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Abstract: Circuit approximation has been introduced in recent years as a viable method for constructing energy-efficient
electronic systems. An open problem is how to effectively obtain approximate circuits showing good compromises between key
circuit parameters – the error, power consumption, area and delay. The use of evolutionary algorithms in the task of circuit
approximation has led to promising results. Unfortunately, only relatively small circuit instances have been tackled because of
the scalability problems of the evolutionary design method. This study demonstrates how to push the limits of the evolutionary
design by choosing a more suitable representation on the one hand and a more efficient fitness function on the other hand. In
particular, the authors show that employing full adders as building blocks leads to more efficient approximate circuits. The
authors focused on the approximation of key arithmetic circuits such as adders and multipliers. While the evolutionary design of
adders represents a rather easy benchmark problem, the design of multipliers is known to be one of the hardest problems. The
authors evolved a comprehensive library of energy-efficient 12-bit multipliers with a guaranteed worst-case error. The library
consists of 65 Pareto dominant solutions considering power, delay, area and error as design objectives.

1 Introduction
In recent years, a new research field was established to investigate
how computer systems can be made more energy efficient, faster
and less complex by relaxing the requirement that they are correct.
This field, denoted as approximate computing, exploits the fact that
many applications are error resilient and the errors in computing
are thus either invisible or acceptable [1]. The concept of
approximation has intensively been studied, developed and applied
not only in computer science, but also in mathematics and
engineering disciplines. However, it has never been applied in the
areas in which only accurate implementations have traditionally
been accepted. Nowadays, the designers intentionally introduce
errors into computation to satisfy the never-ending requirement for
lowering of power consumption.

As one of the most promising energy-efficient computing
paradigms that is able to cope with current challenges of computer
engineering, approximate computing has gained a lot of research
attention in the past few years. We can identify two main directions
in approximate computing: energy-efficient computing with
unreliable components and approximation of systems implemented
on common platforms [1]. In the first case, the problem is that the
exact computation utilising nanometre transistors provided by
recent technology nodes is extremely expensive in terms of energy
requirements and reliable behaviour. An open question is how to
effectively and reliably compute with a huge number of unreliable
components. The second research direction is motivated by the fact
that many applications (typically in the areas of multimedia,
graphics, data mining and big data processing) are inherently error
resilient. This resilience can be exploited in such a way that the
error is exchanged for improvements in power consumption,
throughput or implementation cost. After analysing many
applications, Chippa et al. [2] reported that about 83% of the
runtime is spent in computations that can be approximated.

Various approximation techniques have been proposed recently.
A good survey of the proposed approaches can be found, for
instance, in [1, 3]. According to the level of the computer stack
where the approximations are conducted, the approaches could be
roughly divided into software level and hardware level. At the
software level, for example, we could selectively ignore certain
computations and/or memory accesses that are not critical for
obtaining the desired quality of the result. At the hardware layer,

we could either use a less accurate yet more energy-efficient circuit
for computation or purposely reduce the supply voltage for certain
hardware components to trade-off energy and accuracy.

As the complexity of today's computer systems grows, the
manual approximation is not an efficient design method. Hence,
several automated approximate design methods have been
introduced. The design of approximate circuits is typically based
on modifying fully functional circuits. Venkataramani et al. [4], for
example, uses a quality function which decides whether a
predefined quality constraint is met or not. The algorithm is
allowed to modify the circuit as long as the quality constraint is not
violated. Among others, 32-bit adders, 8-bit multipliers, finite
impulse filter (FIR) filters and discrete cosine transform (DCT)
blocks were approximated. Another approach looks for signal pairs
having similar values with a high probability. By substituting one
signal for the other, a part of the circuit can be removed resulting in
area and power savings at the cost of an error introduced to the
output [5]. Unlike the aforementioned methods, Nepal et al. [6]
proposed an approach operating directly on the behavioural
descriptions of circuits. His method generates approximate circuits
from input behavioural descriptions by performing global
transformations on an abstract synthesis tree created from the
behavioural description. The outcome approximate circuits are still
expressed in behavioural code and can be synthesised by means of
standard synthesis tools. The main weakness of these design
methods, however, is that they are typically able to produce only a
few design points.

Several papers dealing with the evolutionary design of
approximate circuits have been published. One of the seminal work
on this topic is the paper of Sekanina et al. who addressed the
problem of evolutionary design of small approximate circuits
consisting of elementary gates [7]. Later, Vasicek and Sekanina [8]
introduced heuristic seeding and demonstrated how to improve the
scalability of the evolutionary design of approximate circuits. The
proposed method was applied to the evolution of 4-bit multipliers
and 25-input median circuits. Recently, Mrazek et al. [9] utilised
evolutionary approach to evolve energy-efficient 8-bit approximate
multipliers optimised for the usage in artificial neural networks. In
addition to that, multi-objective design of 8-bit approximate
multipliers was addressed by Hrbacek et al. [10]. Apart from the
approximate design of median circuits and work of Hrbacek, the
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authors represent the circuits by means of basic logic gates. There
is no work that investigates whether there is a better representation
that may improve the performance of the evolutionary algorithm or
the quality of the obtained approximate circuits. In addition to that,
the power consumption is typically optimised indirectly as the
number of gates or the area on the chip (see e.g. [8, 9]).

In this paper, we present a comprehensive analysis which
compares two different representations – the mainstream gate-level
representation where we represent the circuits using common logic
gates, and cell-based representation that utilises more complex
building blocks such as full adders. Interestingly, the gate-level
representation represents a routinely adopted approach since the
late 1990s [11]. We hypothesise that evolution at the level of more
complex cells could produce solutions of higher quality because
the standard cells available in every technology library exhibit
substantially better design parameters (area, power, delay)
compared to the equivalent circuits implemented using standard
gates. In order to confirm the validity of this claim, we applied
evolutionary methods to the design of key arithmetic circuits such
as adders and multipliers. In particular, 8-bit and 12-bit
approximate circuits were considered. In order to support the
evolution of 12-bit circuits, we implemented a state-of-the-art
circuit simulator operating on 256 bits in parallel. The simulator,
first introduced in [10], is employed to determine the quality of
approximate circuits. In addition to that the switching activity is
simultaneously calculated. A robust power estimation engine based
on known switching activity represents a key idea how to ensure
that the evolutionary approach produces energy-efficient solutions.

The contributions of this paper are as follows. This is the first
time a detailed analysis of various representations of digital circuits
is evaluated and discussed. We analyse also the impact of the
chosen representation on results produced by a synthesis tool
utilised to obtain a physical implementation of a given circuit.
Finally, this is the first paper that presents an automatic approach
that is able to produce high-quality approximate 12-bit multipliers
with guaranteed error parameters. We obtained >60 Pareto
dominant implementations that are available for download (http://
www.fit.vutbr.cz/research/groups/ehw/approxlib). This result is
encouraging for evolutionary computation community on the one
hand and practically useful for hardware community on the other
hand. The 8-bit and 12-bit approximate multipliers can be
employed directly to improve the power efficiency of deep neural
networks [1, 9] or as building blocks of complex circuits. Four 8-
bit multipliers, for example, can be employed to construct a 16-bit
approximate multiplier using the common approach of constructing
larger multipliers from smaller ones [12].

The rest of this paper is organised as follows. The proposed
method is introduced in Section 2. The design methodology

followed by the analysis of obtained results is presented in Section
3. Finally, the conclusions are given in Section 4.

2 Proposed method
In order to approximate digital circuits, various approaches have
been proposed [4–7]. In this work, we employ Cartesian genetic
programming (CGP) [11]. CGP can easily handle constraints given
on candidate circuits, the method is naturally multi-objective and
high-quality approximate circuits have already been obtained with
CGP [8, 10].

This section introduces the overall idea of the proposed method,
the utilised evolutionary algorithm and the construction of the
fitness function for the design of energy-efficient approximate
circuits.

2.1 Representation of digital circuits

Standard CGP is a branch of genetic programming which
represents candidate designs using directed acyclic graphs [11]. A
candidate circuit is modelled using a two-dimensional (2D) array
of programmable nodes with nc columns and nr rows. Originally,
CGP with single-output programmable nodes was introduced by
Miller in 1998 [13]. Simple nodes with two inputs and single
output were considered in the evolution of digital circuits [13].
This approach, however, can be generalised to support nodes with
arbitrary number of inputs and outputs. In this work, we use the
extended version of CGP that supports nodes with na inputs and
outputs [10]. This arrangement allows one to have a node
evaluating up to nb Boolean functions defined over na variables.
The function of a node, however, cannot be arbitrary. Each node
can implement one of nG functions defined by Γ. The node
parameters (i.e. na, nb) are fixed during the evolution. In order to
fully specify the behaviour of each node, we use the following
principle. In case that a node implements a Boolean function,
which utilises less than na operands, the redundant input
connections are ignored. In case that a node implements less than
nb Boolean functions, the unused outputs are internally connected
to the output of the last Boolean function. Let us suppose, for
example, that a single output Boolean function is chosen from Γ.
Then, all nb outputs produce the same value (see e.g. schematics of
XOR gate shown in Fig. 1 implemented using three-input two-
output CGP node). This mechanism helps us to avoid the necessity
to use chromosome validation and repair mechanisms. 

The circuit utilises ni primary inputs and no primary outputs.
Feedback connections are not enabled. The primary inputs are
labelled 0, 1, …, (ni − 1). The first output of the first CGP node is
assigned index ni, the second output ni + 1 and the last output of

Fig. 1  Example of a circuit (3-bit ripple-carry adder) encoded using CGP with parameters: ni = 6, no = 4, na = 3, nb = 2, nc = 3, nr = 2,
Γ = {0and, 1or, 2xor, 3full − adder}. Given these parameters, the considered circuit can be represented using a chromosome consisting of the following sequence of
28 integers: 0, 3, 2, 2; 3, 0, 5, 0; 1, 4, 9, 3; 7, 2, 9, 3; 7, 10, 13, 2; 2, 5, 11, 3; 6, 10, 16, 17. Two nodes with outputs 12, 13, 14 and 15 are not used (top-right
XOR gate and full adder). These redundant and inactive nodes as well as the redundant wires are greyed out. The common two-input logic gates are
implemented as shown on the left – only two inputs are employed, the third input is ignored, both outputs implement the same logic function. More complex
blocks (full adder in this example) may utilise all inputs and may capture more Boolean functions (two functions are implemented in case of the full adder).
The principle of the CGP encoding is as follows. The first 24 integers are divided into six quadruples that define input connections and function of each of six
CGP nodes. The first quadruple (0, 3, 2, 2) is associated with the top-left node. The first three numbers of each quadruple determine indexes where the node's
inputs are connected. The last (underlined) number defines the function of a node. Considering the first quadruple, the node represents XOR gate connected to
I0, I3 and I2. However, the third connection, i.e. I2, is in fact redundant because XOR is a two-input logic gate. The last four numbers of the chromosome, i.e.
the numbers 6, 10, 16 and 17, define the connection of the primary outputs. The first primary output O0 associated with the first number is connected to the
first output of the top-left node because this node output has index 6
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this node is associated with ni + nb − 1. The remaining outputs of
the CGP nodes are successively labelled
(ni + nb), (ni + nb + 1), …, (nc ⋅ nr ⋅ nb + ni − 1). All the labels are
considered as addresses where the node inputs and primary outputs
can be connected to. A candidate solution is represented by means
of the so-called chromosome (which is, in fact, a netlist) by nr ⋅ nc
tuples consisting of na + 1 items (x1, x2, …, xna, ψ) determining for
each node its function ψ  (ψ ∈ Γ) and input connections xi
(0 ≤ xi < nc ⋅ nr ⋅ nb + ni). The last part of the chromosome contains
no integers specifying the nodes where the primary outputs are
connected to. While the chromosome size s is constant
s = ncnr(na + nb) + no, the circuit size is variable and measured as
the number of active (i.e. used) nodes. The set of valid
chromosomes (netlists) represents the whole search space.

The encoding used in CGP is highly redundant as many nodes
can be disconnected and deactivated during evolutionary
optimisation. In order to deactivate a node, it is sufficient to
reconnect all active references to that node. Moreover, there are
usually many ways to implement a given logic function in each
CGP instance. This redundancy together with a relatively powerful
mutation operator is considered as a key feature of CGP allowing
for an efficient circuit evolution [11].

An example of a circuit (common 3-bit ripple carry adder)
represented using CGP is shown in Fig. 1. Despite the fact that the
adder can be represented using three three-input/two-output CGP
nodes (three full adder cells), we employ six three-input/two-output
CGP nodes arranged into three columns and two rows. This
arrangement helps us to demonstrate the redundancy of CGP
representation (only four out of six nodes are active) and the
flexibility of the proposed encoding (a half adder is implemented
using two logic gates, full adders are implemented as standard
cells). In addition to that, the example shows that the chromosome
captures a valid netlist even though the second output of the AND
node (output with label 9) is connected to another node. As stated
earlier, all the outputs of a node representing a single-output logic
gate are equivalent. The corresponding chromosome is shown in
Fig. 1.

2.2 Search strategy

CGP employs a simple search method. In our case, the initial
population P of CGP contains one of various implementations of
the accurate circuit (e.g. multiplier) and a few circuits generated
using mutation of the accurate circuit. Creating the accurate
multiplier required by the initial population is trivial as there is a
one-to-one mapping between circuit netlists and CGP
chromosomes. The next step consists in the evaluation of candidate
circuits using the fitness function. Each member of P then receives
the so-called fitness score and the highest-scored individual
becomes the new parent of the next population. From this parent, λ
candidate solutions are generated using mutation. The termination
criterion is given by the number of iterations or maximum
acceptable runtime.

Despite several attempts to propose a suitable crossover
operator to CGP [14, 15], the mutation is still used as the crucial
genetic operator. The mutation operator modifies up to h randomly
chosen genes (integers) of the chromosome. Their new values are
generated randomly, but it is checked whether the new values are
valid. One mutation can affect either the node function, node input
connection, or primary output connection. As the mutation operator
is able to disconnect gates (by changing either primary output
connection, node input connection or node function), it can be
employed to reduce redundancy of the initial circuit.

2.3 Fitness function

Since the goal is to design energy-efficient approximate circuits, it
is necessary to integrate this requirement into the fitness. The
power consumption of the candidate circuits can be optimised
directly or indirectly. In the context of evolutionary computation,
only the latter approach has been applied in the literature because it
does not require to implement complex simulation engines or

employ time-demanding analogue simulations. In [8], for example,
the authors demonstrated that it is sufficient to reduce the number
of gates because the power consumption of arithmetic circuits is
highly correlated with the area. For recent technology nodes,
however, this simplification may lead to unsatisfactory results
especially for circuits consisting of few gates exhibiting high
switching activity. Hence we propose to optimise the power
directly.

The power consumption of digital circuits can be divided into
the dynamic (Pdynamic) and the static (Pstatic) power components.
The first one occurs every time the output of a gate changes its
logic value. Static power consumption is caused mainly by the
leakage current which exists even when the circuit is in a stable
state, i.e. not switching. Even though the static power component
has always been present, it has gained importance in sub-
micrometre and nanometre devices [16]. As a consequence of that,
the total power consumption has to be optimised by reducing static
as well as dynamic part of the power consumption.

Since the static part of the power consumption depends only on
a function of a logic gate, the total static power consumption can be
obtained by summing static leakage Pleak for all gates of the
candidate circuits, i.e. Pstatic = ∑∀i Pleak

(i) . The situation gets
complicated when we want to precisely determine dynamic power.
In order to simplify this process and avoid running a costly
analogue simulator, we propose to exploit the knowledge of the
switching activity of each gate. The dynamic power consumption
of a single gate Pdyn can be defined as follows:

Pdyn = 1
2 × Cload × Vdd

2 ⋅ f ⋅ E(transitions), (1)

where Cload is the total load capacitance of the output (i.e. the sum
of all input capacitances of the connected gates defined in the
liberty file), Vdd is the supply voltage, f is the target frequency and
E(transitions) is the expected value of the output transitions per
global clock cycle (switching activity) [17]. The total dynamic
power is equal to Pdynamic = ∑∀i Pdyn

(i)  and the total power
consumption of a candidate circuit is calculated as

Ptotal = Pstatic + Pdynamic . (2)

To simplify the problem, glitches are not typically considered. This
decision enables to use the zero-delay model. As a consequence of
that, the switching activity can be obtained using common circuit
simulator which evaluates the response for all (or some for
complex problems) input vectors. Total switching activity of a gate
is calculated as follows:

E(transitions) = 2 ⋅ (p0 ⋅ p1) = 2 ⋅ p1 ⋅ (1 − p1), (3)

where p0 is the probability that the output of a considered gate is
equal to logical zero, similarly p1 is the probability that the output
is equal to logical one. There are more ways to determine the
transition probabilities. The simplest approach is to use the
simulation and count the number of cases for which the output
value was equal to 1. The advantage of this approach is that this
calculation can be done during the function verification which
represents an inevitable step of the fitness evaluation.

Various error criteria can be utilised to evaluate the quality of
approximate arithmetic circuits. The average-case and worst-case
arithmetic errors represent the most common metrics considered in
the context of design of approximate arithmetic circuits [10, 18].
The worst-case error ewst(C) is employed in this paper. This metric
is defined as the maximum absolute difference in magnitude
between the original and approximate circuit computed over all
inputs:

ewst(C) = max
∀i

|O(Corig, i) − O(C, i) | , (4)
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where O(Corig, i) denotes the output value of the fully functional
circuit for the input vector i and O(C, i) denotes the output value of
approximate circuit C. For a circuit having ni inputs, the input
vectors are the numbers 0 ≤ i < 2ni.

Let ε be the maximum acceptable worst-case error. Then, the
fitness value of a candidate circuit C is calculated as follows:

fitness(C) = −
Pnorm(C) if ewst(C) < ε
∞ otherwise,

(5)

where Pnorm(C) = Ptotal(C)/Ptotal(Corig) is the normalised power
consumption of C and Ptotal(Corig) is the energy consumption of the
original reference circuit Corig and represents a constant value. The
goal of the evolutionary strategy is to maximise the fitness and thus
minimise the cost metric Pnorm. It means that solutions with the
error greater than ε are infeasible. Depending on design objectives,
CGP has to be executed multiple times with different target errors
εi if a Pareto front is requested.

3 Experimental results
The proposed method was evaluated in the task of evolutionary
design of approximate adders and multipliers. These arithmetic
circuits were chosen because they represent key components of
many real-world applications in signal processing and machine
learning [1]. In addition to that, the evolution of multipliers is
considered as a very difficult benchmark in the evolutionary
community. Apart from common 8-bit instances typically
addressed in the literature (see e.g. a survey paper [19] which lists
and compares different 8-bit approximate multipliers), 12-bit
instances were chosen to validate our hypothesis. In case of 12-bit
multipliers, we have to deal with complex netlists consisting of
hundreds of gates. As our goal is to evolve approximate circuits
with known worst-case error parameters, we need to evaluate the
response for all input vectors for every candidate solution. It means
that 224 input combinations have to be evaluated for a 12-bit
multiplier. This is the main reason, why we did not consider 16-bit
instances. As it is infeasible to evaluate 232 responses in a
reasonable time, it would be necessary to employ a random
simulation. Using a subset of all possible input combinations,
however, may lead to a bias in evaluation since we cannot
guarantee whether the worst acceptable error is met or not. Due to
the limited space, only results for 12-bit multipliers will be
presented in detail.

The experimental setup depicted in Fig. 2 is as follows. The
goal of the evolution is to design an approximate multiplier
showing the lowest possible power consumption for a given worst-
case error. The power consumption is estimated as described in
Section 2.3 and represents the only criterion reflected in the fitness
function. The evolutionary algorithm starts with a common
conventional multiplier whose fitness (i.e. power) is gradually
optimised while keeping the worst-case error within the required
bound. The worst-case error is used as a constraint εi. For each
circuit, 11 error levels ranging from ε1 = 0.02 % to ε11 = 20 % were
considered. This range covers the values that are typically
employed in the literature (see e.g. [9, 18, 19]). The CGP
parameters were initialised as follows. We employed λ = 24
individuals in the population, mutation rate was h = 5 %, number
of rows nr = 1. The number of columns equals to the number of
components of the initial conventional multiplier used to seed the
evolution. The setting of the CGP parameters is based on the
experiments conducted in our previous research [8]. Two different
sets of experiments were executed. In the first scenario, only

common two-input gates were considered. Each CGP node had two
inputs and one output (i.e. na = 2, nb = 1) and could implement one
of the following eight functions: Γ1 = {BUF (buffer), INV
(inverter), AND, OR, XOR, NAND, NOR, XNOR}. In the second
scenario, the set of functions was extended to 15 functions that
correspond with common standard cells available in the chosen
target technology: Γ2 = Γ1 ∪ {NAND3 (3-input NAND), NOR3 (3-
input NOR), MUX2 (2-to-1 multiplexer), AOI21 (3-input AND/
NOR), OAI21 (3-input OR/NAND), FA (full adder), HA (half
adder)}. The advantage of complex cells is that they are highly
optimised for each target technology considering the area on a chip
and performance. The full adder, for example, available as a
technology cell occupies typically lower area, consumes less power
and has lower delay compared to a full adder implemented using
common gates. In order to support these functions, a CGP node
with three inputs and two outputs, which corresponds with na = 3
and nb = 2, was employed. Due to practical reasons, runtime was
chosen as the only terminating criterion. This decision helps us to
easily predict the end of evolution. 

The evaluation of the fitness consists of two steps. In the
beginning, active nodes are identified. Then, only active nodes are
evaluated by means of a circuit simulator for all input
combinations. In both scenarios, we utilised exactly the same
circuit simulator based on a machine-code translation introduced in
[20] and further extended in [21]. During the detection of the active
nodes, each complex block such as full adder is replaced by an
equivalent circuit consisting of common two-input gates. This
simple preprocessing helps one to improve the performance of the
simulator. Since there are only basic operations, SIMD instructions
from AVX extension allowing processing 256-bit vectors can
directly be exploited. As a consequence of that, we can simulate
the response for 256 input vectors in parallel.

In order to avoid a possible bias preventing discovering of some
implementations caused by seeding, we will seed the evolution
with several conventional architectures of multipliers. The
multipliers include ripple-carry array multiplier (denoted as
RCAM), two carry-save array multipliers (CSAM1 and CSAM2)
and three Wallace tree architectures (WTM1, WTM2 and WTM3).
The array multiplier (RCAM) offers the lowest speed but occupies
the smallest area on a chip compared to the other variants and
especially the most expensive Wallace tree multiplier. The carry-
save array multiplier is implemented as a set of 1-bit full adders
without any carry-chaining that is finally reduced using a single n-
bit adder. This arrangement helps one to slightly improve the delay
compared to RCAM without introducing a noticeable area
overhead. Two variants of carry-save multiplier are considered
depending on the adder employed in the final stage – CSAM1
utilising ripple-carry adder (RCA) and CSAM2 with carry-save
adder (CSA). Wallace-tree adder multiplier is the fastest known
architecture which sums the partial products using multiple levels
of CSA. Similarly to the carry-save array multiplier, the products
are finally summed up using a single n-bit adder. In our case, three
adders are considered in the final stage – RCA (denoted as
WTM1), CSA (WTM2) and carry-look-ahead adder (WTM3). The
latter variant offers the lowest delay but occupies a substantial area
on a chip.

In total, six different multiplier architectures were described in
Verilog language and synthesised using Synopsys DC and 45 nm
technology. For each architecture, two Verilog netlists were
generated. In the first case, the gate-level description was
employed where all high-level building blocks such as half adders,
full adders and multiplexers were implemented using generic two-
input gates. In the second case, the structural description was

Fig. 2  Proposed experimental setup for evolutionary design of approximate circuits represented using either standard gates or standard cells
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utilised. In this case, all the cells available in the chosen technology
could be utilised in the description of the multipliers.

The parameters of the synthesised multipliers such as the power
consumption, area on a chip or delay are summarised in Table 1. In
addition to that, parameters of the initial netlists (i.e. specification)
such as the number of cells (i.e. the number of components, the
verilog netlist consists of), the number of full adders (column FAs),
estimated power consumption Ptotal calculated using (2) and
normalised power consumption Pnorm are provided. 

The results of the synthesis suggest that the Synopsys DC
integrates a powerful optimisation engine that is able to
significantly improve the initial design parameters. This is
noticeable especially if we compare the estimated power
consumption with the power consumption of the final
implementation. In all cases, the power consumption was
substantially improved. Despite a visible difference between the
estimated and real power consumption and considering the fact that
the inaccuracy of the power estimation tool is believed to be
around 10%, the power consumption increases proportionally with
the increasing fitness value which is important for our evolutionary
optimisation process. Let us notice that 12-bit CSAM1 occupies a
smaller area on a chip than RCAM at 45 nm which is quite
surprising since RCAM is generally known as the most compact
multiplier architecture.

Interestingly, the synthesis tool is quite capable in discovering
and recovering the full adders from the gate-level netlists. The
number of full adders in the implemented circuits is nearly the
same independently on the chosen representation. This suggests
that it does not matter whether we conduct the evolution at the
level of gates or at the level of more complex building blocks such
as full and half adders as the synthesis tool produces quite similar
results in both cases.

3.1 Impact of the chosen representation on the efficiency of
evolutionary design process

As evident from parameters in Table 1, the netlists containing only
standard gates require a substantially higher number of components
compared to the netlists composed of cells. For example, 768 gates
are required to represent RCAM by means of standard gates. The
same design can be implemented using 276 components only
provided that half and full adders can be employed. Since the
netlists are used to create the initial population, the higher number
of components implies long chromosomes and more complex
search spaces. In this particular case, the chromosome size
increased by >64% when going down to the gate-level
representation.

The chromosome length does not impact only the size of the
search space but also the process of evaluation and consequently
the scalability of the evaluation. The problem is that more nodes
may be active because more nodes are available. As a consequence

of that, more time is needed to evaluate fitness and quality of a
candidate circuit.

In order to evaluate the impact of the chosen representation to
the efficiency of the evolutionary design process, we will
investigate two different parameters – the average size of a
candidate solution and the convergence rate. The average number
of active nodes impacts the speed of the fitness evaluation. In
addition to that and when investigated at the end of a long-term
evolutionary run, it also reflects the quality of discovered
approximations because it is natural to expect that compact
solutions typically result in a better power consumption.

The average size of a candidate solution can be measured
directly as the number of active nodes or indirectly as the average
time required to evaluate a single candidate solution. The problem
of the first approach is that the average number of active CGP
nodes does not reflect varying simulation complexity of each node.
Hence, we adopted the latter approach that enables not only to
fairly compare both representations but also to estimate practical
limits of the evolutionary design process. In fact, it means that we
consider the average size of candidate circuits expressed in terms
of two-input equivalent gates. This is caused by the construction of
the circuit simulator that is used to determine the fitness (the
complex cells are replaced with two-input logic gates).

The average time required to evaluate a candidate solution is
shown in Fig. 3. Since the size of a candidate solution varies with
the error level (the approximate circuits with higher error level
typically consist of a lower number of components), the results are
reported for each error level separately. Sixty independent
evolutionary runs (10 per each seed) were executed for each error
level and each representation. The results of these runs are
summarised by means of a single boxplot item. Each run was
executed for 16,200 s to guarantee statistical significance. As
evident, the results confirm our expectation related to the size of
candidate solutions and error level. The average size of candidate
solutions decreases nearly linearly with the increasing error level
independently on the used representation. This trend is noticeable
especially in the middle of the range because the error levels are on
a logarithmic scale. On average, 224 ms (167 ms) is required to
evaluate a candidate solution represented using standard gates
(cells). The evaluation time decreased >2.3 times (1.9 for standard
cells) when we increased the allowed error from 0.02 to 20%. It
suggests that solutions consisting of approximately half of the
equivalent gates were produced for 20% error. 

If we compare the results for both representations, we can see
that the representation based on standard cells leads to a more
efficient design process. The time of the evaluation was reduced
noticeably. As a consequence of that, more generations can be
executed, and more compact solutions can be discovered.
Considering the average results, more than four (standard gates)
and nearly six (standard cells) candidate solutions can be evaluated
per second. It means that we can improve the scalability by a factor
ranging from 1.1 (higher errors) to 1.5 (lower errors) just by

Table 1 Parameters of six different 12-bit multipliers described at the level of gates (upper part) and standard cells (bottom
part). The estimated power Ptotal as well as power of the implemented circuit is given in mW, area on a chip in μm2 and delay in
ns
Multiplier arch. Specification Implemented circuit

Repr. No. instances No. FAs Ptotal Pnorm No. cells No. FAs Area Delay Power
RCAM gates 768 0 1.60 1.00 433 110 1679 3.22 1.23
CSAM1 gates 768 0 1.61 1.01 369 118 1595 2.28 1.18
CSAM2 gates 831 0 1.73 1.08 377 118 1608 2.33 1.19
WTM1 gates 809 0 1.66 1.04 394 115 1655 2.07 1.22
WTM2 gates 966 0 1.90 1.19 424 113 1708 2.39 1.23
WTM3 gates 1269 0 1.88 1.17 562 103 1961 1.68 1.39
RCAM cells 276 120 1.27 1.00 424 110 1666 3.40 1.20
CSAM1 cells 276 120 1.28 1.01 374 118 1605 2.28 1.16
CSAM2 cells 296 123 1.37 1.08 393 117 1639 2.25 1.19
WTM1 cells 313 119 1.31 1.04 414 113 1687 2.12 1.21
WTM2 cells 362 129 1.48 1.17 463 111 1767 2.06 1.28
WTM3 cells 824 102 1.52 1.20 532 104 1889 1.77 1.33
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changing the representation to standard cells. Looking and the
boxplots, we can see that there is only negligible difference in the
spread between both representations.

The representation impacts the speed of the fitness evaluation
but does not necessarily mean that the evolution will produce better
(i.e. more power efficient) solutions. Hence we analysed the power
consumption of the discovered solutions. The results are shown in
Fig. 4 where we plot the boxplots for normalised power (fitness
value). We can observe the same trend as in Fig. 3. The power
consumption decreases with the increasing error level
independently on the chosen representation. In addition to that, a
large improvement in the power efficiency can be seen in case of
standard cell representation. This is noticeable especially for lower
error levels. The cell-based representation is able to discover more
efficient implementations. For example in the case of 0.2% error,
the average power of a multiplier represented by standard cells
equal to the power of best multiplier represented by standard gates.
Starting at 5% error, there is no significant difference between
parameters of the discovered results. This is caused mainly by the
fact that the discovered approximate multipliers consist of an
extremely small number of components. For example, approximate
multipliers exhibiting 5% error consist of 6–14 times fewer
components on average compared to original implementation.
More than 64% of the components constitute simple gates. If we
compare the boxplots, we can see that not only the extreme but
even the spread is improved in the case of the cell-based
representation. 

The positive effect of the cell-based representation on the
evolutionary design process is also evident on the convergence
curves that are shown in Fig. 5. The evolutionary design process
converges faster to the desired solutions not only from the point of
view of absolute time but also when the number of generations is
considered. The difference in convergence rate is largest for 0.2%
error and gradually disappears with increasing error. This
behaviour corresponds with our conclusions stated in the previous
paragraph. For 2% error, the cell-based representation reaches the
inflection point around a 1000th generation. When we employ a
standard gate-level representation, we require more than three
times higher number of generations to achieve the same results.
This number corresponds to more than four times longer runtime.
Nearly, the same convergence is achieved when we increase the

error by one order. On contrary, when we decrease error to 0.2%,
the difference is substantial. Not only that the gate-level
representation converges slowly but also the time of evaluation is
larger. Expressed in terms of runtime it means that after >270 min
of evolution we obtained solutions whose quality is comparable
with candidate solutions represented using cells that were
generated in 20th minute of evolution. 

A more detailed analysis is provided in Table 2 where we
calculated the computational effort required to design an
approximate multiplier exhibiting a required power reduction. The
table shows the mean number of generations that have to be
evaluated to obtain a multiplier satisfying the required criteria. In
addition to that, the percentage of the evolutionary runs
discovering the required circuit is given. The averages are
determined from 120 independent evolutionary runs (60 for each
representation). Note that not all combinations are viable as the
maximum possible power reduction decreases with decreasing
error. The power reduction is determined using Pnorm. 

As evident, the cell-based representation leads to much lower
computational complexity than the gate-level representation. In
average, less than half generations are required to obtain the same
results. To give one example, we need to evaluate at least 455
generations in average to obtain an approximate multiplier with
error below 0.2% that consumes 35% less power compared to the
accurate RCAM multiplier. For this particular case, 50 out of 60
evolutionary runs successfully discovered such a multiplier. This
corresponds to success rate 83%. For error levels above 10%, we
can see that practically all runs were able to discover a multiplier
having power consumption reduced by at least 95%. The mean
number of generations for 95% power reduction suggests that
evolution of the multipliers with a high error rate is a relatively
easy task. Even the evolution of sub-optimal multipliers is easy.
Every evolutionary run was able to discover an approximate
multiplier exhibiting at least 20% power reduction for ε ≥ 1%.
Less than one hundred generations were required in average. On
the other hand, we can see that the computational complexity
increases as the required power reduction is approaching the
maximum possible reduction for a given error. More than one
thousand (2000 for gate-level representation) generations are
typically required to achieve the best possible power reduction.

Fig. 3  Average time required to evaluate a candidate solution representing an approximate 12-bit multiplier
 

Fig. 4  Normalised power consumption Pnorm (the lower value the better result) of discovered 12-bit approximate multipliers
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3.2 Results of synthesis

For each evolved solution, we created a Verilog netlist consisting
of the same components as encoded in the corresponding
chromosome. The netlists were then implemented in 45 nm
technology (https://www.eda.ncsu.edu/) using Synopsys Design

Compiler Ultra. The synthesis effort was set to high. Apart from an
optimised netlist, the synthesis tool reports energy consumption,
delay and area on a chip under iso-speed conditions.

The power consumption of the evolved approximate circuits
synthesised using synthesis tool is shown in Fig. 6. When we
compare the results with the estimated power consumption shown

Fig. 5  Convergence curves for evolutionary approximation of 12-bit multipliers for three error levels and both representations. For each combination, the
median value (dotted line), the lower bound and upper bound of the interquartile range are calculated using 60 evolutionary runs

 
Table 2 Performance of gate-level and cell-based representation expressed as the mean number of generations that have to
be evaluated to obtain a 12-bit approximate multiplier exhibiting a required power reduction. The percentage of evolutionary
runs that discovered a circuit satisfying the given parameters is shown after slash symbol (100% means that all 60 runs
executed for each target error and each representation successfully produced such a circuit). The better results are printed in
bold. In each generation 24 candidate solutions were generated and evaluated
ε Repr. Required power reduction

20% 35% 50% 65% 80% 95%
0.02 gates 2516/17 — — — — —

cells 935/78 — — — — —
0.05 gates 2232/38 — — — — —

cells 688/75 2079/35 — — — —
0.1 gates 1576/58 2697/13 — — — —

cells 533/92 1073/75 — — — —
0.2 gates 1045/72 1934/53 2948/8 — — —

cells 340/95 455/83 1566/62 — — —
0.5 gates 622/82 1159/78 1932/62 2902/7 — —

cells 207/98 382/97 669/88 1881/27 — —
1 gates 509/100 884/97 1283/87 1803/60 — —

cells 138/100 271/100 403/98 809/93 — —
2 gates 346/98 552/95 743/90 1107/83 2046/43 —

cells 107/98 194/98 336/98 501/95 1443/52 —
5 gates 156/100 273/100 353/98 513/98 890/98 —

cells 52/100 93/100 143/100 216/100 371/100 —
10 gates 110/100 185/100 259/100 288/97 447/97 2810/38

cells 42/100 75/100 111/100 163/100 271/100 2875/25
15 gates 87/100 142/100 206/100 282/100 398/100 824/93

cells 36/100 63/100 93/100 134/100 210/100 768/97
20 gates 51/100 85/100 117/100 162/100 231/100 536/100

cells 42/100 73/100 103/100 139/100 202/100 473/100
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in Fig. 4, we can see that both boxplots contain very similar data at
least when we consider relative relations and spread. Solutions
represented using the standard cells exhibit better energy efficiency
compared to the solutions described using standard gates. The
absolute values are different, but this was expected as discussed
earlier because the discovered netlists may be modified during
synthesis by the optimisation engine. In fact, the power
consumption of the synthesised and implemented multipliers is
typically lower than the power consumption before synthesis and
the difference increases with the increasing circuit complexity. This
is evident from the plots shown in Fig. 7 where we analysed the
degree of correlation between estimated power and power after
synthesis. There is a nearly linear relationship. In order to measure
the linear relationship, we employed the Pearson correlation
coefficient whose value varies between −1 and +1. The correlations
of −1 or +1 imply an exact linear relationship, while zero implies
no correlation. The correlation coefficient is slightly better than
0.99, in particular it equals 0.994 for standard cells and 0.992 for
standard gates. The high positive value implies that as estimated
power increases, so does the power of the synthesised multiplier. If
we look at the output of simple linear regressions, we can see that
the points concentrate around two trend lines having their slope
slightly larger than 1. It means that the synthesis tool was able to
improve the power in all cases and we actually overestimated the
final value. For standard cells, the power of the multipliers was
reduced during synthesis by a factor of 1.1 on average. This factor
increases to 1.4 when standard gates are employed. 

It is necessary to realise, however, that the ability to quantify
the relative dependencies of the design power consumption is much
more important than the ability to capture the absolute values since
the search is driven by the comparison of parental and candidate
solution's fitnesses. For comparison of the values it is only needed
to achieve a high-fidelity value which can be calculated as follows.
Let R = {R0, …, Rn} be a set of n reference values and

E = {E0, …, En} be a set of n estimated values. Let T be a set of n
circuits that were used to calculate Ri and Ei. The fidelity
describing the quality of the estimation with respect to its ability to
quantify relative dependencies of the tuples reference/estimation
values is defined as

Fidelity% = 100 2
n(n − 1) ∑

i = 1

n − 1
∑

j = i + 1

n
μi j, (6)

where μi j is determined as

μi j =
1 if Ri > Rj ∧ Ei > E j or Ri = Rj ∧ Ei = E j

or Ri < Rj ∧ Ei < E j

0 otherwise
(7)

According to the analysis, the fidelity calculated using the set of
660 evolved approximate multipliers represented using standard
cells is 97.21%. For the second set of 660 multipliers encoded
using standard gates, the fidelity is nearly similar – 97.25%. It
means that the estimated values correlate with the results after
synthesis in 422,814 (422,960 for the second set) out of 434,940
inspected cases.

The second plot in Fig. 7 shows the dependency between
estimated area and power of the synthesised multipliers. The
obtained results suggest that worse results will be obtained by
considering the area in the fitness function only and demonstrates
the superiority of the fitness function based on power estimation.
The fidelity dropped to 93.7% (95.3% for the second set), the
Pearson correlation coefficient decreased to 0.95 (0.97) and even
the slope and distance of the regression lines increased.

In order to better understand the behaviour of both investigated
representations for errors higher than 2%, we separately analysed
the evolved netlists and corresponding netlists after synthesis and
determined the number of cells and the corresponding area on a
chip. We divided the cells utilised in the netlists to seven categories
– buffers (BUF), inverters (INV), common two-input gates (F2X1),
more complex cells with three and four inputs (F3X1, F4X1), half
adders (HA) and full adders (FA). The area on a chip occupied by
these cells before and after synthesis is shown in Fig. 8. For each
error level, we plot the area of ten multipliers exhibiting the best
power as reported by the synthesis tool. 

Let us discuss the results for the gate-level representation. The
evolved netlists consist mainly of two-input gates. Few buffers and
inverters are employed only. The evolution is not directly forced to
use the buffers and inverters but we assume that the evolution
introduced them to improve the power since they exhibit a better
output capacity and we consider the capacity of each gate in (2). If
we look at the netlists optimised by the chosen synthesis tool we
can see that the synthesis tool is able to identify a large number of
complex cells such as full adders and three-input cells. Few
instances of half adders and four-input cells are utilised only.
Interestingly, the number of inverters increased substantially after
synthesis. We inspected the netlists and identified that buffers and
inverters are used mainly to improve the timing.

Fig. 6  Power consumption of the synthesised 12-bit evolved approximate multipliers
 

Fig. 7  Estimated power consumption and area of 12-bit approximate
multipliers represented in evolution using
(a) Standards gates and (b) Standard cells vs. power after synthesis
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As evident, full adder represents a key component for the
construction of power-efficient multipliers. On the other hand, we
can see that the number of full adders decreases with increasing
error. Only one or two instances are utilised in approximate
multipliers with an error higher than 5%. This observation is valid
even for cell-based representation which explains why evolution at
the level of gates and cells provide the same results.

As we already discussed, the synthesis tool was able to improve
the energy consumption of the initial netlists. In addition to that,
we can see that even area on a chip was reduced substantially. The
area of approximate multipliers exhibiting 0.02% error, for
example, was reduced from >2000 to 1500 μm2. On the average,
the area was improved by 32%.

In the case of the cell-based representation, the area on a chip
after synthesis remains practically the same as before synthesis. We
can also observe that the number of full adders in the evolved
multipliers remains preserved. It suggests that the evolution
produces highly optimised solutions that are hard to improve by the
synthesis. This is also evident if we compare the results after
synthesis for both representations. Multipliers produced from the
cell-based netlists are more compact.

There are only a few half adders in the evolved solutions.
Surprisingly, they practically disappeared after the synthesis. In
comparison with the gate-level evolution, the buffers and inverters
are utilised only rarely. This leads to a conclusion that it does not
offer any advantage to consider complex three-input and four-input
building blocks during the evolution because they are not utilised
at all. Even the half adder seems to be not important. The essential
thing is to include a full adder in the set of possible functions.

3.3 Evaluation of the proposed multipliers

The approximate circuit design problem is naturally a multi-
objective optimisation problem in which the accuracy and other
circuit parameters are conflicting design objectives. In our
approach, only the power consumption was intentionally
considered in the fitness function. It is thus fair to evaluate also the
other circuit parameters. Hence, we took all synthesised
approximate multipliers, determined the circuit parameters (worst-
case error, power, area, delay) and identified the points on the
Pareto front. In order to determine the Pareto dominant solutions,

the Pareto-dominance relation was employed [22]. The resulting
Pareto set projected into three 2D plots is shown in the upper part
of Fig. 9. The bottom part of Fig. 9 shows the parameters of the
chosen solutions as a function of mean error distance which was
not directly optimised. As evident, the cell-based representation
lead to substantially better solutions compared to the gate-level
representation. A rich library of various implementations was
obtained. When we ignored the solutions that exhibit nearly similar
parameters, we obtained 17 Pareto-dominant solutions for the gate-
level approach and 27 solutions for the cell-based approach. Note
that two parameters were considered similar when their difference
was <0.1 for the error (in log scale), power consumption and delay,
and <100 for the area. 

Fig. 9 includes also a comparison with the state-of-the-art
approaches. For this purpose, we implemented two approximate
architectures that are believed to provide the best results according
to the latest review [19]. In particular, we implemented the
truncated CSA array multiplier and the broken-array multiplier.
Truncation, sometimes also referred to as a bit-width reduction,
represents a straightforward approach to perform approximation.
The key idea is to remove the least significant bits of the input
operands and use a smaller multiplier instead of an accurate one.
Similarly to the truncated multiplier, the broken-array multiplier
removes some of the carry-save adders in an array multiplier,
however the removed adders are determined by two parameters. In
addition to that, we reimplemented one of the first approximate
multipliers published by Kulkarni et al. in 2011 [23]. Kulkarni's
multiplier employs a common modular approach and constructs
multipliers of higher bit-widths using small manually designed 2-
bit approximate multiplier. For more details related to the
implemented architectures, we kindly refer the reader to the review.
Surprisingly, the multipliers constructed using our method provide
the best results if we consider cell-based representation only.
Despite the fact that only the worst-case error and power were
considered during the evolution, the obtained multipliers perform
very well even under the mean error distance. There are only some
minor discrepancies in the area– ewst and area– emae plots. On the
other hand, Kulkarni's modular approach results in an extremely
inefficient 12-bit approximate multiplier. More than eight times
better power consumption can be achieved for the same mean error.

Fig. 8  Area on a chip of evolved 12-bit approximate multipliers occupied by various types of standard cells before and after synthesis. For each error level,
area of ten discovered fittest solutions is analysed separately for gate-level (top row) and cell-based (bottom row) representation
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The situation is even worse for the worst-case error. Kulkarni's
multiplier exhibits >50 times worse power consumption compared
to the other considered multipliers having the same worst-case
error.

4 Conclusion
In this paper, we introduced and evaluated a CGP-based
evolutionary method for the design of energy-efficient approximate
circuits. In contrast to evolutionary circuit design approaches
available in the literature, we proposed to conduct the evolution at
a higher level. In particular, we employed standard cells routinely
used in design automation as building blocks for implementing
digital circuits. This decision required to extend common CGP to
support nodes with multiple outputs. In addition to that, a more
powerful 256-bit simulator and power-estimation engine was
employed in the fitness function. These changes gave rise to a
more efficient design method which was able to handle more
complex problem instances.

It was demonstrated that the proposed cell-based representation
enabled not only to reduce the time of the evaluation but also to
improve the convergence of the evolutionary design process.
Interestingly, the detailed analysis suggests that including of a full
adder in the set of possible functions is the key feature. The
experiment related to the evolutionary design of 12-bit
approximate multipliers revealed that the candidate circuits
produced in the 20th minute of the evolution exhibit practically the
same quality as the candidate solutions generated in the 270th
minute of the evolution conducted at the level of common gates.
Considering the fact that the results were achieved on a common
2.4 GHz Xeon CPU using a single thread application, the proposed
method can be easily integrated to a standard design flow. As
today's CPUs typically contain many cores, we can run several
independent evolutionary runs and obtain more different results at
the same time.

According to the literature, 8-bit multiplier represents the most
complex instance with precisely determined error parameters that

have been evolutionarily approximated. In this paper, we were able
to push the limits and discover several non-dominated 12-bit
multipliers exhibiting different circuit parameters. As shown, the
discovered multipliers outperform the state-of-the-art multipliers
available in the literature.

Despite this optimism, it is clear that exhaustive simulation
cannot be applicable for 16-bit multipliers, where 232 input test
vectors have to be evaluated to guarantee the worst-case error.
Similarly to the methods originating from the hardware
community, however, we can cope with this issue by relaxing the
requirement for strict worst-case error guarantee. It means that only
a subset of all possible input combinations is used to determine the
error parameters. By relaxing this requirement, we can
approximate even larger problem instances. Even though worst-
case error was employed only, the proposed approach can be
applied for any error criteria.
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