
EXTRACTION OF INFORMATION FROM .NET EXECUTABLE FILES

Marek Milkovič

Abstract

The occurrence of malicious software written in .NET languages is rapidly increasing.

Extracting the information out of .NET executable file is therefore necessary step in order to

fight against this kind of malware. In this paper, we propose methods to extract information

out of .NET executable files, which are safe and platform independent. These methods

include data type reconstruction, but also extraction of unique features such as TypeLib

identifier or Module Version identifier. We also point out mistakes that are being done in this

field so far. After implementing the proposed methods, we compare it with already existing

.NET disassemblers yielding very good results. Extracted information are planned to be used

in creation of detection patterns, clustering and other areas at Avast Software.

Keywords: reverse engineering, executable files, .NET, type reconstruction, typelib

1 INTRODUCTION

According to studies, there was an increase of .NET malicious software (malware) from 2009

to 2015 by 1600% [8]. This gives us a motivation to reverse engineer and study .NET

executable files so we can understand this kind of malware because if we understand it, we

can create detection patterns that can match families of malware. We can cluster these

executable files based on their features. We can train neural networks with clean and malware

samples so it can help us triage what is malware and what is not. For all of this, we need to

decide what in .NET executable file is important, prevalent or unique enough that would

make make it all work. We need to find right set of features that would give us insight on how

is this executable file different from other malware strains and what it has common with the

samples in the same strain.

Despite that .NET executable files are stored in the same format as native Windows

executable files, we cannot use the same information as with native ones because this native

format is just used as an envelope that is almost the same across all .NET executable files.

This paper describes a way how to extract information from .NET executables without relying

on .NET framework because this might represent the potential risk. We also want our solution

to be dependency free in order to work on all commonly used platform nowadays. This paper

focuses on extraction of information that is important and unique enough such that it can be

used to create detection pattern or cluster the samples. The features we focus on are class

names, their methods, fields, properties TypeLib identifier and Module Version identifier.

2 EXECUTABLE FILE FORMAT

There are many file formats for executable files but we will be dealing with file format called

PE (Portable Executable) [6] because it is used as a container for storing .NET executable

files. Therefore, we need to understand some aspects of this format at first.

PE file format was introduced by Microsoft as successor to the old MZ format used on

DOS. You may sometimes see it called also PE/COFF because it was derived from COFF

format. It is still used to this day on modern Windows systems not only for executable files

(EXE), but also dynamic-link libraries (DLL) or multilangual interface files (MUI). Figure 1

shows the basic layout of PE file.

At the end of the PE header, there are structures containing information about data

directories, which are just parts of PE file with special semantics like imported symbols,

exported symbols, debugging information or CLR (Common Language Runtime) header. The

latter is used for storing the .NET metadata and serves for finding all the necessary

information about the .NET executable encapsulated in PE file.

Figure 1: Structure of executable file in PE format.

CLR header points to metadata header which is no longer part of PE specification. It

stores addresses of so-called streams. Each stream represents some specific type of data.

Available streams are:

• Metadata stream - Information about classes, fields, methods and many more.

Identified by name #~ or #-. The latter one is not documented identifier for metadata

stream but unofficial sources describe it as unoptimized stream [5]. Unoptimized

streams use undocumented indirect tables which will be described latter in this

chapter.

• GUID stream - Table of globally unique identifiers. Identified by name #GUID.

• Blob stream - Binary data such as encoded signatures of methods, types of attributes

and many more. Identified by name #Blob.

• String stream - Strings such as name of classes, fields, methods and many more.

Identified by name #Strings.

• User string stream - User defined strings without specific semantics. Identified by

name #US.

Figure 2 shows the hierarchy of structures storing .NET information.

There are multiple tables in metadata stream but not all of them need to be present at the

same time. Which tables are actually used is determined based on 64-bit word Valid written

in metadata stream header. Each bit of this word represents some specific table and if it is set

then also the associated table is present. Metadata stream header is followed by sizes of each

table. As last come the tables that are stored sequentially.

Tables are made of records which contain attributes. Attributes in the table record can

point to different streams when referencing name of the item e.g. name of the class references

string stream. This index is 2-bytes in size if the length of string stream is less than 216,

otherwise it is 4-bytes in size. The same applies also to indices pointing to other streams.

Apart from references to other streams, attributes can also reference other tables. If the

attribute points just to one specific table, then it works the same way as with the pointers to

the streams. Table pointer can however be dynamic and can point to multiple tables (just one

simultaneously). If the field can point to n tables, then we need ⌈log2(𝑛)⌉ bits to determine

which table to use. The maximum size of the table for compact (2-byte) index size is then

shrank down to 216 − ⌈log2(𝑛)⌉.

Figure 2: Hierarchy of structure in .NET executable file.

The almost complete list of all tables can be found in the standard ECMA-335 [2]. The

almost means that there are some tables which are not even mentioned in the standard, but

still can be found in the executable so be aware of these:

• Table #3 - FieldPtr

• Table #5 - MethodPtr

• Table #7 - ParamPtr

• Table #22 - PropertyPtr

These are so called indirect tables [5]. They are used in unoptimized streams. Methods, fields,

parameters or properties which belong to the same parent type are kept together in their tables

when stored in optimized stream. For unoptimized streams, rather than referencing child table

directly, indirect table is used. Records in indirect tables are kept together as in direct table

and they point to some item in their direct counterpart. That allows interleaving of items in

direct tables.

2.1 TypeLib identifier

TypeLib identifier is a generic unique identifier used when interacting with your .NET library

as COM (Component Object Model) interface. It is usually generated automatically when

creating new .NET project in Visual Studio but can be also generated manually when Visual

Studio does not provide you one. However, there may also be .NET modules without TypeLib

identifier if author did not choose to create one or found its bytes in the file and replaced them

with bogus values. It remains the same across different builds and consists of 16 bytes, so

there is very little probability that two .NET libraries has the same TypeLib identifier.

Therefore, it is a good source of information when classifying malware. It can be found in

blob stream and is usually written down in form described by this regular expression:

[a-z0-9]{8}-([a-z0-9]{4}){3}-[a-z0-9]{12}

2.2 Module Version identifier

Module version ID (or just MVID) is always automatically generated when building the

project and it uniquely identifies the build of .NET module. Same as with TypeLib identifier,

it consists of 16 bytes. In contrary to TypeLib identifier, it is always present in every single

.NET module. Since it changes with every new build it does not provide very broad detection,

but still can be used to identify matching modules where each may be packed with different

kind of packer or modified with some post-build scripts. This identifier is the easiest to

change because it is usually placed at the beginning of GUID stream. That is also the reason

we sometimes see executable files with MVID consisting of all zeroes in the wild.

3 RELATED WORK

The official documentation for CLI (Common Language Infrastructure) [2] describes the

concepts for transforming high-level constructs into low-level representation in CIL

(Common Intermediate Language). It explains what streams are and what metadata tables

should be used to store which kind of information. However, it does not mention anything

about unoptimized streams or indirect tables. You can read about these in the book .NET IL

Assembler [4] which provides more detailed explanation of each metadata table, contains

many information about undocumented features and is currently the best source of

information regarding CLI. Both of these however do not deal with type reconstruction.

From the analytical software point of view, there are currently many .NET disassemblers

which can already reconstruct the data types however all of them have a drawback. Some of

them cannot handle corrupted, packed or obfuscated files. Others are written in some other

.NET language (most likely C#) making it very hard to incorporate into other C/C++ libraries.

This approach can also be harmful if not done properly. Loading .NET module into memory

needs to be done in reflection-only mode otherwise malicious code can be executed on load.

The last problem we often face are undocumented features of CLI which are not supported.

The most notable example of a library for parsing .NET executables is dnlib [1] which is

the most robust from all the other libraries. However it is written in C# and thus relies on

.NET framework. Another example is ildasm [3], IL disassembler from Microsoft which

comes with every installation of Visual Studio. It is both GUI and console application. The

problem is that it is not very robust and tends to crash with packed or obfuscated binaries. Its

output is also not suitable for automated processing, because it dumps the whole disassembled

code. Similar to ildasm is ikdasm [4] which is just its clone that does not run on

System.Reflection module but rather on its reimplementation Managed.Reflection. The newer

alternative to ikdasm is monodis [7], which rely on Mono framework and has many bugs of

its predecessor fixed, but still not suitable for automated processing.

The first one to introduce TypeLib and Module Version identifier for .NET malware

classification was Brian Wallace [12]. He also suggested the ways to extract it either with

using .NET or just simply searching for strings with regular expression. The first approach is

not suitable for environments where .NET cannot be used and the latter is not reliable because

.NET binaries may contains many GUIDs. He also provided Python script for extraction of

TypeLib ID but this script does not know how to deal with some packed or obfuscated

binaries. This script was also incorporated into VirusTotal [10] resulting in inability to extract

TypeLib ID from certain executables. Project YARA [11], tool for searching detection

patterns written in declarative language called YARA, also supports parsing of TypeLib

identifier but it does not support unoptimized streams and also Module Version identifier.

4 INFORMATION EXTRACTION

In this chapter, we will describe how several selected information can be extracted from .NET

executable files. There are still many more information to extract than this chapter describes

but our focus is brought on data type reconstruction and detection of TypeLib identifier.

4.1 User-defined classes

For parsing user-defined classes we will use table TypeDef. Each record in this table contains

index into string stream with the name of the class and its namespace. In case of generic

class, the name of the class contains special suffix `N (backquote followed by number), where

N is the number of generic parameters. Additional information such as the accessibility of a

class, seal, abstractness or interface are determined based on Flags.

Structure of table TypeDef.

struct TypeDef {

 uint32 Flags

 Index<StringStream> Name

 Index<StringStream> Namespace

 Index<TypeDef, TypeRef> Extends

 Index<Field> FieldList

 Index<MethodDef> MethodList

}

4.2 External classes

External classes are imported from other modules. We can use this information to get slight

idea on what this binary does, but it is also important for proper reconstruction of user-defined

types. Table TypeRef is used for these kinds of types. It contains name and namespace such

as user-defined types, but nothing more.

Structure of table TypeRef.

struct TypeRef {

 Index<Module, ModuleRef, AssemblyRef, TypeRef> ResolutionScope

 Index<StringStream> Name

 Index<StringStream> Namespace

}

4.3 Class fields

Records in the table TypeDef contain field FieldList, which is index to Field table (FieldPtr

for unoptimized streams). The number of fields is determined from the indices of two

consecutive TypeDef records. For the last record, the number of fields is determined as

difference between the size of Field table (FieldPtr for unoptimized streams) and the index of

the last FieldList value.

Each field record represents one field in class. It contains index into string stream with its

name. The data type of field is determined from the encoded signature that is located in blob

stream. Visibility and more additional information is determined from Flags.

Structure of table Field.

struct Field {

 uint16 Flags

 Index<StringStream> Name

 Index<BlobStream> Signature
}

4.4 Class properties

Reconstruction of properties is not as straightforward as fields. The table Property contains

all properties in user-defined types. Association of records in TypeDef table and Property

table is then done through table PropertyMap. Everything else is the same as with fields.

Each record in PropertyMap contains field PropertyList, which points to the first property

of associated class in the table Property (PropertyPtr for unoptimized streams). The number

of properties is determined from two consecutive PropertyMap records.

4.5 Methods

The table MethodDef is used for reconstruction of class methods. The number of methods is

calculated the same way as with fields and properties. The number and types of formal

parameters needs to be extracted from the encoded signature present in the blob stream which

is indexed with attribute Signature. In case of generic method, the first byte of signature has

sixth bit (starting from 1) set to 1. It is followed by encoded number of parameters which are

further followed by encoded types of each individual parameter. Identifiers of parameters are

reconstructed from the table Param which the attribute ParamList points to (ParamPtr for

unoptimized streams).

Structure of tables Property and PropertyMap.

struct Property {

 uint16 Flags

 Index<StringStream> Name

 Index<BlobStream> Signature

}

struct PropertyMap {

 Index<TypeDef> Parent

 Index<Property> PropertyList

}

Structure of table MethodDef.

struct MethodDef {

 uint32 RVA

 uint16 ImplFlags

 uint16 Flags

 Index<StringStream> Name

 Index<BlobStream> Signature

 Index<Param> ParamList

}

4.6 Inheritance

Inheritance is determined from TypeDef table. Records there contain Extends, which is

reference to one of tables TypeDef, TypeRef or TypeSpec. The latter is used in case of

inheritance from generic class specialization such as Class<int>.

There is no support for multiple inheritance, but single class can implement several

interfaces. These are not handled through Extends but rather table InterfaceImpl, which

contains just two fields for each record and that is reference to TypeDef as class

implementing the interface and the reference to either TypeDef, TypeRef or TypeSpec as

interface being implemented.

4.7 Generic parameters

It is appropriate to reconstruct also names of generic parameters for which the table

GenericParam is used. Attribute Owner references either TypeDef or MethodDef

depending on whether the generic parameters belongs to class or method. The name is then

references with attribute Name that points to string stream.

Structure of table TypeRef.

struct GenericParam {

 uint16 Number

 uint16 Flags

 Index<TypeDef, TypeRef> Owner

 Index<StringStream> Name

}

4.8 Nested classes

When dealing with nested classes, we face a problem because class defined in another class

does not have right namespace set in TypeDef table and if we want to reconstruct fully

qualified names of all types, we need to deal with this situation. The table NestedClass helps

with this because it provides information about nesting. Nested class is references with

attribute NestedClass and its parent is references with EnclosingClass.

Structure of table NestedClass.

struct NestedClass {

 Index<TypeDef> NestedClass

 Index<TypeDef> EnclosingClass

}

Structure of tables InterfaceImpl and TypeSpec.

struct InterfaceImpl {

 Index<TypeDef> Class

 Index<TypeDef, TypeRef> Interface

}

struct TypeSpec {

 Index<BlobStream> Signature

}

4.9 TypeLib ID & MVID

In order to find TypeLib, we first need to locate record in TypeRef table that refers to type

named GuidAttribute and is from module mscorlib. After that, we search the table

MemberRef for reference to record in TypeRef we found in the first step. The last step

involves searching the table CustomAttribute for a reference to record found in the second

step. There can be multiple such references so we need to check each one whether it points to

string in string stream that can be matched with regular expression for generic unique

identifier.

Finding MVID is fairly easy. We just need to take the very first record out of Module

table and of it its attributes is actually called Mvid which points to GUID stream.

5 RESULTS

We implemented the reconstruction of .NET information in pure C++ based on the

description given in previous chapter as a part of tool fileinfo. This tool is part of project

RetDec [9] developed by Avast. It is used to extract various information out of binary files in

multiple file formats.

We then compared the results with some of the tools mentioned in Chapter 3. We were

not able to compare every single one because some of them does not provide any interface to

automatize the testing. The interesting for us was robustness when dealing with corrupted,

packed or obfuscated binaries, which are fairly common in the world of malware. We have

downloaded 100,000 executable files from VirusTotal [10], which were marked with tags

peexe and assembly and imported at least one symbol from library mscoree.dll.

The machine used for testing was server with 2x Intel Xeon E5-2699 v4@2.20GHz and

256 GB of RAM. Each program was run separately. All 100,000 samples were processed in

parallel. There was a timeout of 60 seconds and if the tested program did not produce any

result in that time it was killed. The success rate results are shown in Table 1. Errors means

how many times the program returned something other than 0. Crashes show the number of

segmentation faults, aborts and other unexpected terminations. Timeouts just means how

many times we had to kill the program after 60 seconds. You can clearly see that the best

results achieved fileinfo. The single timeout was caused by sample that had really complex

.NET class hierarchy so it would need more than 60 seconds to finish.

Table 1: Success rate results.

 Errors Crashes Timeouts

fileinfo 0 0 1

monodis 905 47042 6

ikdasm 9342 149 192

In the Table 2, you can see performance results. Times you see in the table are calculated

as average of 10 consecutive test runs. Running time means how long were tests actually

running on all 100,000 samples. Total time is sum of all durations of every single instance of

tested program. Even though fastest was monodis, we need to take into account that it

crashed a lot of times, therefore skewing the performance results.

Table 2: Performance results.

 Running time Total time

Fileinfo 6m 45s 9h 45m 56s

Monodis 1m 47s 1h 47m 12s

Ikdasm 26m 36s 1d 13h 46m 26s

6 CONCLUSION AND FUTURE WORK

We have dealt with extraction of data types, TypeLib identifier and Module Version identifier

(MVID) out of .NET executable files in this paper. We have described how we can reconstruct

classes, methods, fields, properties, inheritance hierarchy and nesting of classes. We have also

described the way to properly extract TypeLib identifier and MVID. We implemented

proposed methods and compared the results against other available .NET disassemblers. We

pointed out the mistakes that are made in the current world of malware hunting. During work

on this article, we have contacted VirusTotal [10] and reported them our findings about some

packed and obfuscated binaries that do not have any or have an incorrect TypeLib identifier

shown on their web. We also made pull request with adding support for unoptimized streams

into project YARA [11].

The achieved results are more than satisfactory. The hardened implementation backed up

by research in reverse engineering of .NET executable files proved to be better than usual

implementations based on .NET framework reflection. In the time of writing of this article,

the source code is not available as it is part of retargetable decompiler RetDec [9] developed

by Avast Software. However, it is already in the process of open sourcing and it should be

available on official Avast GitHub profile page by the end of the year 2017.

In the future, we would like to research for additional features that can be extracted from

.NET executable files. We would also like to build further on the proposed methods and start

creating detection patterns out of the extracted information. Clustering and machine learning

are also the long-term goals for .NET executable files.

Acknowledgment

This work was supported by Avast Scholar program created by Avast Software s.r.o.

Sources

1. 0xd4d/dnlib: dnlib is a library that can read, write and create .NET assemblies and

modules. https://github.com/0xd4d/dnlib. [online; 30-11-2017].

2. ECMA International. Standard ECMA-335 – Common Language Infrastructure

(CLI). https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-

335.pdf. [online; 26-11-2017]. June 2012.

3. Ildasm.exe (IL Disassembler) | Microsoft Docs. https://docs.microsoft.com/en-

us/dotnet/framework/tools/ildasm-exe-il-disassembler. [online; 30-11-2017].

4. jfrijters/ikdasm: Managed.Reflection based ildasm clone.

https://github.com/jfrijters/ikdasm. [online; 30-11-2017].

5. Lidin, S. .NET IL Assembler. Apress, 2014. ISBN 1430267615.

6. Microsoft. PE Format. https://msdn.microsoft.com/en-

us/library/windows/desktop/ms680547(v=vs.85).aspx. [online; 26-11-2017].

7. mono/mono: Mono open source ECMA CLI, C# and .NET implementation.

https://github.com/mono/mono. [online; 30-11-2017].

8. Pontiroli, S., Martinez, R., The rise of .NET and Powershell malware.

https://securelist.com/the-rise-of-net-and-powershell-malware/72417/.

[online; 26-11-2017].

9. Retargetable Decompiler. https://retdec.com/, [online; 28-11-2017].

10. VirusTotal – Free Online Virus, Malware and URL Scanner.

https://www.virustotal.com/en/. [online; 26-11-2017].

11. VirusTotal/yara: The pattern matching swiss knife.

https://github.com/VirusTotal/yara. [online; 26-11-2017].

https://github.com/0xd4d/dnlib
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-335.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-335.pdf
https://docs.microsoft.com/en-us/dotnet/framework/tools/ildasm-exe-il-disassembler
https://docs.microsoft.com/en-us/dotnet/framework/tools/ildasm-exe-il-disassembler
https://github.com/jfrijters/ikdasm
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680547(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680547(v=vs.85).aspx
https://github.com/mono/mono
https://securelist.com/the-rise-of-net-and-powershell-malware/72417/
https://retdec.com/
https://www.virustotal.com/en/
https://github.com/VirusTotal/yara

12. Wallace, B. Using .NET GUIDs to help hunt for malware.

https://www.virusbulletin.com/uploads/pdf/magazine/2015/vb201506-NET-

GUIDs.pdf. [online; 27-11-2017].

Contact

Ing. Marek Milkovič

Božetěchova 1/2, 612 00 Brno-Královo Pole, Czechia

Tel: +421 948 038 667

Email: imilkovic@fit.vutbr.cz

https://www.virusbulletin.com/uploads/pdf/magazine/2015/vb201506-NET-GUIDs.pdf
https://www.virusbulletin.com/uploads/pdf/magazine/2015/vb201506-NET-GUIDs.pdf

