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Abstract— Synthesized retinal images are highly demanded in the
development of automated eye applications since they can make
machine learning algorithms more robust by increasing the size and
heterogeneity of the training database. Recently, conditional Generative
Adversarial Networks (cGANs) based synthesizers have been shown to
be promising for generating retinal images. However, cGANs based
synthesizers require segmented blood vessels (BV) along with RGB
retinal images during training. The amount of such data (i.e., retinal
images and their corresponding BV) available in public databases is
very small. Therefore, for training cGANs, an extra system is necessary
either for synthesizing BV or for segmenting BV from retinal images.
In this paper, we show that by using unconditional GANs (uGANs) we
can generate synthesized retinal images without using BV images.

I. INTRODUCTION

Computer-aided diagnosis systems (CADS) for retinopathy are
largely demanded by eye specialists. Advanced machine learning
algorithms used for developing CADS are data hungry. However,
available retinal image databases are small since the acquisition and
labeling processes of retinal images are expert-dependent, tedious,
time-consuming and costly. Besides, retinal image databases may
suffer from severe class imbalance due to the rare nature of some
pathology (e.g., venous omega loops in diabetic retinopathy). By
synthesizing retinal images we can increase the size and heterogene-
ity of the training database which ultimately helps machine learning
algorithms be more robust for developing CADS for retinopathy
as well as for research. Now these days, Generative Adversarial
Networks (GANs) [1] are used in almost all areas of image [2],
[3], [4], speech [5], [6], [7], [8] or text processing [9], [10]. Even
though GANs have been used to deal with many well known and
challenging tasks such as segmentation, reconstruction, detection,
denoising or classification, they are mainly used for synthesis. In
[11], it has been reported that in medical image processing, the
majority of GANs based works (around 40%) are for synthesizing
medical images. Originally, GANs were proposed as an entirely
unsupervised generative framework [1]. In that work, only noise
vectors sampled from a known distribution were used to generate
‘fake-but-realistic’ data points. Later unsupervised framework was
turned into a supervised generative framework by using extra
information (e.g., class labels) along with noise vectors. For clarity,
the former GANs are called unconditional or unsupervised GANs
(uGANs) [12], [11], whereas the later GANs are named conditional
GANs (cGANs) [13]. As medical image synthesizers, cGANs have
been applied more than uGANs [11]. The few works [14], [15],
[16], [17] found in the literature for GANs based retinal image
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synthesizer are all based on cGANs. In all those works, blood
vessel (BV) trees were used as the extra information. How to obtain
BV trees made those works different. In [14], ground truth of BV
trees were used, whereas in [15] synthesized BV trees generated
by additional GANs were used. In [16], a U-Net [18] was used
to get BV trees from RGB retinal images, whereas in [17] an
adversarial autoencoder was used to synthesize BV trees. In spite of
having potentiality, uGANs based retinal image synthesizers have
not been explored properly in past. In this paper, we show that it
is possible to generate realistic retinal images by uGANs as long
as the hyperparameters that control the balance between its two
competing training objectives are carefully tuned.

II. GANS BASED SYNTHESIZER

GANs based retinal image synthesizer consists of two neural
networks: a generator (G) and a discriminator (D). The target of
G is to generate RGB retinal images, X̂ ∈ Rh×w×3, which look
as realistic as the images in the training database, X ∈ Rh×w×3.
Here, h and w denote height and width of retinal images.

Contrary to G, the target of D is to decide what the probability
is that retinal images are from X or from X̂. During training, the
parameters of D and G are updated in an iterative process so that
in each iteration both G and D reach closer to their targets. After
some iterations, they are expected to reach a Nash Equilibrium point
where none of them can improve their performance anymore, i.e.
Eq. 1 holds.

px̂ = px, (1a)

D(x ∈ X) = D(x̂ ∈ X̂) =
1

2
, (1b)

where px̂ and px are the probability distributions of X̂ and X,
respectively. For uGANs based synthesizer, the targets of G and D
can be formulated as Eq. 2 and Eq. 3, respectively:

G : z ∈ Rd 7→ x̂ ∈ X̂, so that (2a)

px̂ = px, (2b)

D : x ∈ X 7→ 1, and, (3a)

x̂ ∈ X̂ 7→ 0, (3b)

where z is a noise vector sampled from any known distribution pz

[e.g., pz ∼ N (0, I), or pz ∼ U(−1, 1)]; d is the dimension of
z. For cGANs based synthesizer, the targets of G and D can be
formulated as Eq.4 and Eq.5, respectively:

G : (z, c) 7→ x̂ ∈ X̂, so that (4a)

px̂ = px, (4b)

D : (x, c) 7→ 1, and, (5a)

(x̂, c) 7→ 0, (5b)
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Fig. 1. (a) Unconditional GANs based retinal image synthesizer and (b)
conditional GANs based retinal image synthesizer.

where c is some kind of auxiliary information. During training,
the parameters of D and G are updated iteratively targeting to find
D∗ and G∗ given by Eq. 6 and Eq. 7 for uGANs and cGANs,
respectively:

G∗,D∗ = argmin
G

max
D

(
Ex∼px [logD(x)]

+ Ez∼pz [log(1−D(G(z)))]
)
.

(6)

G∗,D∗ = argmin
G

max
D

(
Ex∼px,c∼pc [logD(x, c)]

+ Ez∼pz ,c∼pc [log(1−D(c,G(z, c)))]
)
.

(7)

In previous works (e.g., [14], [15], [16], [17]) gray scaled BV
trees were used as c (i.e., c ∈ Rh×w×1). That means, in those
works G used both noise vectors and BV trees for generating retinal
images and D discriminated between the pairs of synthetic retinal
image and BV trees from the pairs of real retinal image and BV
trees (see Fig. 1 (b)). Contrary to cGANs based synthesizer, G
in uGANs based synthesizer generates retinal images only from
noise vectors z and D discriminates only between synthetic and real
retinal images (see Fig. 1 (a)). Although, uGANs based synthesizer
requires a simpler data processing step than the cGANs based
synthesizer, in the literature we have not found any uGANs based
retinal image synthesizer.

III. BALANCE BETWEEN GENERATOR AND
DISCRIMINATOR

By following the gradient-based training approach given in [1],
theoretically, we can reach the Nash Equilibrium point. In the
gradient-based approach [1], (see Algorithm 1 in Table I), first D
is trained for k times after which G is trained once. This training
process continues until it convergences. In this approach there is
only one hyperparameter, i.e., k to control the number of updates
of D, and no hyperparameter to control the number of updates
of G. Variations of this approach are also seen in the literature
where one hyperparameter, say r is used to control the number of
updates of G instead of D. In [1] for generating images of digits,
faces, animals, or vehicles, k = 1 was chosen because it was the
least expensive option. For some systems such as cGANs based
retinal image synthesizer in [14], updating G twice while keeping
k = 1 for each iteration was better. In our experiments, neither of
these settings worked well. With k = 1, the generated images lack
complex structures of BV trees, the macula or the optic disk (see
1st row of Fig. 3). On the other hand, with r = 2 while keeping
k = 1 the generated images were noisy (as shown in the 1st row of
Fig. 6). Therefore, we have decided to keep both hyperparameters

TABLE I
ALGORITHMS OF UGANS

Algorithm 1
for n iterations do

• For k times
– Prepare a mini-batch of retinal images {(x, x̂)mi=1}kn where

m is the mini-batch size.
– Update D using mini-batch {(x, x̂)mi=1}kn.

• Update G once using a mini-batch of noise vectors, {(z)mi=1}n.

Algorithm 2
for n iterations do

• For k times
– Prepare {(x, x̂)mi=1}kn.
– Update D using {(x, x̂)mi=1}kn.

• For r times
– Prepare {(z)mi=1}rn.
– Update G using {(z)mi=1}rn.

for training uGANs based retinal image synthesizer as shown in
Algorithm 2 in Table I.

Finding the appropriate values of k and r is crucial for the
performance of GANs based system since they help to balance D
and G during training. If they are not properly tuned then G will end
up generating noisy retinal images without complex structures. Both
too small and too large values of k can prevent D from giving proper
feedback to G. If k is too small, D may not learn distinguishable
features between real and fake images and therefore the feedback
given to G will be quite random. If k is too large comparing to r,
D may become so strong that (small) changes in the fake images
generated by G will not affect the predictions of D significantly
and therefore the feedback given to G will be too weak.

IV. EXPERIMENTS

A. Setup

All implementations were done using TensorFlow’s Keras API
and Python. A cluster machine with 23 nodes having two Intel
Sandy Bridge E5-2470, 8-core, 2.3GHz processors, 96 GB of
physical memory, and NVIDIA Tesla Kepler K20m having 4.63
GB Memory per node, was used. In total 1200 images, from the
public database MESSIDOR [19] were used. These images were
acquired by 3 ophthalmologic departments using a color video
3CCD camera on a Topcon TRC NW6 non-mydriatic retinograph
with a 45 degree field of view. The images were captured using 8
bits per color plane. Among those 1200 images 588 images were
960× 1440, 400 images were 1488× 2240 and 212 images were
1536 × 2304. In our experiments, all images were re-sized to the
same size (i.e., 256×256) by bicubic interpolation. After re-sizing,
rectangle images become square and retina become oval shaped.
Therefore, synthesized retina were also oval-shaped. In order to get
round shaped retina, either rectangle images need to be transferred
to square images by cropping dark background before re-sizing
at the pre-processing stage, or square shaped synthesized images
need to be transferred to rectangle images by re-sizing as a post-
processing task. Later approach was chosen here.

The RGB values of the re-sized images were re-scaled to the
range of the tanh activation function [−1, 1]. Except that, no other
pre-processing was applied to the training images. As shown in
Fig. 2, there were images contained healthy retina as well as
retina with pathology (e.g., the bottom-right retina). The mini-
batch size was set to 32 (i.e., m = 32). Noise vectors were
drawn from the uniform distribution. A deep convolutional neural
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Fig. 2. Some sample images from the training set [Res. 256× 256].

Fig. 3. Synthesized images when k and r had the equal values less than
or equal to 4. 1st column: k = 1, r = 1, 2nd column: k = 2, r = 2,
3rd column: k = 3, r = 3, 4th column: k = 4, r = 4. [Res. 256 × 256,
n = 10000, d = 512.]

network based architecture suggested in [20] was followed with
minor modifications. Table II shows the model architecture for
256×256 sized images. As loss function, binary cross-entropy was
used as shown in Eq 7. As optimizer, RMSProp with a learning rate
of 0.0001 and a decay of 3e−8 was used. The dropout value was set
to 0.5. For batch normalization, momentum was set to 0.5 instead
of default value 0.99. For LeakyReLU, α was set to 0.2 instead of
default value 0.3. For all convolutional and transposed convolutional
layers, stride = 2, kernel size = 5, and padding = same was
used. l2 regularization was applied only for weights and biases
of the transposed convolutional layers. For all other settings, the
default values of TensorFlow’s Keras API were used.

In order to obtain clear BV trees in reasonable training time,
images with 256×256 resolution, and n = 10000 were chosen for
all experiments. Although the majority of previous works used d =
100, in our initial experiments, better retinal images were achieved
when d = 512. Therefore, for all later experiments d = 512 was
used.

B. Results

As shown in Fig. 3, when k and r had the same values until 4,
the synthetic images did not have any complex structures of BV
trees, the macula or the optic disk. However, the models trained by
using the same values for k and r above 4 generated the complex
structures of retina (see Fig. 4). With larger values of k while
keeping r = 1, the quality of the synthetic images became better as
shown in Fig. 5. On the other hand, with larger values of r while
keeping k = 1, the synthetic images were very noisy as shown in
Fig. 6.

C. Evaluation

To evaluate the GANs based synthesizer, 1000 images were
generated and Structural Similarity (SSIM) [21] was estimated
for all synthetic image pairs, all real image pairs as well as all
combinations of synthetic and real images. The range of SSIM
is [−1, 1]. The higher the SSIM value, the more similar is the
image pair. Table III summarizes the results. In the first row, the
mean SSIM of all image pairs is shown. The synthetic images are
slightly more similar (SSIM mean 0.66) to each other than the real
images (SSIM mean 0.63). The similarity between synthetic and
real images is slightly smaller (SSIM mean 0.61). These numbers

Fig. 4. Synthesized images when k and r had the equal values above 4.
1st row: k = 5, r = 5, 2nd row: k = 6, r = 6, 3rd row: k = 7, r = 7, 4th
row: k = 8, r = 8, 5th row: k = 12, r = 12. [Res. 256×256, n = 10000,
d = 512.]

Fig. 5. Synthesized images when k gets higher while r = 1. 1st row:
k = 2, r = 1, 2nd row: k = 3, r = 1, 3rd row: k = 4, r = 1, 4th row:
k = 5, r = 1, 5th row: k = 6, r = 1. [Res. 256 × 256, n = 10000,
d = 512.]

Fig. 6. Synthesized images when r gets higher while k = 1. 1st column:
k = 1, r = 2, 2nd column: k = 1, r = 3, 3rd column: k = 1, r = 4. [Res.
256× 256.]

suggests that the method works well, however it is possible to obtain
these results (or even better) with a trivial synthesizer that simply
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TABLE II
MODEL ARCHITECTURE FOR 256× 256.

D
Layer Output Shape
——– —————–
Input (256, 256, 3)
Conv2D + LeakyReLU + Dropout (128, 128, 32)
Conv2D + LeakyReLU + Dropout (64, 64, 64)
Conv2D + LeakyReLU + Dropout (32, 32, 128)
Conv2D + LeakyReLU + Dropout (16, 16, 256)
Conv2D + LeakyReLU + Dropout (8, 8, 512)
Conv2D + LeakyReLU + Dropout (4, 4, 1024)
Dense + Sigmoid (1)

G
Layer Output Shape
——– —————–
Input (d)
Dense + Reshape (4, 4, 1024)
Conv2DTranspose + BatchNorm + ReLU (8, 8, 512)
Conv2DTranspose + BatchNorm + ReLU (16, 16, 256)
Conv2DTranspose + BatchNorm + ReLU (32, 32, 128)
Conv2DTranspose + BatchNorm + ReLU (64, 64, 64)
Conv2DTranspose + BatchNorm + ReLU (128, 128, 32)
Conv2DTranspose + BatchNorm + Tanh (256, 256, 3)

TABLE III
STATISTICS FOR SSIM (S: SYNTHETIC, R: REAL)

SSIM statistic S-S R-R S-R
Mean SSIM: 0.66 0.63 0.61
Mean of Maximum SSIM: 0.86 0.82 0.73
Maximum SSIM: 0.94 0.88 0.81

Fig. 7. Image pair having the maximum SSIM when k = 8 and r = 8.
[Res. 256× 256, n = 10000, d = 512]

picks images randomly from the training set. If this is the case,
the maximum SSIM of each synthetic image when compared to
the training images should be close to one. The second row shows
the mean for the maximum SSIM. Clearly, the above mentioned
problem did not occur. Finally, the third row shows the maximum
SSIM value obtained for any image pair. Fig. 7 shows the pair
of images having the maximum SSIM when synthetic images
were compared to either the other synthetic or the real images. In
conclusion, G did not simply memorize training images, rather it
showed its creativity in the generated images by using information
learned from the training data.

V. CONCLUSIONS

In previous GANs based synthesizers, blood vessel trees were
used along with noise vectors to generate retinal images. The results
in this paper show that without any extra information (such as blood
vessel trees) it is also possible to generate retinal images by GANs.
It is also shown how important it is to keep a balance between the
two competitors (i.e., generator and discriminator) during training.
If this balance is not kept, the generator may end up generating
only blurry retina images without high-level structures such as
blood vessel tree, optic disc, macula, etc. Generating high resolution
retinal images from only noise vectors without having to tune the
balancing hyperparameters is our future challenge.
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