
Towards novel format for representation of
polymorphic circuits
Adam Crha, Václav Šimek, Richard Růžička

Faculty of Information Technology, Brno University of Technology
Božetěchova 2, Brno, 612 66, Czech republic

icrha@fit.vutbr.cz, simekv@fit.vutbr.cz, ruzicka@fit.vutbr.cz

Abstract—This paper is focused on the introduction of a novel
format for representation of complex polymorphic circuits. Core
of this newly presented format is based on the exploitation of
And-Inverter Graph (AIG) scheme with a number of extensions.
Then, synthesis flow can exploit considerable advantages in
terms of the capability to handle at ease more extensive circuit
structures involving hundreds of gates and employ subsequent
optimization techniques resulting in an improved area-efficiency
performance. The actual format notation, explanation of its
visual features appearance meaning and comparison with selected
conventional approaches are presented. Finally, accomplished
experimental results and their analysis is provided.

Index Terms—Polymorphic electronics, synthesis techniques,
And-Inverter graph, circuit representation.

I. INTRODUCTION

Contemporary state-of-the-art paradigms, design approaches
and fabrication procedures are getting closer to the ultimate
technological constraints, which are associated with the phys-
ical foundations of the widespread conventional CMOS pro-
cess. A specific approach how to address these peculiar needs,
at least in certain situations, could be based upon the principles
of so-called polymorphic or multifunctional electronics [1].

Main idea behind the polymorphic electronics approach is
connected with a circuit structure that is able to perform
more than one intended function. It is characteristic that
the interconnection of the circuit components (gates) remains
unchanged in contrast to the conventional electronics where
the function must be explicitly hard-wired.

Unfortunately, conventional design methods and algorithms
are not directly applicable for a design of polymorphic circuits
without the need to implement major changes. Besides various
design and synthesis techniques themselves, one of the key
aspect is also defined by the availability of suitable format that
makes it feasible to efficiently capture the structure of even
complex polymorphic circuits involving hundreds of gates.
It is essential for convenient handling of those circuits from
the perspective of synthesis tasks, minimization operations,
simulation of their behaviour and many other.

II. CONCEPT OF POLYMORPHIC ELECTRONICS

It is important to emphasize at this point that all the required
circuit functions are designed in a fully intentional manner
rather than, for example, as a specific fault condition caused by
exceeding certain operating parameters of the circuit. State of
the environment, where such circuitry is going to be deployed,

can be accurately expressed through a physical quantity with
a direct impact on the electrical properties of circuit building
elements. Then, it is possible to clearly determine the actual
function to be realized by that circuit according to the specific
value of a relevant parameter [2]. Such behaviour is useful for
circuits that must adapt itself to unfriendly environment, e.g.
by imposing restriction of power consumption [3].

III. ELEMENTS OF AND-INVERTER GRAPH SCHEME

One of the most ubiquitous schemes used for representation
of a conventional digital circuit is known as And-Inverter
graph (AIG). In fact, its core principle is based on an acyclic
network of nodes and edges, where node is two-input AND
gate and edge behaves like a negation of the logic signal
passing through it between nodes.

A. Toolset for operation with AIGs

The term AIGER [4] denotes a format and, in the same time,
also set of utilities for And-Inverter Graphs processing, which
was developed at Johannes Kepler University in Linz. AIGER
has been presented to the general audience at the Alpine Ver-
ification Meeting 2006 in Ascona. Main idea was to provide
a simple, compact file format for a model checking purposes.
In fact, the specification of AIGER format is available in two,
slightly different version: an ASCII and a binary. Each version
is conceived with the aim to accommodate somewhat different
purpose.

IV. PROPOSAL OF NOVEL FORMAT

With the aim to keep the complex nature of polymorphic
circuits synthesis at a reasonable level, number of permissible
modes for each node within AIG representation was strictly
limited to the number of two. It means the final polymorphic
circuit can ultimately work only in just two different operating
modes, where the actual mode is switched by state of the en-
vironment. In general, a resulting behaviour of the circuit built
in AIG can be affected only by two aspects - interconnection
and edges (wire or inverter).

One of the possible ways how to enhance the capabilities
of AIGs involves definition of new edge types. Thanks to
the polymorphism it is possible to change behaviour of gates
and also inverters. AIG contains only AND gates, however,
any other function can be built from AND gates and their
appropriate interconnection. This idea has resulted into the

2018 13th International Conference on Design & Technology of Integrated Systems in Nanoscale Era
(DTIS)

978-1-5386-5290-9/18/$31.00 ©2018 IEEE

	

no. Description Conventional solution Polymorphic solution Improvement
Description Circuit 1 Circuit 2 Circuit 1 Circuit 2 SUM AIG PAIG Conv. vs PAIG. AIG vs PAIG

[ANDs] [ANDs] [ANDs] [ANDs] [ANDs] [%] [%]
1 2-bit ALU Logic ALU Arithmetic ALU 9 7 16 18 10 44.44 37.50
2 2-bit Adder SUM Carry 4 6 10 13 7 46.15 30.00
3 Cellular tr.function Rule 30 Rule 100 4 4 8 13 6 53.85 25.00
4 GRAY/BCD Coder Gray BCD 16 7 23 26 16 38.46 30.43
5 Self-checking adder Carry Carry 4 4 8 8 4 50.00 50.00

TABLE I
RESULTS COMPARISON OF CONVENTIONAL AIG REPRESENTATIONS AND PAIG REPRESENTATIONS.

extended variety of edge types - from the initial two types to
total of four types now:

1) Normal edge - wire.
2) Inverted edge - inverter.
3) Polymorphic edge 1:

• In mode 1 - wire,
• in mode 2 - inverter.

4) Polymorphic edge 2:
• In mode 1 - inverter,
• in mode 2 - wire.

The ordinary AIGER format works only with unsigned
integers, where the even reference indexes are treated as
”wires” and odd are being seen as ”inverters”. At the beginning
it is necessary to inform AIGER parser about the intention
to use the extended format. Format identifier in header must
contain ”paag” string. Then, the extension for polymorphic
circuits will be correctly recognized. Extending AIGER to
work with signed integers is necessary for the support of new
edge types - polymorphic edges. In fact, ordinary edges are
staying unchanged, while the polymorphic edges have negative
prefix before their object index. Following example highlights
the proposed extension:

• Polymorphic edge 1 (mode 1 = wire, mode 2 = inverter)
will be noted as negative even integer.

• Polymorphic edge 2 (mode 1 = inverter, mode 2 = wire)
will be noted as negative odd integer.

V. EXPERIMENTS AND DEMONSTRATION

For the purpose of demonstrating properties of the newly
proposed format for polymorphic circuits representation five
different experiments were prepared in total. These exper-
iments clearly show the efficiency of polymorphic circuits
handling using new PAIG (paag) format in comparison with
conventional solution based on standard AIGER format with-
out additional modifications.

The table I summarizes the results of all the conducted
experiments. The table is separated into two main columns:
Conventional solution and polymorphic solution. The con-
ventional solution contains number of used AND gates with
conventional technology and AIG representation. The poly-
morphic solution contains number of ANDs required by
polymorphic technology. An AIG column contains number
of ANDs required in case of using virtual polymorphism
(basic AIG representation). A column PAIG denotes number
of used ANDs in PAIG/PAAG required by the newly proposed

format of circuit representation. Third column shows improve-
ment in a percentage ratio between conventional solution vs
polymorphic solution and also the comparison of virtualized
polymorphism to PAIG/PAAG representation. The proposed
PAIG/PAAG representation scheme can provide average sav-
ing of 34.59% AND gates.

CONCLUSIONS

Novel format for representation of polymorphic circuits
using AIG was proposed in this contribution. It is an extension
of AIGER format, which is fully supported in well known
tools as ABC and similar ones. Several experiments show that
the novel format turns out to be very effective approach to the
representation of polymorphic circuits, including very complex
variants.

Future research directions are aiming at the development
of PAIG tools package for synthesis of more complex poly-
morphic circuits, including polymorphic variant of the original
rewriting and structural hashing operation [5]. This tool will be
based on PAIG/PAAG format while preserving the backward
compatibility with AIG format. The preliminary tests indicate
the perspective to obtain very good results in case of more
complex circuits.

ACKNOWLEDGMENT

This work was generously supported by the grant FIT-S-17-
3994 of Brno University of Technology, “Advanced parallel
and embedded computer systems” (2017-2019). Another sup-
port was also provided by The Ministry of Education, Youth
and Sports of the Czech Republic from the National Program
of Sustainability (NPU II); project IT4Innovations excellence
in science - LQ1602.

REFERENCES

[1] A. Stoica, R. Zebulum, and D. Keymeulen, “Polymorphic electronics.
Proc. of Evolvable Systems: From Biology to Hardware Conference,”
vol. 2210 of LNCS, pp. 291–302, 2001.

[2] A. Stoica and R. Zebulum, “Multifunctional logic gate controlled by
temperature,” in NASA Tech Briefs. California Institute of Technology,
2005, p. 18, NPO-30795.

[3] R. Růžička, “Gracefully degrading circuit controllers based on polytron-
ics,” in Proc. of 13th Euromicro Conference on Digital System Design.
IEEE Computer Society, 2010, pp. 809–812.

[4] A. Biere, K. Heljanko, and S. Wieringa, “AIGER 1.9 and beyond,” FMV
Reports Series, Institute for Formal Models and Verification, Johannes
Kepler University, Altenbergerstr. 69, 4040 Linz, Austria, Tech. Rep.,
2011.

[5] A. Mishchenko, S. Chatterjee, and R. Brayton, “Dag-aware aig rewriting:
a fresh look at combinational logic synthesis,” in 2006 43rd ACM/IEEE
Design Automation Conference, July 2006, pp. 532–535.

!

!

