∞⋃

m=1
Nm × (V ∗)m is

finite. V , T , and N are called the total alphabet, the terminal alphabet, and the nonterminal alphabet,
respectively. P is called the set of productions. Instead of

(A1, A2, . . . , An, x1, x2, . . . , xn) ∈ P,

where Ai ∈ N , xi ∈ V ∗, for 1 ≤ i ≤ n, for some n ≥ 1, we write

(A1, A2, . . . , An)→ (x1, x2, . . . , xn).

Definition 2. Let G = (V , T , P , S) be an SCG, and let % be a relation over V ∗. Set

L(G, %) = {x | x ∈ T ∗, S %∗ x}.

L(G, %) is said to be the language that G generates by %. Set

SC(%) = {L(G, %) | G is an SCG}.

SC(%) is said to be the language family that SCGs generate by %.

3. Results

This section is divided into nine subsections, each of which is dedicated to the discussion of one of the
nine jumping derivation modes introduced in the previous section. More specifically, the section (1) re-
peats the definition of the mode in question, (2) illustrates it by an example, and (3) determines the
generative power of SCGs using this mode. Most importantly, Section 4 demonstrates that scattered
context grammars working under any of these newly introduced derivation modes are computationally
complete–that is, they characterize the family of recursively enumerable languages.

Next, we give Lemma 3.1, which fulfills an important role in the proofs throughout Section 3. Its
proof is to be found on page 307 in [13].

Lemma 3.1. Let L ∈ RE. Then, there are alphabets Σ, Γ, a homomorphism h : T ∗ → Σ∗, and two
context-free languages L1, L2 such that L = h(L1 ∩ L2).

3.1. Jumping derivation mode 1

1⇒ represents, in fact, the ordinary scattered context derivation mode.

Definition 3. Let G = (V , T , P , S) be an SCG. Let u0A1u1 . . . Anun ∈ V ∗ and (A1,A2,. . . ,An)→
(x1,x2,. . . ,xn) ∈ P , for n ≥ 1. Then,

u0A1u1A2u2 . . . Anun 1⇒ u0x1u1x2v2 . . . xnun.
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Example 3.2. Let G = (V , T , P , S) be an SCG, where V = {S, S′, S′′, S′′′, A, B, C A′, B′, C ′, a,
b, c}, T = {a, b, c}, and P contains the following rules:

(i) (S)→ (aSA)
(ii) (S)→ (bSB)

(iii) (S)→ (cSC)
(iv) (S)→ (S′S′′)
(v) (S′, A)→ (aS′, A′)

(vi) (S′, B)→ (bS′, B′)

(vii) (S′, C)→ (cS′, C ′)
(viii) (S′, S′′)→ (ε, S′′′)

(ix) (S′′′, A′)→ (S′′′, a)
(x) (S′′′, B′)→ (S′′′, b)

(xi) (S′′′, C ′)→ (S′′′, c)
(xii) (S′′′ → ε)

Consider 1⇒. Then, the derivation of G is as follows.

First, G generates any string w ∈ T ∗ to the left of S and its reversal in capital letters to the right of
S with linear productions. Then, it replaces S with S′S′′. Next, while nondeterministically rewriting
nonterminal symbols to the right of S′′ to their prime versions, it generates the sequence of terminals
in the same order to the left of S′, which we denote w′. Since all the symbols to the right of S′ must
be rewritten, the sequence of symbols generated to the left of S′ must have the same composition of
symbols. Otherwise, no terminal string can be generated, so the derivation is blocked. Thereafter, S′

is erased, and S′′ is rewritten to S′′′. Finally, the prime versions of symbols to the right of S′′′ are
rewritten to the terminal string denoted w′′. Consequently,

L(G, 1⇒) =
{
x ∈ T ∗ | x = ww′w′′, w = reversal(w′′), w′ is any permutation of w

}
.

For instance, the string abccabcba is generated by G in the following way:

S 1⇒ aSA 1⇒ abSBA 1⇒ abcSCBA 1⇒ abcS′S′′CBA 1⇒ abccS′S′′C ′BA

1⇒ abccaS′S′′C ′BA′ 1⇒ abccabS′S′′C ′B′A′ 1⇒ abccabS′′′C ′B′A′

1⇒ abccabS′′′cB′A′ 1⇒ abccabS′′′cbA′ 1⇒ abccabS′′′cba 1⇒ abccabcba

Next, we prove that SCGs working under 1⇒ characterize RE.

Theorem 3.3. SC(1⇒) = RE.

The idea of the following proof is based on [14], however, we use significantly smaller grammar,
since we do not study economical properties of jumping SCGs.

Proof:
As obvious, any SCG G can be turned to a Turing machine M so M acceptsL(G, 1⇒). Thus, SC(1⇒)
⊆ RE. Therefore, we only need to prove RE ⊆ SC(1⇒).

Let L ∈ RE. Express L = h(L1 ∩ L2), where h, L1, and L2 have the same meaning as in
Lemma 3.1. Since L2 is context-free, so is reversal(L2) (see page 419 in [15]). Thus, there are
context-free grammars G1 and G2 that generate L1 and reversal(L2), respectively. More precisely, let
Gi = (Vi, T, Pi, Si) for i = 1, 2. Let T = {a1, . . . , an} and 0, 1, $, S /∈ V1 ∪ V2 be the new symbols.
Without any loss of generality, assume that V1 ∩ V2 = ∅. Define the new morphisms
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(I) c : ai 7→ 10i1;

(II) C1 : V1∪T → V1∪Σ∪{0, 1}∗,{
A 7→ A, A ∈ V1,

a 7→ f(a), a ∈ T ;

(III) C2 : V2 ∪ T → V2 ∪ {0, 1}∗,{
A 7→ A, A ∈ V2,

a 7→ c(a), a ∈ T ;

(IV) f : ai 7→ h(ai)c(ai);

(V) t : Σ ∪ {0, 1, $} → Σ,{
a 7→ a, a ∈ Σ,

A 7→ ε, A /∈ Σ;

(VI) t′ : Σ ∪ {0, 1, $} → {0, 1},{
a 7→ a, a ∈ {0, 1},
A 7→ ε, A /∈ {0, 1}.

Finally, let G = (V,Σ, P, S) be SCG, with V = V1 ∪ V2 ∪ {S, 0, 1, $} and P containing the rules

(1) (S)→ ($S11111S2$);
(2) (A)→ (Ci(w)), for all A→ w ∈ Pi, where i = 1, 2;
(3) ($, a, a, $)→ (ε, $, $, ε), for a = 0, 1;
(4) ($)→ (ε).

Claim 1. L(G, 1⇒) = L.

Proof:
Basic idea. First, the starting rule (1) is applied. The starting nonterminals S1 and S2 are inserted into
the current sentential form. Then, by using the rules (2) G simulates derivations of both G1 and G2

and generates the sentential form w = $w11111w2$.

Suppose S 1⇒∗ w, where alph(w) ∩ (N1 ∪N2) = ∅. Recall, N1 and N2 denote the nonterminal
alphabets of G1 and G2, respectively. If t′(w1) = reversal(w2), then t(w1) = h(v), where v ∈
L1∩L2 and h(v) ∈ L. In other words, w represents a successful derivation of both G1 and G2, where
both grammars have generated the same sentence v; therefore G must generate the sentence h(v).

The rules (3) serve to check, whether the simulated grammars have generated the identical words.
Binary codings of the generated words are erased while checking the equality. Always the leftmost
and the rightmost symbols are erased, otherwise some symbol is skipped. If the codings do not match,
some 0 or 1 cannot be erased and no terminal string can be generated.

Finally, the symbols $ are erased with the rule (4). If G1 and G2 generated the same sentence and
both codings were successfully erased, G has generated the terminal sentence h(v) ∈ L. ut

Claim 1 implies RE ⊆ SC(1⇒). Thus, Theorem 3.3 holds. ut

3.2. Jumping derivation mode 2

Definition 4. Let G = (V , T , P , S) be an SCG. Let u = u0A1u1 . . . Anun ∈ V ∗ and (A1,A2,. . . ,An)→
(x1,x2,. . . ,xn) ∈ P , for n ≥ 1. Then,

u0A1u1A2u2 . . . Anun 2⇒ v0x1v1x2v2 . . . xnvn,

where u0u1 . . . un = v0v1 . . . vn, u0z1 = v0 and z2un = vn, z1, z2 ∈ V ∗.
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Informally, by using (A1,A2,. . . ,An)→ (x1,x2,. . . ,xn) ∈ P G obtains v = v0x1v1x2v2 . . . xnvn
from u = u0A1u1A2u2 . . . Anun in 2⇒ as follows:

(1) A1, A2, . . . , An are deleted;
(2) x1 through xn are inserted in between u0 and un.

Notice, the mutual order of inserted right-hand-side strings must be always preserved.

Example 3.4. Consider SCG defined in Example 3.2 and 2⇒. Context-free rules act in the same way
as in 1⇒ unlike context-sensitive rules. Let us focus on the differences.

First, G generates the sentential form wS′S′′w, where w ∈ T ∗ and w is the reversal of w in
capital letters, with context-free derivations. Then, the nonterminals to the right of S′ are rewritten
to their prime versions and possibly randomly shifted closer to S′, which may arbitrarily change their
order. Additionally, the sequence of terminals in the same order is generated to the left of S′, which
we denote w′. S′ may be also shifted, however, in such case it appears to the right of S′′ and future
application of the rule (viii) is excluded and no terminal string can be generated. Since all the symbols
to the right of S′ must be rewritten, the sequence generated to the left of S′ must have the same
composition of symbols. Next, S′ is erased and S′′ is rewritten to S′′′ at once, which ensures their
mutual order is preserved. If any prime symbol occurs to the left of S′′′, it cannot be erased and the
derivation is blocked. Finally, the prime versions of symbols to the right of S′′′ are rewritten to the
terminal string denoted w′′, which also enables random disordering. Consequently,

L(G, 2⇒) =
{
x ∈ T ∗ | x = ww′w′′, w′, w′′ are any permutations of w

}
.

For example, the string abcacbbac is generated by G in the following way:

S 2⇒ aSA 2⇒ abSBA 2⇒ abcSCBA 2⇒ abcS′S′′CBA 2⇒ abcaS′S′′A′CB

2⇒ abcacS′S′′A′C ′B 2⇒ abcacbS′S′′B′A′C ′ 2⇒ abcacbS′′′B′A′C ′

2⇒ abcacbS′′′B′A′c 2⇒ abcacbS′′′bA′c 2⇒ abcacbS′′′bac 2⇒ abcacbbac

Theorem 3.5. SC(2⇒) = RE.

Proof:
Clearly SC(2⇒) ⊆ RE, so we only need to prove RE ⊆ SC(2⇒).

Let G = (V,Σ, P, S) be the SCG constructed in the proof of Theorem 3.3. First, we modify G to
a new SCG G′ so L(G, 1⇒) = L(G′, 1⇒). Then, we prove L(G′, 2⇒) = L(G′, 1⇒).

Construction. Set
N = {d, e, b, c, |, X,X,X,X, Y, Y , Y , Y }

where V ∩N = ∅. Define the new morphisms



60 A. Meduna and O. Soukup / Jumping Scattered Context Grammars

(I) C1 : V1 ∪ T ,{
A 7→ A, A ∈ V1,

a 7→ df(a)e |, a ∈ T ;

(II) C2 : V2 ∪ T ,{
A 7→ A A ∈ V2,

a 7→ | dc(a)e, a ∈ T ;

(III) b : Σ ∪ {0, 1, $} ∪N → {0, 1},{
A 7→ A, A ∈ {0, 1},
A 7→ ε, A /∈ {0, 1}.

(IV) t′ : Σ∪ {0, 1, $} ∪N → {0, 1, $} ∪N ,{
A 7→ A, A ∈ {$} ∪N,

A 7→ t′(A), A /∈ {$} ∪N.

Let G′ = (V ′,Σ, P ′, S) be SCG, with V ′ = V ∪N and P ′ containing

(1) (S)→ (eX$S1d11 || 11eS2$Y d);
(2) (A)→ (Ci(w)) for A→ w ∈ Pi, where i = 1, 2;
(3) (e, X, d)→ (c, X, c),(e, Y, d)→ (b, Y , b);
(4) (c, X, c)→ (c, X, c),(b, Y , b)→ (b, Y , b);
(5) ($, 0, X, Y , 0, $)→ (ε, $, X, Y , $, ε);
(6) ($, X, Y , $)→ (ε,X$, $Y , ε);
(7) (c, X, $, c, b, $, Y , b)→ (ε, ε, ε,X$, $Y , ε, ε, ε);
(8) (X, 1, 1, |, |, 1, 1, Y )→ (ε, ε, ε,X, Y, ε, ε, ε);
(9) ($)→ (ε), (X)→ (ε), (Y )→ (ε).

Notice that X and Y hold the current state of computation and force the context-sensitive rules to
be used in the following order:

(a) after applying the rule 3, only the rule 4 may be applied;
(b) after applying the rule 4, only the rule 5 or 6 may be applied;
(c) after applying the rule 5, only the rule 4 may be applied;
(d) after applying the rule 6, only the rule 7 may be applied;
(e) after applying the rule 7, only the rule 8 may be applied;
(f) after applying the rule 8, only the rule 3 may be applied.

Claim 2. L(G′, 1⇒) = L(G, 1⇒).

Proof:
The context-free rules (1) and (2) of G′ correspond one to one to the rules (1) and (2) of G, only the
codings of terminals contain additional symbols. Thus, for every derivation in G

S 1⇒∗ $v11111v2$ = v,

where v is generated by using the rules (1) and (2) and alph(v) ∩ (N1 ∪N2) = ∅, there is

S 1⇒∗ eX$w1d11 || 11ew2$Y d= w

in G′ generated by the rules (1) and (2), where b(w1) = t′(v1), b(w2) = v2. This also holds vice
versa. Since such a sentential form represents a successful derivations of both G1 and G2, without any
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loss of generality, we can consider it in every successful derivation of either G, or G′. Additionally,
in G

v 1⇒∗ v′, v′ ∈ Σ∗

if and only if t′(v1) = reversal(v2). Note, v′ = t(v). Therefore, we have to prove

w 1⇒∗ w′, w′ ∈ Σ∗

if and only if t′(w1) = reversal(w2). Then v′ = w′.

Claim 3. In G′, for

S 1⇒∗ eX$w1d11 || 11ew2$Y d= w, alph(w) ∩ (N1 ∪N2) = ∅,

where w is generated by using the rules (1) and (2),

w 1⇒∗ w′,

where w′ ∈ Σ∗ if and only if t′(w1) = reversal(w2).

For the sake of readability, in the next proof we omit all symbols from Σ in w1—that is, we
consider only nonterminal symbols, which are to be erased.

Proof:
If. Suppose w1 = reversal(w2), then w 1⇒∗ ε. From the construction of G′,

w1 = (d10i11e |)(d10i21e |) . . . (d10in1e |),

where ij ∈ {1, . . . , |Σ|}, 1 ≤ j ≤ n, n ≥ 0. Consider two cases—(I) n = 0 and (II) n ≥ 1.

(I) If n = 0, w =eX$d11 || 11e$Y d. Then, by using the rules (3) and (4), the rules (7) and (8),
and four times the rules (9), we obtain

eX$d11 || 11e$Y d 1⇒cX$c11 || 11e$Y d 1⇒
cX$c11 || 11b$Y b 1⇒cX$c11 || 11b$Y b 1⇒
cX$c11 || 11b$Y b 1⇒ X$11 || 11$Y 1⇒
$XY $ 1⇒ XY $ 1⇒ Y $ 1⇒ $ 1⇒ ε

and the claim holds.

(II) Let n ≥ 1,

w =eX$d10i
′
1e | (d10im1e |)kd11 || 11e(| d10jm′1e)k | d10j

′
1e$Y d

=eX$d10i
′
1e | u | d10j

′
1e$Y d

where k ≥ 0, m,m′ ∈ {1, . . . , k}, i′, im, j′, jm′ ∈ {1, . . . , |Σ|}. Sequentially using both rules
(3) and (4) and the rule (7) we obtain the derivation
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eX$d10i
′
1e | u | d10j

′
1e$Y d 1⇒ cX$c10i

′
1e | u | d10j

′
1e$Y d 1⇒

cX$c10i
′
1e | u | d10j

′
1b$Y b 1⇒cX$c10i

′
1e | u | d10j

′
1b$Y b 1⇒

cX$c10i
′
1e | u | d10j

′
1b$Y b 1⇒ X$10i

′
1e | u | d10j

′
1$Y

Next, we prove

w′ = X$10i
′
1e | (d10im1e |)kd11 || 11e(| d10jm′1e)k | d10j

′
1$Y 1⇒∗ ε

by induction on k ≥ 0.

Basis. Let k = 0. Then,

w′ = X$10i
′
1e | d11 || 11e | d10j

′
1$Y .

By using a rule (8) and twice a rule (3) G′ performs

X$10i
′
1e | d11 || 11e | d10j

′
1$Y 1⇒ $0i

′eXd11 || 11eY d0j′$
1⇒ $0i

′cXc11 || 11eY d0j′$ 1⇒ $0i
′cXc11 || 11bY b0j′$

Since i′ = j′, both sequences of 0s are simultaneously erased by repeatedly using both rules (4)
and the rule (5). Observe that

$0i
′cXc11 || 11bY b0j′$ 1⇒∗ $cXc11 || 11bY b$

Finally, by applying the rules (4), (6), (7), (8), and (9), we finish the derivation as

$cXc11 || 11bY b$ 1⇒cX$c11 || 11b$Y b 1⇒
X$11 || 11$Y 1⇒ $XY $ 1⇒∗ ε

and the basis holds.

Induction Hypothesis. Suppose there exists k ≥ 0 such that

w′ = X$10i
′
1e | (d10im1e |)ld11 || 11e(| d10jm′1e)l | d10j

′
1$Y 1⇒∗ ε,

where m,m′ ∈ {1, . . . , l}, i′, im, j′, jm′ ∈ {1, . . . , |Σ|}, for all 0 ≤ l ≤ k.

Induction Step. Consider any

w′ = X$10i
′
1e | (d10im1e |)k+1d11 || 11e(| d10jm′1e)k+1 | d10j

′
1$Y ,

where m,m′ ∈ {1, . . . , k + 1}, i′, im, j′, jm′ ∈ {1, . . . , |Σ|}. Since k + 1 ≥ 1

w′ = X$10i
′
1e | d10i

′′
1e | u | d10j

′′
1e | d10j

′
1$Y

u = (d10im1e |)kd11 || 11e(| d10jm′1e)k
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By using the rule (8) and both rules (3) G′ performs

X$10i
′
1e | d10i

′′
1e | u | d10j

′′
1e | d10j

′
1$Y 1⇒

$0i
′eXd10i

′′
1e | u | d10j

′′
1eY d0j′$ 1⇒

$0i
′cXc10i

′′
1e | u | d10j

′′
1eY d0j′$ 1⇒

$0i
′cXc10i

′′
1e | u | d10j

′′
1bY b0j′$

Since i′ = j′, the prefix of 0s and the suffix of 0s are simultaneously erased by repeatedly using
the rules (4) and the rule (5).

$0i
′cXc10i

′′
1e | u | d10j

′′
1bY b0j′$ 1⇒∗ $cXc10i

′′
1e | u | d10j

′′
1bY b$

Finally, G′ uses the rule (6) and the rule (7)

$cXc10i
′′
1e | u | d10j

′′
1bY b$ 1⇒ cX$c10i

′′
1e | u | d10j

′′
1b$Y b 1⇒

X$10i
′′
1e | u | d10j

′′
1$Y = w′′

where
w′′ = X$10i

′′
1e | (d10im1e |)kd11 || 11e(| d10jm′1e)k | d10j

′′
1$Y .

By induction hypothesis, w′′1⇒∗ ε, which completes the proof.

Only if. Suppose that w1 6= reversal(w2), then there is no w′ satisfying w 1⇒∗ w′ and w′ = ε.

From the construction of G′, there is no rule shifting the left $ to the left and no rule shifting the
right $ to the right. Since the rule (5) is the only one erasing 0s and these 0s must occur between
two $s, if there is any 0, which is not between the two $s, it is unable to be erased. Moreover, an
application of the rule (5) moves the left $ on the previous position of erased left 0; if it is not the
leftmost, the derivation is blocked. It is symmetric on the right. A similar situation is regarding 1s,
X , and Y . Thus, for the sentential form w, if 0 or 1 is the rightmost or the leftmost symbol of w, no
terminal string can be generated.

Since w1 6= reversal(w2), the codings of terminal strings generated by G1 and G2 are different.
Then, there is a and a′, where w1 = vau, w2 = u′a′v, and a 6= a′. For always the outermost 0 or 1 is
erased, otherwise the derivation is blocked, suppose the derivation correctly erases both strings v, so
a and a′ are the outermost symbols. The derivation can continue in the following two ways.

(I) Suppose the outermost 0s are erased before the outermost 1s. Then, the rule (5) is used, which
requires X and Y between the previous positions of 0s. However, there is 1, a or a′, which is
not between X and Y .

(II) Suppose the outermost 1s are erased before the outermost 0s. Then, the rule (8) is used, which
requires X and Y in the current sentential form. The symbols X and Y are produced by the
rule (7), which requires X and $ between two symbols c and Y and $ between two symbols b.
Suppose w′ is the current sentential form. Since w1 or reversal(w2) is of the form

. . . d10i01e | d10i11e | d10i21e | . . . ,
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where i0, i1, i2 ∈ {1, . . . , |Σ|}, there is 0 as the leftmost or rightmost symbol of w′ and X$ and
$Y occurs between cs and bs, respectively. However, this 0 is obviously not between the two $s
and remains permanently in the sentential form.

We showed that G′ can generate the terminal string from the sentential form w if and only if
t′(w1) = reversal(w2), so the claim holds. ut

We proved that for any w ∈ Σ∗, S 1⇒∗ w in G if and only if S 1⇒∗ w in G′, and Claim 2
holds. ut

Let us turn to 2⇒.

Claim 4. L(G′, 2⇒) = L(G′, 1⇒).

Proof:
In 2⇒, applications of context-free rules progress in the same way as in 1⇒. While using context-
sensitive rules inserted right-hand-side strings can be nondeterministically scattered between the pre-
vious positions of the leftmost and rightmost affected nonterminals, only their order is preserved. We
show, we can control this by the construction of G′.

Recall the observations made at the beginning of the proof of Claim 2. Since the behaviour of
context-free rules remains unchanged in terms of 2⇒, these still hold true. It remains to prove that
Claim 3 also holds in 2⇒.

In a special case, 2⇒ can behave exactly as 1⇒, hence definitely L(G′, 1⇒) ⊆ L(G′, 2⇒). We
prove

w /∈ L(G′, 1⇒)⇒ w /∈ L(G′, 2⇒).

Therefore, to complete the proof of Claim 4, we establish the following claim.

Claim 5. In G′, for

S 1⇒∗ eX$w1d11 || 11ew2$Y d= w, alph(w) ∩ (N1 ∪N2) = ∅,

where w is generated only by using the rules (1) and (2), and t′(w1) 6= reversal(w2), there is no w′,
where

w 1⇒∗ w′, w′ ∈ Σ∗.

For the sake of readability, in the next proof we omit all symbols from Σ in w1—we consider only
nonterminal symbols, which are to be erased.

Proof:
Suppose any w, where

S 1⇒∗ w =eX$w1d11 || 11ew2$Y d

in G′ and w is generated by using the rules (1) and (2), alph(w) ∩ (N1 ∪ N2) = ∅, and w1 6=
reversal(w2).
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From the construction of G′, there is no rule shifting the left $ to the left and no rule shifting the
right $ to the right. Neither 2⇒ can do this. Since the rule (5) is the only one erasing 0s and these
0s must be between two $s, if there is any 0, which is not between the two $s, it cannot be erased. A
similar situation is regarding 1s, X , and Y . Thus, for the sentential form w, if 0 or 1 is the outermost
symbol of w, no terminal string can be generated.

Consider two cases (I) w1 = ε or w2 = ε and (II) w1 6= ε and w2 6= ε.

(I) Suppose the condition does not apply. Without any loss of generality, suppose w1 = ε. Since
w1 6= reversal(w2), w2 6= ε. Then,

w =eX$d11 || 11e(| d10im1e)k | d10i
′
1e$Y d,

where k ≥ 0, m ∈ {1, . . . , k}, im, i′ ∈ {1, . . . , |Σ|}.
First, the rules (3) and (9) are the only applicable, however, application of the rule (9) would

block the derivation, so we do not consider it. While rewriting X , the leftmost e is rewritten.
Unless the leftmost d is chosen, it becomes unpaired and, thus, cannot be erased. It is symmetric
with Y . After the application of the rules (3), the rules (4) becomes applicable. The positions
of the symbols $ must be preserved for future usage of the rule (7). Then, the only way of
continuing a successful derivation is

eX$d11 || 11e(| d10im1e)k | d10i
′
1e$Y d 2⇒

cX$c11 || 11e(| d10im1e)k | d10i
′
1e$Y d 2⇒

cX$c11 || 11e(| d10im1e)k | d10i
′
1b$Y b 2⇒

cX$c11 || 11e(| d10im1e)k | d10i
′
1b$Y b 2⇒

cX$c11 || 11e(| d10im1e)k | d10i
′
1b$Y b

Notice that if neighboring nonterminals are rewritten, 2⇒ do not shift any symbol.

Next, the rule (7) is the only applicable possibly shifting X , Y , and $s anywhere into the
current sentential form. However, if any shift is performed, there is a symbol 1 as the outer most
symbol, which is obviously unable to be erased. Thus,

cX$c11 || 11e(| d10im1e)k | d10i
′
1b$Y b2⇒ X$11 || 11e(| d10im1e)k | d10i

′
1$Y = w′

Next, consider two cases depending on k.

(i) Suppose k = 0. Then,

w′ = X$11 || 11e | d10i
′
1$Y .

Since i′ > 0, the rule (5) must be used. It requires presence of X and Y in the current
sentential form. These can be obtained only by application of the rule (8) and both rules
from (3) and (4). However, it must rewrite two pairs of e,d, but there is only one remain-
ing. Therefore, there are i′ symbols 0, which cannot be erased, and no terminal string can
be generated.
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(ii) Suppose k > 0. Then, w′ is of the form

X$11 || 11e | due | d10i
′
1$Y .

The rule (8) is the only applicable. It rewrites X to X , Y to Y and put them potentially
anywhere into the current sentential form. However, the rules (3), which are the only
containing X and Y on the left-hand side, require X and Y situated between e and d.

X$11 || 11e | due | d10i
′
1$Y 2⇒ $11 || 11eXdueY d0i′$

Without any loss of generality, we omit other possibilities of erasing the symbols | or 1,
because the derivation would be blocked in the same way. Since there is no 0 to the left
of X , the future application of the rule (5) is excluded and the rightmost sequence of 0s is
obviously skipped and cannot be erased any more.

(II) Suppose the condition applies. Then,

w = eX$d10i1e | (d10jm1e |)kd11 || 11e(| d10jm′1e)k′ | d10i
′
1e$Y d

= eX$d10i1e | due | d10i
′
1e$Y d

where k, k′ ≥ 0, m ∈ {1, . . . , k}, m′ ∈ {1, . . . , k′}, im, i′m, j, j′ ∈ {1, . . . , |Σ|}.
First, the situation is completely the same as in (I), the only possibly non-blocking derivation

consists of application of both rules (3) and (4) followed by application of the rule (7). No left-
hand-side string may be shifted during the application of these rules or the derivation is blocked.

eX$d10i1e | due | d10i
′
1e$Y d 2⇒ cX$c10i1e | due | d10i

′
1e$Y d 2⇒

cX$c10i1e | due | d10i
′
1b$Y b 2⇒ cX$c10i1e | due | d10i

′
1b$Y b 2⇒

cX$c10i1e | due | d10i
′
1b$Y b 2⇒ X$10i1e | due | d10i

′
1$Y

Next, the rule (8) is the only applicable rule, which erases four symbols 1, two |, rewrites X to
X and Y to Y , and inserts them possibly anywhere into the current sentential form. However,
X must be inserted between e and d, otherwise the rule (3) is not applicable and X remains
permanently in the sentential form. Unless the leftmost pair of e and d is chosen, there are
skipped symbols 1 remaining to the left of X . The rules (6) and (7) ensures the derivation is
blocked, if X is shifted to the right. Additionally, the only way to erase 1s is the rule (8), but
these 1s must be to the right of X . Thus, the skipped symbols 1 cannot be erased. Therefore,
the pair of e and d is the leftmost or the derivation is blocked. Moreover, the two erased 1s are
also the leftmost or they cannot be erased in the future and the same holds for the left erased
symbol |. A similar situation is regarding Y . Then,

X$10i1e | due | d10i
′
1$Y 2⇒ $0ieXdueY d0i′$

and by using the rules (3) and repeatedly the rules (4) and (5) both outer most sequences of 0s
can be erased, if i = i′. Additionally, the rules (4) ensure, X and Y are never shifted. If there is
any 0 skipped, it cannot be erased and the derivation is blocked.
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$0ieXdueY d0i′$ 2⇒∗ $0icXcubY b0i′$ 2⇒∗ $cXcubY b$

Finally, by the rules (6) and (7) both terminal codings can be completely erased and X , Y , and
two $ are the outermost symbols, if no symbol is skipped.

$cXcubY b$ 2⇒ cX$cub$Y b 2⇒ X$u$Y

Since w1 6= w2, w1 = vau and w2 = u′a′v, where a 6= a′ are the outermost non-identical
terminal codings. Derivation can always erase vs, as it was described, or be blocked before.
Without any loss of generality, we have to consider two cases.

(i) Suppose au = ε. Then, u′a′ 6= ε and the situation is the same as in (I), no terminal string
can be generated and the derivation is blocked.

(ii) Suppose au 6= ε, u′a′ 6= ε. If the derivation is not blocked before, it may generate the
sentential form

$0ieXdueY d0i′$,

where 10i1 = a, 10i
′
1 = a′. Then, i 6= i′ and while simultaneously erasing the sequences

of 0s of both codings, one is erased before the second one. The rule (5) becomes inappli-
cable and there is no way not to skip the remaining part of the second sequence of 0s. The
derivation is blocked.

We covered all possibilities and showed, there is no way to generate terminal string w′ /∈ L(G′, 1⇒),
and the claim holds. ut

Since S 1⇒∗ w, w ∈ Σ∗ if and only if S 2⇒∗ w, Claim 4 holds. ut

We proved L(G′, 2⇒) = L(G′, 1⇒), L(G′, 1⇒) = L(G, 1⇒), and L(G, 1⇒) = L, then
L(G′, 2⇒) = L, so the proof of Theorem 3.5 is completed. ut

3.3. Jumping derivation mode 3

Definition 5. Let G = (V , T , P , S) be an SCG. Let u = u0A1u1 . . . Anun ∈ V ∗ and (A1,A2, . . . ,
An)→ (x1,x2,. . . ,xn) ∈ P , for n ≥ 1. Then,

u0A1u1A2u2 . . . Anun 3⇒ v0x1v1x2v2 . . . xnvn,

where u0u1 . . . un = v0v1 . . . vn, u0 = v0z1 and un = z2vn, z1, z2 ∈ V ∗.

Informally, G obtains v = v0x1v1x2v2 . . . xnvn from u = u0A1u1A2u2 . . . Anun by (A1,A2, . . . ,
An)→ (x1,x2,. . . ,xn) ∈ P in terms of 3⇒ as follows:

(1) A1, A2, . . . , An are deleted;
(2) x1 and xn are inserted into u0 and un, respectively;
(3) x2 through xn−1 are inserted in between the newly inserted x1 and xn.
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Example 3.6. Let G = (V , T , P , S), where V = {S, A, $, a, b}, T = {a, b}, be an SCG with P
containing the following rules:

(i) (S)→ (A$)
(ii) (A)→ (aAb)

(iii) (A, $)→ (A, $)

(iv) (A)→ (ε)
(v) ($)→ (ε)

Context-free rules are not influenced by 3⇒. Therefore, after applying starting rule (i), G generates
anbn, where n ≥ 0, by using the rule (ii) or finishes the derivation with rules (iv) and (v). However,
at any time during the derivation the rule (iii) can be applied. It inserts or erases nothing, but with 3⇒
it potentially shifts A to the left. Notice, the symbol $ is always the rightmost and, thus, cannot be
shifted. Then,

L(G, 3⇒) =
{
x ∈ T ∗ | x = ε or x = uvwbn, uw = an, n ≥ 0,
and v is defined recursively as x

}
.

For example, the string aaaababbabbb is generated by G in the following way:

S 3⇒ A$ 3⇒ aAb$ 3⇒ aaAbb$ 3⇒ aaaAbbb$ 3⇒ aaAabbb$

3⇒ aaaAbabbb$ 3⇒ aaaaAbbabbb$ 3⇒ aaaAabbabbb$

3⇒ aaaaAbabbabbb$ 3⇒ aaaababbabbb$ 3⇒ aaaababbabbb

Theorem 3.7. SC(3⇒) = RE.

Proof:
Clearly SC(3⇒) ⊆ RE, so we only need to prove RE ⊆ SC(3⇒).

Let G = (V,Σ, P, S) be the SCG constructed in the proof of Theorem 3.3. Next, we modify G to
a new SCG G′ satisfying L(G, 1⇒) = L(G′, 1⇒). Finally, we prove L(G′, 3⇒) = L(G′, 1⇒).

Construction. Let G′ = (V,Σ, P ′, S) be SCG with P ′ containing

(1) (S)→ (S111$$11S2);
(2) (A)→ (Ci(w)) for A→ w ∈ Pi, where i = 1, 2;
(3) (a, $, $, a)→ ($, ε, ε, $), for a = 0, 1;
(4) ($)→ (ε).

We establish the proof of Theorem 3.7 by demonstrating the following two claims.

Claim 6. L(G′, 1⇒) = L(G, 1⇒).

Proof:
G′ is closely related to G, only the rules (1) and (3) are slightly modified. As a result the correspon-
dence of the sentences generated by the simulated G1, G2, respectively, is not checked in the direction
from the outermost to the central symbols but from the central to the outermost symbols. Again, if the
current two symbols do not match, they cannot be erased both and the derivation blocks. ut
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Claim 7. L(G′, 3⇒) = L(G′, 1⇒).

Proof:
Without any loss of generality, we can suppose the rules (1) and (2) are used only before the first usage
of the rule (3). The context-free rules work unchanged with 3⇒. Then, for every derivation

S 1⇒∗ w = w111$$11w2

generated only by the rules (1) and (2), where alph(w) ∩ (N1 ∪ N2) = ∅, there is the identical
derivation

S 3⇒∗ w

and vice versa. Since
w 1⇒∗ w′, w′ ∈ Σ∗

if and only if t′(w1) = reversal(w2), we can complete the proof of the previous claim by the following
one.

Claim 8. Let the sentential form w be generated only by the rules (1) and (2). Without any loss of
generality, suppose alph(w) ∩ (N1 ∪N2) = ∅. Consider

S 3⇒∗ w = w111$$11w2.

Then, w 3⇒∗ w′, where w′ ∈ Σ∗ if and only if t′(w1) = reversal(w2).

For better readability, in the next proof we omit all symbols of w1 from Σ—we consider only
nonterminal symbols, which are to be erased.

Basic idea. The rules (3) are the only with 0s and 1s on their left-hand sides. These symbols are
simultaneously erasing to the left and to the right of $s checking the equality. While proceeding from
the center to the edges, when there is any symbol skipped, which is remaining between $s, there is no
way, how to erase it, and no terminal string can be generated.

Consider 3⇒. Even when the symbols are erasing one after another from the center to the left and
right, 3⇒ can potentially shift the left $ to the left and the right $ to the right skipping some symbols.
Also in this case the symbols between $s cannot be erased anymore.

Proof:
If. Recall

w = 10m1110m21 . . . 10ml111$$1110ml1 . . . 10m2110m11.

Suppose the check works properly not skipping any symbol. Then,

w 3⇒∗ w′ = $$

and twice applying the rule (4) the derivation finishes. ut
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Proof:
Only if. If w1 6= reversal(w2), though the check works properly,

w 1⇒∗ w′ = w′1x$$x′w′2

and x, x′ ∈ {0, 1}, x 6= x′. Continuing the check with application of the rules (3) will definitely skip
x or x′. Consequently, no terminal string can be generated.

We showed that G′ can generate the terminal string from the sentential form w if and only if
t′(w1) = reversal(w2), and the claim holds. ut

Since S 1⇒∗ w, w ∈ Σ∗ if and only if S 3⇒∗ w, Claim 7 holds. ut

We proved L(G, 1⇒) = L, L(G′, 1⇒) = L(G, 1⇒), L(G′, 3⇒) = L(G′, 1⇒); therefore,
L(G′, 3⇒) = L holds. Thus, the proof of Theorem 3.7 is completed. ut

3.4. Jumping derivation mode 4

Definition 6. Let G = (V , T , P , S) be an SCG. Let uAv ∈ V ∗ and (A) → (x) ∈ P . Then
uAv 4⇒ uxv. Let u = u0A1u1 . . . Anun ∈ V ∗ and (A1,A2,. . . ,An) → (x1,x2,. . . ,xn) ∈ P , for
n ≥ 2. Then,

u0A1u1A2u2 . . . ui−1AiuiAi+1ui+1 . . . un−1Anun 4⇒
u0u1x1u2x2 . . . ui−1xi−1ui1xiui2xi+1ui3xi+2ui+1 . . . xnun−1un,

where ui = ui1ui2ui3 .

Informally, v = u0u1x1u2x2 . . . ui−1xi−1ui1xiui2xi+1ui3xi+2ui+1 . . . xnun−1un is obtained from
u = u0A1u1A2u2 . . . ui−1AiuiAi+1ui+1 . . . un−1Anun in G by (A1,A2,. . . ,An)→ (x1,x2,. . . ,xn) ∈
P in 4⇒ as follows:

(1) A1, A2, . . . , An are deleted;
(2) a central ui is nondeterministically chosen, for some i ∈ {0, . . . , n};
(3) xi and xi+1 are inserted into ui;
(4) xj is inserted between uj and uj+1, for all j < i;
(5) xk is inserted between uk−2 and uk−1, for all k > i + 1.

Example 3.8. Let G = (V , T , P , S), where V = {S, A, B, C, $, a, b, c, d}, T = {a, b, c, d}, be an
SCG with P containing the following rules:

(i) (S)→ (AB$$BA)
(ii) (A)→ (aAb)

(iii) (B)→ (cBd)

(iv) (A,B,B,A)→ (A,C,C,A)
(v) ($, C, C, $)→ (ε, ε, ε, ε)

(vi) (A)→ (ε)
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Consider G uses 4⇒. Then, every context-sensitive rule is applied in the following way. First,
all affected nonterminals are erased. Next, some position of the current sentential form called center
is nondeterministically chosen. Finaly, the corresponding right-hand sides of the selected rule are
inserted each at the original place of the neighbouring erased nonterminal closer to the center. The
central right-hand-side strings are randomly put closer to the chosen central position. In this example,
we show how to control the choice.

First the rule (i) rewrites S to AB$$BA. Then, G uses the rules (ii) and (iii) generating a sentential
form

an1Abn1cn2Bdn2$$cn3Bdn3an4Abn4 ,

where ni ≥ 0, for i ∈ {1, 2, 3, 4}. If the rule (vi) is used, derivation is blocked. Next, G uses the
context-sensitive rule (iv), which may act in several different ways. In any case, it inserts two Cs into
the current sentential form and the only possibility to erase them is the rule (v). However, thereby
we force the rule (iv) to choose the center for interchanging nonterminals between Bs and moreover
to insert Cs between the two symbols $. Finally, G continues by using the rule (ii) and eventually
finishes twice the rule (vi). Consequently,

L(G, 4⇒) =
{
x ∈ T ∗ | x = an1bn1cn2an3bn3dn2cn4an5bn5dn4an6bn6 , ni ≥ 0, i ∈ {1, 2, 3, 4, 5, 6}

}
.

Then, the string aabbcabdccddab is generated by G in the following way:

S 4⇒ AB$$BA 4⇒ aAbB$$BA 4⇒ aaAbbB$$BA 4⇒ aaAbbcBd$$BA

4⇒ aaAbbcBd$$cBdA 4⇒ aaAbbcBd$$ccBddA 4⇒ aaAbbcBd$$ccBddaAb

4⇒ aabbcAd$CC$ccAddab 4⇒ aabbcAdccAddab 4⇒ aabbcaAbdccAddab

4⇒ aabbcabdccAddab 4⇒ aabbcabdccddab

Theorem 3.9. SC(4⇒) = RE.

Proof:
A obvious, SC(4⇒) ⊆ RE, so we only prove RE ⊆ SC(4⇒).

Let G = (V,Σ, P, S) be the SCG constructed in the proof of Theorem 3.3. Next, we modify G to
a new SCG G′ so L(G, 1⇒) = L(G′, 4⇒).

Construction. Introduce five new symbols—D,E,F ,|, and >. Set N = {D,E,F ,|,>}. Let G′ =
(V ′,Σ, P ′, S) be SCG, with V ′ = V ∪N and P ′ containing the rules
(1) (S)→ (F$S111|E|11S2$F );
(2) (A)→ (Ci(w)) for A→ w ∈ Pi, where i = 1, 2;
(3) (F )→ (FF );
(4) ($, a, a, $)→ (ε,D,D, ε), for a = 0, 1;
(5) (F,D, |, |, D, F )→ ($, ε,>,>, ε, $);
(6) (>, E,>)→ (ε, |E|, ε);
(7) ($)→ (ε), (E)→ (ε), (|)→ (ε).

Claim 9. L(G, 1⇒) = L(G′, 4⇒).
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Proof:
The behaviour of context-free rules remains unchanged under 4⇒. Since the rules of G′ simulating the
derivations of G1 and G2 are identical to the ones of G simulating both grammars, for every derivation
of G

S 1⇒∗ $w11111w2$ = w,

where w is generated only by using the rules (1) and(2) and alph(w) ∩ (N1 ∪N2) = ∅, there is

S 4⇒∗ F$w111|E|11w2$##F = w′

in G′, generated by the corresponding rules (1) and (2), and vice versa. Without any loss of generality,
we can consider such a sentential form in every successful derivation. Additionally, in G

w 1⇒∗ v, v ∈ Σ∗

if and only if t′(w1) = reversal(w2); then v = t(w). Therefore, we have to prove

w′ 4⇒∗ v′, v′ ∈ Σ∗

if and only if t′(w1) = reversal(w2). Then obviously v′ = v and we can complete the proof by the
following claim.

Claim 10. In G′, for

S 4⇒∗ w = F i1$w111|E|11w2$##F i2 , alph(w) ∩ (N1 ∪N2) = ∅,

where w is generated only by using the rules (1) and (2),

w 4⇒∗ w′,

where w′ ∈ Σ∗ if and only if t′(w1) = reversal(w2), for some i1, i2 ≥ 0.

The new rule (3) potentially arbitrarily multiplies the number of F s to the left and right. Then,
F s from both sequences are simultaneously erasing by using the rule (5). Thus, without any loss of
generality, suppose i1 = i2 equal the number of future usages of the rule (5).

For the sake of readability, in the next proof, in w1, we omit all symbols from Σ—we consider
only nonterminal symbols, which are to be erased.

Proof:
If. Suppose w1 = reversal(w2), then w 4⇒∗ ε. We prove this by the induction on the length of
w1,w2, where |w1| = |w2| = k.

Basis. Let k = 0. Then, w = FF$11|E|11$FF . Except the rules (7), the rule (4) is the only
applicable. The center for interchanging the right-hand-side strings must be chosen between the two
rewritten 1s and additionally inserted Ds must remain on the different sides of the central string |E|.
Moreover, if any 1 stays outside the two Ds, it cannot be erased, so

FF$11|E|11$FF 4⇒ FFD1|E|1DFF
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Next, the rule (5) rewrites Ds back to $s, erases F s, and changes |s to >s. The center must be chosen
between the two |s and inserted >s may not be shifted, otherwise they appear on the same side of E
and the rule (6) is inapplicable. It secures the former usage of the rule (4) was as expected, so

FFD1|E|1DFF 4⇒ F$1>E>1$F

By the rule (6) the symbols > may be rewritten back to |s. No left-hand-side string may be shifted
during the application of the rule and the choice of the central position has no influence, because
the neighbouring symbols are rewritten. It secures the former usage of the rule (5) was as expected;
therefore,

F$1>E>1$F 4⇒ F$1|E|1$F

Then, the same sequence of rules with the same restrictions can be used again to erase remaining 1s
and the check is finished by the rules (7) as

F$1|E|1$F 4⇒ FD|E|DF 4⇒ $>E>$4⇒ $|E|$4⇒∗ ε

and the basis holds.

Induction Hypothesis. Suppose there exists k ≥ 0 such that the claim holds for all 0 ≤ m ≤ k, where

w = F i1$w111|E|11w2$F
i2 , |w1| = |w2| = m.

Induction Step. Consider G′ generating w with

w = F i1$w111|E|11w2$F
i2 ,

where |w1| = |w2| = k + 1, w1 = reversal(w2) = aw′1, and a ∈ {0, 1}. Except the rules (7), the rule
(4) is the only applicable. The center for interchanging of the right-hand-side strings must be chosen
between the two rewritten 0s or 1s and additionally inserted Ds must remain on the different sides of
the central string |E|. Moreover, the outermost 0s or 1s must be rewritten and Ds may not be shifted
between the new outermost ones, otherwise they cannot be erased.

F i1$w111|E|11w2$F
i2
4⇒ F i1Dw′111|E|11w′2DF i2

Next, the rule (5) rewrites Ds back to $s, erases F s, and changes |s to >s. The center must be chosen
between the two |s and inserted >s may not be shifted, otherwise they appear on the same side of E
and the rule (6) is inapplicable. It secures the former usage of the rule (4) was as expected.

F i1Dw′111|E|11w′2DF i2
4⇒ F i′1$w′111>E>11w′2$F

i′2

By the rule (6) the symbols > may be rewritten back to |s. No left-hand-side string may be shifted
during the application of the rule and the position of the chosen center has no influence, because the
neighbouring symbols are rewritten. It secures the former usage of the rule (5) was as expected.

F i′1$w′111>E>11w′2$F
i′24⇒ F i′1$w′111|E|11w′2$F

i′2 = w′
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By induction hypothesis w′4⇒∗ ε, which completes the proof.

Only if. Suppose w1 6= reversal(w2); there is no w′, where w 4⇒∗ w′ and w′ = ε.

Since w1 6= reversal(w2), w1 = vau, w2 = u′a′v, and a 6= a′. Suppose both vs are correctly
erased and no symbol is skipped producing the sentential form

F i1$au11|E|11u′a′$F i2 .

Next, the rule (4) can be applied to erase outermost 0s or 1s. However, then, there is 0 or 1 outside
inserted Ds and, thus, unable to be erased, which completes the proof.

We showed that G′ can generate the terminal string from the sentential form w if and only if
t′(w1) = reversal(w2), and the claim holds. ut

We proved that for some w ∈ Σ∗, S 1⇒∗ w in G if and only if S 4⇒∗ w in G′, and the claim
holds. ut

Since L(G, 1⇒) = L(G′, 4⇒) = L, the proof of Theorem 3.9 is completed. ut

3.5. Jumping derivation mode 5

Definition 7. Let G = (V , T , P , S) be an SCG. Let uAv ∈ V ∗ and (A) → (x) ∈ P . Then
uAv 5⇒ uxv. Let u = u0A1u1 . . . Anun ∈ V ∗ and (A1,A2,. . . ,An) → (x1,x2,. . . ,xn) ∈ P , for
n ≥ 2. Then,

u0A1u1A2 . . . ui−1Ai−1uiAiui+1 . . . Anun 5⇒
u01x1u02x2u1 . . . xi−1ui−1uiui+1xi . . . un1xnun2 ,

where u0 = u01u02 , un = un1un2 .

Informally, scattered context grammar G obtains u01x1u02x2u1 . . . xi−1ui−1uiui+1xi . . . un1xnun2

from u0A1u1A2 . . . ui−1Ai−1uiAiui+1 . . . Anun by (A1,A2,. . . ,An) → (x1,x2,. . . ,xn) ∈ P in 5⇒
as follows:

(1) A1, A2, . . . , An are deleted;
(2) a central ui is nondeterministically chosen, for some i ∈ {0, . . . , n};
(3) x1 and xn are inserted into u0 and un, respectively;
(4) xj is inserted between uj−2 and uj−1, for all 1 < j ≤ i;
(5) xk is inserted between uk and uk+1, for all i + 1 ≤ k < n.

Example 3.10. Let G = (V , T , P , S), where V = {S, A, B, $, a, b}, T = {a, b}, be an SCG with
P containing the following rules:

(i) (S)→ ($AA$)
(ii) (A)→ (aAb)

(iii) (A,A)→ (B,B)

(iv) (B, $, $, B)→ (A, ε, ε, A)
(v) (A)→ (ε)
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Recall Example 3.8. 4⇒ interchanges the positions of nonterminals influenced by context-sensitive
rules in the direction from the outer ones to the central ones. Opposed to 4⇒, 5⇒ interchanges
nonterminals in the direction from a nondeterministically chosen center. In the present example, we
show one possibility to control the choice.

Consider G uses 5⇒. First the rule (i) rewrites S to $AA$. Then, G uses the rule (ii) generating
the sentential form

$amAbmanAbn$,

where m,n ≥ 0. If the rule (v) is used, derivation is blocked, because there is no way to erase the
symbols $. Next, G uses the context-sensitive rule (iii), which nondeterministically choses a center
and nondeterministically shifts Bs from the previous positions of As in the direction from this center.
However, for the future application of the rule (iv) the chosen center must lie between As and moreover
Bs must be inserted as the leftmost and the rightmost symbols of the current sentential form. The
subsequent usage of the rule (iv) preserves As as the leftmost and the rightmost symbols independently
of the effect of 5⇒. Finally, G continues by using the rule (ii) and eventually finishes twice the rule
(v). If the rule (iii) is used again, there is no possibility to erase inserted Bs. Consequently,

L(G, 5⇒) =
{
x ∈ T ∗ | x = akbkalblambmanbn, k, l,m, n ≥ 0

}
.

Then, the string aabbabaaabbb is generated by G in the following way:

S 5⇒ $AA$ 5⇒ $aAbA$ 5⇒ $aaAbbA$ 5⇒ $aaAbbaAb$

5⇒ B$aabbab$B 5⇒ AaabbabA 5⇒ AaabbabaAb 5⇒ AaabbabaaAbb

5⇒ AaabbabaaaAbbb 5⇒ aabbabaaaAbbb 5⇒ aabbabaaabbb

Theorem 3.11. SC(5⇒) = RE.

Proof:
As obvious, SC(5⇒) ⊆ RE, so we only prove RE ⊆ SC(5⇒).

Let G = (V,Σ, P, S) be the SCG constructed in the proof of Theorem 3.3. Next, we modify G to
a new SCG G′ so L(G, 1⇒) = L(G′, 5⇒).

Construction. Introduce four new symbols—D,E,F , and ◦. Set N = {D,E,F ,◦}. Let G′ =
(V ′,Σ, P ′, S) be SCG, with V ′ = V ∪N and P ′ containing the rules

(1) (S)→ ($S11111S2$ ◦ E ◦ F );
(2) (A)→ (Ci(w)) for A→ w ∈ Pi, where i = 1, 2;
(3) (F )→ (FF );
(4) ($, a, a, $, E, F )→ (ε, ε, $, $, ε,D), for a = 0, 1;
(5) (◦, D, ◦)→ (ε, ◦E◦, ε);
(6) ($)→ (ε), (E)→ (ε), (◦)→ (ε).

Claim 11. L(G, 1⇒) = L(G′, 5⇒).
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Proof:
Context-free rules are not influenced by 5⇒. The rule (3) must generate precisely as many F s as the
number of applications of the rule (4). Context-sensitive rules of G′ correspond to context-sensitive
rules of G, except the special rule (5). We show, the construction of G′ forces context-sensitive rules
to work exactly in the same way as the rules of G do.

Every application of the rule (4) must be followed by the application of the rule (5) to rewrite D
back to E, which requires the symbol D between two ◦s. It ensures the previous usage of context-
sensitive rule selected the center to the right of the rightmost affected nonterminal and all right-hand-
side strings changed their positions with the more left ones. The leftmost right-hand-side string is then
shifted randomly to the left, but it is always ε. 5⇒ has no influence on the rule (5).

From the construction of G′, it works exactly in the same way as G does. ut

L(G, 1⇒) = L(G′, 5⇒) and L(G, 1⇒) = L; therefore L(G′, 5⇒) = L. Thus, the proof of
Theorem 3.11 is completed. ut

3.6. Jumping derivation mode 6

Definition 8. Let G = (V , T , P , S) be an SCG. Let uAv ∈ V ∗ and (A) → (x) ∈ P . Then
uAv 6⇒ uxv. Let u = u0A1u1 . . . Anun ∈ V ∗ and (A1,A2,. . . ,An) → (x1,x2,. . . ,xn) ∈ P , for
n ≥ 2. Then,

u0A1u1A2u2 . . . ui−1AiuiAi+1ui+1 . . . un−1Anun 6⇒
u0u1x1u2x2 . . . ui−1xi−1uixi+2ui+1 . . . xnun−1un.

Informally, scattered context grammar G obtains u0u1x1u2x2 . . . ui−1xi−1uixi+2ui+1 . . .
xnun−1un from u0A1u1A2u2 . . . ui−1AiuiAi+1ui+1 . . . un−1Anun by using (A1,A2,. . . ,An)→ (x1,
x2,. . . ,xn) ∈ P in 6⇒ as follows:

(1) A1, A2, . . . , An are deleted;
(2) a central ui is nondeterministically chosen, for some i ∈ {0, . . . , n};
(3) xj is inserted between uj and uj+1, for all j < i;
(4) xk is inserted between uk−2 and uk−1, for all k > i + 1.

Example 3.12. Let G = (V , T , P , S), where V = {S, A, B, a, b}, T = {a, b}, be an SCG with P
containing the following rules:

(i) (S)→ (ABBA)
(ii) (A)→ (aAb)

(iii) (A,B,B,A)→ (AB,B,B,BA)
(iv) (A,B,B,A)→ (ε,B,B, ε)

Consider G uses 6⇒. 6⇒ interchanges nonterminals similarly as 4⇒ does in Example 3.8,
however, the central nonterminals are removed. We can use this property to determine, which are the
central ones; demonstration follows.
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The rules (i) and (ii) are context-free, not affected by 6⇒. First the starting rule (i) rewrites S to
ABBA. Then, G uses the rule (ii) generating the sentential form

amAbmBBanAbn,

where m,n ≥ 0. Next, G uses the context-sensitive rule (iii) or (iv). Notice, there is no rule erasing
Bs, thus in both cases the center of interchanging of nonterminals must be chosen between the two
Bs. Otherwise, in both cases there is exactly one A remaining, thus the only applicable rule is the rule
(ii), which is context-free and not erasing. Therefore, G uses the rule (iii) generating the sentential
form

ambmABBAanbn

and continues by using the rule (ii) or it uses the rule (iv) and finishes the derivation.

Subsequently, the language G generates is

L(G, 6⇒) =
{
x ∈ T ∗ | x = an1bn1an2bn2 . . . an2kbn2k , k, ni ≥ 0, 1 ≤ i ≤ 2k

}
.

Then, the string aabbabaabbab is generated by G in the following way:

S 6⇒ ABBA 6⇒ aAbBBA 6⇒ aaAbbBBA 6⇒ aaAbbBBaAb

6⇒ aabbABBAab 6⇒ aabbaAbBBAab 6⇒ aabbaAbBBaAbab

6⇒ aabbaAbBBaaAbbab 6⇒ aabbabaabbab

Theorem 3.13. SC(6⇒) = RE.

Proof:
Clearly, SC(6⇒) ⊆ RE. Next, we prove RE ⊆ SC(6⇒).

Let G = (V,Σ, P, S) be the SCG constructed in the proof of Theorem 3.3. Next, we modify G to
a new SCG G′ so L(G, 1⇒) = L(G′, 6⇒).

Construction. Introduce two new symbols—E and F . Let G′ = (V ′,Σ, P ′, S) be SCG, with V ′ =
V ∪ {E,F} and P ′ containing the rules

(1) (S)→ (F$S11111S2$);
(2) (A)→ (Ci(w)) for A→ w ∈ Pi, where i = 1, 2;
(3) (F )→ (FF );
(4) (F, $, a, a, $)→ (E,E, ε, $, $), for a = 0, 1;
(5) ($)→ (ε).

Claim 12. L(G, 1⇒) = L(G′, 6⇒).

Proof:
Context-free rules are not influenced by 6⇒. Context-sensitive rules of G′ closely correspond to
context-sensitive rules of G. The new symbols are used to force modified rules to act in the same way
as sample ones do. The symbols F are first multiplied and then consumed by context-sensitive rules,
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so their number must equal the number of usages of these rules. The new symbols E are essential. E
never appears on the left-hand side of any rule, thus whenever it is inserted into the sentential form,
no terminal string can be generated. Therefore, the center is always chosen between two Es, which
are basically never inserted, and other right-hand-side strings are then inserted deterministically.

G′ with 6⇒ works in the same way as G with 1⇒ does. ut

L(G, 1⇒) = L(G′, 6⇒), hence L(G′, 6⇒) = L. Thus, the proof of Theorem 3.13 is completed.
ut

3.7. Jumping derivation mode 7

Definition 9. Let G = (V , T , P , S) be an SCG. Let (A) → (x) ∈ P and uAv ∈ V ∗. Then
uAv 7⇒ uxv. Let u = u0A1u1 . . . Anun ∈ V ∗ and (A1,A2,. . . ,An) → (x1,x2,. . . ,xn) ∈ P , for
n ≥ 2. Then,

u0A1u1A2 . . . ui−1AiuiAi+1ui+1 . . . Anun 7⇒
u0x2u1 . . . xiui−1uiui+1xi+1 . . . un.

Informally, G obtains u0x2u1 . . . xiui−1uiui+1xi+1 . . . un from u0A1u1A2 . . . ui−1AiuiAi+1ui+1

. . . Anun by using (A1,A2, . . . , An)→ (x1,x2,. . . ,xn) ∈ P in 7⇒ as follows:

(1) A1, A2, . . . , An are deleted;
(2) a central ui is nondeterministically chosen, for some i ∈ {0 . . . , n};
(3) xj is inserted between uj−2 and uj−1, for all 1 < j ≤ i;
(4) xk is inserted between uk and uk+1, for all i + 1 ≤ k < n.

Example 3.14. Let G = (V , T , P , S), where V = {S, A, B, C, $, a, b, c}, T = {a, b, c}, be an
SCG with P containing the following rules:

(i) (S)→ (ABC$)
(ii) (A)→ (aAa)

(iii) (B)→ (bBb)
(iv) (C)→ (cCc)

(v) (A,B,C)→ (A,B,C)
(vi) (A,B)→ (A,B)

(vii) (A, $)→ (ε, ε)

Consider G uses 7⇒. 7⇒ interchanges nonterminals in the direction from the nondeterministically
chosen center and erases the outermost nonterminals. In this example, we show that we may force the
center to lie outside the part of a sentential form between the affected nonterminals.

The derivation starts by using the starting rule (i) and continues by using the rules (ii) through (iv)
generating the sentential form

amAambnBbnclCcl$,

where m,n, l ≥ 0. Next, G uses the context-sensitive rule (v) choosing the center to the left of A
erasing C. If a different central position is chosen, the symbol A is erased while B or C cannot be
erased in the future and the derivation is blocked. There is the same situation, if one of the rules (vi)
or (vii) is used instead. Notice, no rule erases B or C. Then, the derivation continues by using the
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rules (ii) and (iii) and eventually the rule (vi) rewriting B to A and erasing B. Otherwise, A is erased
and the symbol $ cannot be erased any more. G continues by using the rule (ii) and finally finishes the
derivation with the rule (vii). Subsequently,

L(G, 7⇒) =
{
x ∈ T ∗ | x = a2m1bn1a2m2bn1clbn2a2m3bn2cl, m1,m2,m3, n1, n2, l ≥ 0

}
.

Then, the string aabaabccbaabcc is generated by G in the following way:

S 7⇒ ABC$ 7⇒ aAaBC$ 7⇒ aAabBbC$ 7⇒ aAabBbcCc$

7⇒ aAabBbccCcc$ 7⇒ aabAbccBcc$ 7⇒ aabaAabccBcc$ 7⇒ aabaAabccbBbcc$

7⇒ aabaabccbAbcc$ 7⇒ aabaabccbaAabcc$ 7⇒ aabaabccbaabcc

Theorem 3.15. SC(7⇒) = RE.

Proof:
Clearly, SC(7⇒) ⊆ RE. We prove RE ⊆ SC(7⇒).

Let G = (V,Σ, P, S) be the SCG constructed in the proof of Theorem 3.3. Next, we modify G to
a new SCG G′ so L(G, 1⇒) = L(G′, 7⇒).

Construction. Introduce four new symbols—E,F ,H , and |. Set N = {E,F ,H ,|}. Let G′ =
(V ′,Σ, P ′, S) be SCG, with V ′ = V ∪N and P ′ containing the rules

(1) (S)→ (FHS111$|$11S2);
(2) (A)→ (Ci(w)) for A→ w ∈ Pi, where i = 1, 2;
(3) (F )→ (FF );
(4) (a, $, $, a)→ (ε, E,E, ε), for a = 0, 1;
(5) (F,H,E, |, E)→ (H, $, |, $, ε);
(6) ($)→ (ε), (H)→ (ε), (|)→ (ε).

Claim 13. L(G, 1⇒) = L(G′, 7⇒).

Proof:
The behaviour of context-free rules remains unchanged under 7⇒. Since the rules of G′ simulating
the derivations of G1, G2, respectively, are identical to the ones of G simulating both grammars, for
every derivation of G

S 1⇒∗ $w11111w2$ = w,

where w is generated only by using the rules (1) and(2) and alph(w) ∩ (N1 ∪N2) = ∅, there is

S 7⇒∗ FHw111$|$11w2 = w′

in G′, generated by the corresponding rules (1) and (2), and vice versa. Without any loss of generality,
we can consider such a sentential form in every successful derivation. Additionally, in G

w 1⇒∗ v, v ∈ Σ∗
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if and only if t′(w1) = reversal(w2); then v = t(w). Therefore, we have to prove

w′ 4⇒∗ v′, v′ ∈ Σ∗

if and only if t′(w1) = reversal(w2). Then obviously v′ = v and we can complete the proof by the
following claim.

Claim 14. In G′, for some i ≥ 1,

S 7⇒∗ w = F iHw1$|$w2E,

where w is generated only by using the rules (1) through (3) and alph(w) ∩ (N1 ∪N2) = ∅. Then,

w 7⇒∗ w′,

where w′ ∈ Σ∗ if and only if t′(w1) = reversal(w2).

The new rule (3) may potentially arbitrarily multiply the number of F s to the left. Then, F s are
erasing by using the rule (5). Thus, without any loss of generality, suppose i equals the number of the
future usages of the rule (5).

For the sake of readability, in the next proof we omit all symbols in w1 from Σ—we consider only
nonterminal symbols, which are to be erased.

Proof:
If. Suppose w1 = reversal(w2), then w 7⇒∗ ε. We prove this by the induction on the length of w1,
w2, where |w1| = |w2| = k. Then obviously i = k. By the construction of G′, the least k equals 2,
but we prove the claim for all k ≥ 0.

Basis. Let k = 0. Then,
w = H$|$.

By the rules (6)
H$|$ 7⇒∗ ε

and the basis holds.

Induction Hypothesis. Suppose there exists k ≥ 0 such that the claim holds for all m, where

w = FmHw1$|$w2, |w1| = |w2| = m, 0 ≤ m ≤ k.

Induction Step. Consider G′ generates w, where

w = F k+1Hw1$|$w2, |w1| = |w2| = k + 1.

Since w1 = reversal(w2) and |w1| = |w2| = k + 1, w1 = w′1a, w2 = aw′2. The symbols a can
be erased by application of the rules (4) and (5) under several conditions. First, when the rule (4)
is applied, the center for interchanging right-hand-side strings must be chosen between the two $s,
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otherwise both Es appear on the same side of the symbol | and the rule (5) is not applicable. Next, no
0 or 1 may be skipped, while proceeding in the direction from the center to the edges. Finally, when
the rule (5) is applied, a center must be chosen to the left of F , otherwise H is erased and the future
application of this rule is excluded.

F k+1Hw′1a$|$aw′2 7⇒ F k+1Hw′1D|Dw′2 7⇒ F kHw′1$|$w′2 = w′

By induction hypothesis, w′7⇒∗ ε, which completes the proof.

Only if. Suppose w1 6= reversal(w2), then, there is no w′, where w 7⇒∗ w′ and w′ = ε.

Since w1 6= reversal(w2), w1 = uav, w2 = va′u′, and a 6= a′. Suppose both vs are correctly
erased and no symbol is skipped producing the sentential form

F iHua$|$a′u′.

Next the rule (4) can be applied to erase innermost 0s or 1s. However, since a 6= a′, even if the center
is chosen properly between the two $s, there is 0 or 1 between inserted Es and, thus, unable to be
erased, which completes the proof.

We showed that G′ can generate the terminal string from the sentential form w if and only if
t′(w1) = reversal(w2), and the claim holds. ut

We proved S 1⇒∗ w, w ∈ Σ∗, in G if and only if S 7⇒∗ w in G′, hence L(G, 1⇒) = L(G′, 7⇒)
and the claim holds. ut

Since L(G, 1⇒) = L(G′, 7⇒) and L(G, 1⇒) = L, the proof of Theorem 3.15 is completed. ut

3.8. Jumping derivation mode 8

Definition 10. Let G = (V , T , P , S) be an SCG. Let u = u0A1u1 . . . Anun ∈ V ∗ and (A1,A2, . . . ,
An)→ (x1,x2,. . . ,xn) ∈ P , for n ≥ 1. Then,

u0A1u1A2u2 . . . Anun 8⇒ v0x1v1x2v2 . . . xnvn,

where u0z1 = v0, z2un = vn, |u0u1 . . . uj−1| ≤ |v0v1 . . . vj |, |uj+1 . . . un| ≤ |vjvj+1 . . . vn|, 0 <
j < n, and z1, z2 ∈ V ∗.

Informally, G obtains v0x1v1x2v2 . . . xnvn from u0A1u1A2u2 . . . Anun by using (A1,A2, . . . ,
An)→ (x1, x2, . . . , xn) ∈ P in 8⇒ as follows:

(1) A1, A2, . . . , An are deleted;
(2) x1 and xn are inserted into u1 and un−1, respectively;
(3) xi is inserted into ui−1ui, for all 1 < i < n, to the right of xi−1 and to the left of xi+1.

Example 3.16. Let G = (V , T , P , S), where V = {S, S, A, B, C, a, b, c}, T = {a, b, c}, be an
SCG with P containing the following rules:
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(i) (S)→ (AS)
(ii) (S)→ (S)

(iii) (S)→ (bScC)

(iv) (S)→ (B)
(v) (B)→ (BB)

(vi) (A,B,C)→ (a, ε, ε)

Consider G uses 8⇒. 8⇒ acts in a similar way as 2⇒ does. When a rule is to be applied, there
is a nondeterministically chosen center in between the affected nonterminals and rule right-hand-side
strings can be shifted in the direction to this center, but not farther than the neighboring affected
nonterminal was.

The rules (i) through (v) are context-free. Without any loss of generality, we suppose these rules
are used only before the first application of the rule (vi) producing the string

AmbnBl(cC)n.

The derivation finishes with the sequence of applications of the rule (vi). For As, Bs, and Cs are
being rewritten together, m = n = l. Moreover, inserted a is always between the rewritten A and B.
Subsequently,

L(G, 8⇒) =
{
x ∈ T ∗ | x = wcn, w ∈ {a, b}∗, occur(a,w) = occur(b, w) = n, n ≥ 1

}
.

For example, the string baabbaccc is generated by G in the following way:

S 8⇒ AS 8⇒ AAS 8⇒ AAAS 8⇒ AAAS 8⇒ AAAbScC 8⇒ AAAbbScCcC

8⇒ AAAbbbScCcCcC 8⇒ AAAbbbBcCcCcC 8⇒ AAAbbbBBcCcCcC

8⇒ AAAbbbBBBcCcCcC 8⇒ AAbbbaBBccCcC 8⇒ AbabbaBcccC 8⇒ baabbaccc

Theorem 3.17. SC(8⇒) = RE.

Proof:
Prove this theorem by analogy with the proof of Theorem 3.5. ut

3.9. Jumping derivation mode 9

Definition 11. Let G = (V , T , P , S) be an SCG. Let u = u0A1u1 . . . Anun ∈ V ∗ and (A1,A2, . . . ,
An)→ (x1,x2,. . . ,xn) ∈ P , for n ≥ 1. Then,

u0A1u1A2u2 . . . Anun 9⇒ v0x1v1x2v2 . . . xnvn,

where u0 = v0z1, un = z2vn, |u0u1 . . . uj−1| ≤ |v0v1 . . . vj |, |uj+1 . . . un| ≤ |vjvj+1 . . . vn|, 0 <
j < n, and z1, z2 ∈ V ∗.

Informally, G obtains v0x1v1x2v2 . . . xnvn from u0A1u1A2u2 . . . Anun by using (A1,A2, . . . ,
An)→ (x1, x2, . . . ,xn) ∈ P in 9⇒ as follows:

(1) A1, A2, . . . , An are deleted;
(2) x1 and xn are inserted into u0 and un, respectively;
(3) xi is inserted into ui−1ui, for all 1 < i < n, to the right of xi−1 and to the left of xi+1.
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Example 3.18. Let G = (V , T , P , S), where V = {S, S, A, B, C, $, a, b, c}, T = {a, b, c}, be an
SCG with P containing the following rules:

(i) (S)→ (aSa)
(ii) (S)→ (A)

(iii) (A)→ ($A)
(iv) (A)→ (C)

(v) (C)→ (cBC$)
(vi) (C)→ (ε)

(vii) ($, B, $)→ (ε, b, ε)

Consider G uses 9⇒. 9⇒ acts similarly to 3⇒with respect to the direction of shift of the rule right-
hand sides, but with limitation as in 8⇒. When a rule is to be applied, there is a nondeterministically
chosen center in between the affected nonterminals and rule right-hand-side strings can be shifted in
the direction from this center, but not farther than the neighboring affected nonterminal was.

The rules (i) through (vi) are context-free. Without any loss of generality, we can suppose these
rules are used only before the first application of the rule (vii), which produce the sentential form

am$n(cB)l$lam.

The derivation finishes with the sequence of applications of the rule (vii). The symbols $ and Bs are
being rewritten togehter, thus n = l must hold. Additionally, 9⇒ ensures, b is always inserted between
the rewritten $s. Subsequently,

L(G, 9⇒) =
{
x ∈ T ∗ | x = amwam, w ∈ {b, c}∗, occur(b, w) = occur(c, w),m ≥ 0

}
.

For example, the string aabcbcaa is generated by G in the following way:

S 9⇒ aSa 9⇒ aaSaa 9⇒ aaAaa 9⇒ aa$Aaa 9⇒ aa$$Aaa

9⇒ aa$$Caa 9⇒ aa$$cBC$aa 9⇒ aa$$cBcBC$$aa

9⇒ aa$$cBcB$$aa 9⇒ aa$bccB$aa 9⇒ aabcbcaa

Theorem 3.19. SC(9⇒) = RE.

Proof:
Prove this theorem by analogy with the proof of Theorem 3.7. ut

4. Future investigation

First, this final section describes a possible application of jumping scattered context grammars in terms
of bioinformatics. Then, it formulates several open problems.

Applications perspectives

Primarily and principally, the present paper represents a theoretically oriented study. Nevertheless,
next, we add some remarks and suggestions concerning future application-related perspectives of
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jumping grammars. We intentionally present all these suggestions as straightforwardly and simply
as possible.

As already sketched, jumping grammars serve as grammatical models that allow us to explore
information processing performed in a discontinuous way adequately and rigorously. Consequently,
applications of these grammars are expected in any scientific area involving this kind of information
processing, ranging from applied mathematics through computational linguistics and compiler writing
up to data mining and biology-related informatics. Taking into account the way these grammars are
conceptualized, we see that they are particularly useful and applicable under the circumstances that
primarily concern the number of occurrences of various symbols or substrings rather than their mutual
context.

To give an insight into future applications of jumping scattered context grammars in terms of bioinfor-
matics, consider DNA computing, whose significance is indisputable in computer science at present.
Recall that a DNA is a molecule encoding genetic information by a repetition of four basic units called
nucleotides—namely, guanine, adenine, thymine, and cytosine, denoted by letters G, A, T , and C, re-
spectively. In terms of formal language theory, a DNA is described as a string over {G, A, T , C}; for
instance,

GGGGAGTGGGATTGGGAGAGGGGTTTGCCCCGCTCCC.

Suppose that a DNA-computing-related investigation needs to study all the strings that contain the
same number of As and Cs, where all As precede Cs; for instance, AGGAATCGCGTC is a proper
string, but CGCACCGGTA is not. Consider the jumping scattered context grammar containing
rules

(1)→ (23), (3)→ (G3), (3)→ (T3), (3)→ (4), (2, 4)→ (A2, 4C), (2)|(4)→ (ε),

where 1 through 4 are nonterminal symbols with 1 being the start nonterminal, ε is the empty string,
and G, A, T , and C are terminal symbols. Assume that the grammar works under 2⇒. It first
generates an arbitrary string of Gs and T s, in which there are no restrictions, by classical regular
productions, since 2⇒ does not change the behaviour of context-free rules. However, then it comes
the essential phase generating As and Cs. Indeed, the only context-sensitive rule under 2⇒ generates
the equal number of As and Cs randomly scattered through the resulting sentence, but always with As
preceding Cs. For instance, previously mentioned string AGGAATCGCGTC can be generated by
the following derivation.

1 2⇒ 23 2⇒ 2G3 2⇒ 2GG3

2⇒ 2GGT3 2⇒ 2GGTG3 2⇒ 2GGTGG3

2⇒ 2GGTGGT3 2⇒ 2GGTGGT4 2⇒ A2GGTGGT4C

2⇒ AGGA2TG4CGTC 2⇒ AGGAA2T4CGCGTC 2⇒2 AGGAATCGCGTC

As obvious, under 2⇒, the grammar generates the language consisting of all the strings satisfying
the above-stated requirements. Therefore, as we can see, jumping grammars may fulfil a useful role
in studies related to DNA computing in the future.
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Open problem areas

Finally, let us suggest some open problem areas concerning the subject of this paper.

(I) Return to derivation modes (1) through (9) in Section 1. Introduce and study further modes.
For instance, in a more general way, discuss a jumping derivation mode, in which the only
restriction is to preserve a mutual order of the inserted right-hand-side strings, which can be
nondeterministicaly spread across the whole sentential form regardless of the positions of the
rewritten nonterminals. In a more restrictive way, study a jumping derivation mode over words
satisfying some prescribed requirements, such as a membership in a regular language.

(II) Consider propagating versions of jumping scattered context grammars. In other words, rule out
erasing rules in them. Reconsider the investigation of the present paper in their terms.

(III) The present paper has often demonstrated that some jumping derivation modes work just like or-
dinary derivation modes in scattered context grammars. State general combinatorial properties
that guarantee this behaviour.

(IV) Establish normal forms of scattered context grammars working in jumping ways.
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