
Journal of Intelligent & Robotic Systems manuscript No.
(will be inserted by the editor)

Convolutional Neural Networks for the Odometry Estimation
Real-time positional information for the mapping with 3D LiDAR

Martin Velas · Michal Spanel · Michal Hradis ·
Adam Herout

Received: date / Accepted: date

Abstract This article presents a novel method for odometry estimation from 3D data of
Velodyne LiDAR scanner using convolutional neural networks. For training and forward
evaluation of the proposed networks, the original data is encoded into 2D matrices. In experi-
ments with the KITTI dataset, our networks show significantly higher accuracy in estimation
of the translational motion parameters compared to the state of the art LOAM method. In
addition, they achieve higher speed and real-time performance. Using data provided by the
IMU sensor, it is possible to estimate odometry and align the point cloud with a high pre-
cision. The proposed method can replace the odometry estimation from the wheel encoders
or supplement the missing GPS data when the GNSS signal is not available (for example,
during the interior mapping). In addition, we propose alternate CNNs for the estimation of
the rotational motion that achieve results comparable to the state of the art. Our solution
delivers real-time performance and accuracy to provide online preview of the mapping and
to verify the completeness of the map during the mission.

Keywords Odometry · Velodyne · LiDAR · CNN · KITTI

Mathematics Subject Classification (2000) 65D19 · 68T40 · 68T45

1 Introduction

In recent years, many solutions for indoor and outdoor 3D mapping have been developed
using LiDAR sensors, demonstrating the relevance of the odometry estimation and point
cloud registration problem, as well as the demand for the complex 3D mapping solutions.

This work has been supported by the Artemis Joint Undertaking grant agreement ALMARVI (no. 621439),
the TACR Competence Centres project V3C (no. TE01020415), the IT4IXS IT4Innovations Excellence
project (LQ1602), and the Ministry of Industry and Trade of the Czech Republic project 4RECON
CZ.01.1.02/0.0/0.0/15 013/0004722.

All authors come from:
Brno University of Technology, Bozetechova 1/2, Brno, Czech Republic
Tel.: +420-54114-1144
Fax: +420-54114-1270
E-mail: {ivelas|spanel|ihradis|herout} @ fit.vutbr.cz

2 Martin Velas et al.

Fig. 1: Example of the LiDAR point clouds registered by CNN-estimated translation with
rotations provided by an IMU sensor. The map was built using the sequence 08 of KITTI
odometry dataset [8].

Leica1 company introduced a Pegasus backpack that includes a pair of Velodyne scan-
ners along with several wide-angle cameras and IMU/GNSS positional sensors to support
the mapping process. Geoslam2 in its hand-held mapping products ZEB and ZEB-REVO
uses a simple LiDAR rangefinder along with an inertial unit. Other companies like Li-
DARUSA 3 and RIEGL4 are building their LiDAR systems primarily for the ground and
airborne outdoor mapping. Besides the commercial solutions listed above, multiple scien-
tific non-commercial backpack mapping systems exist [10,11,13] providing betters insights
into the practical issues and solutions to these problems. All such systems require measure-
ments from IMU and GNSS positioning sensors for the alignment of the point clouds. This
requirement limits the deployment of these solutions when the GNSS signal is not available.

In the solutions listed above, the building of precise 3D maps from recorded data is
performed off-line as a post-processing step. During the process of data acquisition, the op-
erator is not able to verify whether the entire mapped environment (building, park, forest,
. . .) is correctly captured without any part missing. This is a significant disadvantage be-
cause the repetition of the measurement process can be expensive and time-consuming. The
LiDAR data alignment requires the estimation of motion parameters (both orientation and
position) directly during the mission. Although the orientation can be estimated online in
a relatively robust way using an inertial unit, exact positional information requires reliable
GNSS signal measurements including the online corrections of position such as Differen-
tial GPS (DGPS), Real Time Kinematics (RTK), etc. [7, 12]. Since these requirements are
not met in many scenarios (interior scenery, forests, tunnels, mining sites, etc.), less precise
methods are used as a common practice. For example, estimation of the odometry by the
wheel encoders of the mobile platform is used, but this can not be done with hand-held or
backpack-mounted devices.

In this work, we propose an alternative solution using the convolutional neural networks
(CNN) – a frame to frame odometry estimation based on the Velodyne LiDAR data. Similar

1 http://leica-geosystems.com
2 https://geoslam.com
3 https://www.lidarusa.com
4 http://www.riegl.com

Convolutional Neural Networks for the Odometry Estimation 3

deployments of the convolutional neural networks have already proven to be successful
when dealing with this type of the sparse 3D data. Particularly in the tasks such as ground
segmentation [22] or, for example, in challenging vehicle detection [14].

The main contribution of our work is the fast and accurate estimation of positioning
parameters (translation) in real-time, that outperforms state of the art. We also propose al-
ternative networks for full estimation of all 6DoF (6 Degrees of Freedom) motion parame-
ters including rotation. The results of these networks are also comparable to the state of the
art. Our deployment of convolutional neural networks for the odometry estimation, together
with the existing methods of the vehicle detection [14] and ground segmentation [22] also
illustrates the general usability of CNNs for this type of sparse LiDAR data.

This article is an extended version of a conference paper [21] published in ICARSC 2018.
Besides the additional description of the related work in Section 2, details and further in-
sights into our methodology (Section 3), this paper delivers new experiments and results
providing deeper understanding of the pros and cons of our approach in Section 4. Both
these and also the original results are further elaborated in the additional discussion section.

2 Related Work

The methods for visual odometry estimation, which have been published so far, can be
divided into two basic groups. The first one consists of direct methods that calculate the
motion parameters in one step. These parameters can be estimated from a pair of camera
images, from depth RGB-D frames, or from 3D data, for example in the form of a cloud of
points. In comparison with the second group – iterative methods – direct methods have the
potential for better time performance. Unfortunately, to the best of our knowledge, no direct
method of point cloud registration or odometry estimation from the LiDAR scans has been
published or developed yet.

When the indoor environment is mapped using the backpack solution, neither the GNSS
positional system is available nor the wheel odometry estimation is feasible. This problem
can be overcome by the additional tracking hardware, such as Nikon iSpace [13] providing
the precise position in real time. This system requires placing laser transmitters all over
the mapped environment and including a compatible receiver into the backpack platform.
Using the triangulation, the position within the environment covered by the transmitters is
estimated with an error below ±0.25mm. These data can be used when the exact position
is required, but also as the source of ground truth when a new SLAM solution is developed.
The most significant drawback is the time-demanding process of spreading the transmitters
all over the scene and the calibration of the system prior to the mapping process.

Since the introduction of the well-known Iterative Closest Points (ICP) algorithm [1,5],
many modifications of this approach were developed. In all derivatives, two basic steps are
iteratively repeated until the termination conditions are met: matching the elements between
two point clouds (originally the points were used directly) and the estimation of target frame
transformation, minimizing the error represented by the distance of matching elements. This
approach assumes that there actually exist matching elements in the target cloud for a sig-
nificant amount of elements in the source point cloud. However, such assumption does not
often hold for sparse LiDAR data and it causes significant inaccuracies.

Grant [9] used planes detected in Velodyne LiDAR data as the basic elements. The
planes are identified by an analysis of depth gradients within readings from a single laser
beam and then by accumulating them in a modified Hough space. The detected planes are
matched and the optimal transformation is found by using a previously published method [17].

4 Martin Velas et al.

Their evaluation shows the significant error (≈ 1m after a 15m run) when mapping indoor
office environment. Douillard et al. [6] used the ground removal and clustering of the re-
maining points into segments. The transformation estimated from matching the segments is
only approximate and it is probably compromised by using quite coarse (20 cm) voxel grid.

Generalized ICP (GICP) [19] replaces the standard point-to-point matching by the plane-
to-plane strategy. Small local surfaces are estimated and their covariance matrices are used
for their matching. When using Velodyne LiDAR data, the authors achieved ±20 cm accu-
racy when registering pairwise scans. In our evaluation [20] using the KITTI dataset [8],
the method yields average error of 11.5 cm in the frame-to-frame registration task. The ro-
bustness of GICP drops in the case of a large distance between the scans (> 6m). This was
improved by employing visual SIFT features extracted from omnidirectional Ladybug cam-
era [15] and the codebook quantization of extracted features for building a sparse histogram
and for maximization of the mutual information [16].

Bose and Zlot [3] are able to build consistent 3D maps of various environments, includ-
ing challenging natural scenes, deploying visual loop closure over the odometry provided
by inaccurate wheel encoders and the orientation by IMU. Their robust place recognition is
based on Gestalt keypoint detection and description [2]. Deployment of our CNN in such
a system would overcome the requirement of the wheel platform and the same approach
would be useful for human-carried sensory gears (Pegasus, ZEB, etc.) as mentioned in the
introduction.

The extension of the simple 2D rangefinder into the 3D LiDAR SLAM solution used
in ZEB and ZEB-REVO by the Geoslam company was originally proposed in 2012 as a
Zebedee scanner [4]. It is achieved by placing the rangefinder atop of the flexible spring
amplifying external motion introduced by the person carrying the whole system. The initial
rough estimation of both the odometry and the orientation of the spring-mounted LiDAR
head is done by the IMU sensor. Then, the surface patches (surfels) are estimated within the
cells of the voxel grid. The surfels are matched and the corrections are computed by min-
imizing the distance between the matches, by using the difference between the estimation
and the original IMU readings, and by constraints enforcing the continuity with the previous
trajectory.

Our previous work [20] proposed sampling the 3D LiDAR point clouds by Collar Line
Segments (CLS) to overcome data sparsity. First, the original Velodyne point cloud is split
into polar bins. The line segments are randomly generated within each bin, matched by
nearest neighbor search and the resulting transformation fits the matched lines into common
planes. The CLS approach was also evaluated using the KITTI dataset and achieves 7 cm
error of the pairwise scan registration. Splitting into polar bins is also used in this work for
encoding the 3D data to 2D representation (see Section 3.1).

The top ranks in KITTI Visual odometry benchmark [8] are for last years occupied by
LiDAR Odometry and Mapping (LOAM) [24] and Visual LOAM (V-LOAM) [25] methods.
Planar and edge points are detected and used to estimate the optimal transformation in two
stages: fast scan-to-scan and precise scan-to-map. The map consists of keypoints found in
the previous LiDAR point clouds. Scan-to-scan registration enables real-time performance
and only each n-th frame is actually registered within the map.

The implementation of LOAM was publicly released under BSD license but later with-
drawn after being commercialized. The original code is accessible through the documen-
tation5 and we used it for evaluation and comparison with our proposed solution. In our
experiments, we were able to achieve superior accuracy in the estimation of the translation

5 http://docs.ros.org/indigo/api/loam_velodyne/html/files.html

Convolutional Neural Networks for the Odometry Estimation 5

parameters and comparable results in the estimation of full 6DoF (degrees of freedom) mo-
tion parameters including rotation. In V-LOAM [25], the original method was improved by
fusion with RGB data from omnidirectional camera and the authors also prepared a method
which fuses LiDAR and RGB-D data [23].

The encoding of 3D LiDAR data into the 2D representation, which can be processed
by convolutional neural network (CNN), were previously proposed and used in the task of
ground segmentation [22] and in vehicle detection [14]. We use a similar CNN approach for
quite a different task of visual odometry estimation. Besides the precision and the real-time
performance, our method also contributes as the illustration of general usability of CNNs
for sparse LiDAR data. The key difference is the amount and the ordering of input data
processed by the neural network (described in the next chapter and in Figure 5). While the
previous methods [14,22] process only a single frame, in order to estimate the transformation
parameters precisely we process multiple frames simultaneously.

3 Proposed Methodology

Our goal is the estimation of transformation Tn = [txn, t
y
n, t

z
n, r

x
n, r

y
n, r

z
n] representing the

6DoF motion of a platform carrying LiDAR sensor, given the current LiDAR frame Pn

and N previous frames Pn−1,Pn−2, . . . ,Pn−N in the form of point clouds. This can be
written as a mapping Θ from the point cloud domain P to the domain of motion parameters
(1) and (2).

Fig. 2: The coordinate system used in this work.

Each element of the point cloud p ∈ P is the vector p = [px, py, pz, pr, pi], where
[px, py, pz] are its coordinates in the 3D space originating at the sensor position as shown
in the Figure 2. The coordinates in horizontal XZ plane determines the depth, Y coordinate
is equivalent to the height above ground. pr is the index of the laser beam that captured this
point, which is commonly referred as the “ring” index since the Velodyne data resembles
the rings of points shown in Figure 3 (top, left). The laser intensity reading (which belongs
to this particular point) is denoted as pi.

Tn = Θ(Pn,Pn−1,Pn−2, . . . ,Pn−N) (1)

Θ : PN+1 → R6 (2)

6 Martin Velas et al.

(a)

x

z

r1
r2

r3

...

c1

c2

c3
...

(b)

polar angle

ri
n
g

0
360

64

intensity

height

range

(c)

Fig. 3: Transformation of the sparse Velodyne point (a) cloud into the multi-channel
dense matrix (c). Each row represents measurements of a single laser beam (single ring
r1, r2, r3, . . .) done during one rotation of the sensor. Each column contains measurements
of all 64 laser beams captured within the specific rotational angle interval (polar cone
c1, c2, c3, . . .).

3.1 Data Encoding

We represent the mapping Θ by a convolutional neural network. Since we use sparse 3D
point clouds and convolutional neural networks are commonly designed for dense 1D and
2D data, we adopt a previously proposed [14, 22] encoding E (3) of 3D LiDAR data to
a dense matrix M ∈ M. These encoded data are used for actual training of the neural
network by implementing the mapping Θ̃ (4, 5).

M = E(P); E : P→ M (3)

Tn = Θ̃(E(Pn), E(Pn−1), . . . , E(Pn−N)) (4)

Θ̃ : MN+1 → R6 (5)

Each element mr,c of the matrix M encodes points of the polar bin br,c ⊂ P (6) as a
vector of 3 values: depth, the vertical height relative to the sensor position, and the intensity
of laser return (7). Since multiple points fall into the same bin (angular resolution of the 2D
representation is smaller than angular resolution of the LiDAR), the representative values
are computed by averaging. On the other hand, if a polar bin is empty, the missing element
of the resulting matrix is interpolated from its neighborhood using linear interpolation.

Convolutional Neural Networks for the Odometry Estimation 7

Fig. 4: Detail of the channels in the 2D representation: height (top), range (middle) and
intensity (bottom)

mr,c = ε(br,c); ε : P→ R3 (6)

ε(br,c) =

∑
p∈br,c

[
py, ‖px, pz‖2 , p

i
]

|br,c|
(7)

Indices r, c denote both the row (r) and the column (c) of the encoded matrix and the ring
index (r) the polar cone (c) in the original point cloud (see Figure 3). Dividing the point
cloud into the polar bins follows the same strategy as described in our previous work [20].
Each polar bin is identified by the polar cone ϕ(.) and the ring index pr .

br,c = {p ∈ P | pr = r ∧ ϕ(p) = c} (8)

ϕ(p) =

atan
(

pz

px

)
+ 180◦

360◦

R

 (9)

where R is the horizontal angular resolution of the polar cones. In our experiments we used
the resolution R = 1◦ (and 0.2◦ in the classification formulation described below).

The detailed view on the example of encoded data can be found in the Figure 4. Although
the range and the height channels are quite smooth, the information regarding even the small
elements in the scene (road delineators, bus stop, etc.) is still preserved. On the other hand,
the intensity readings are quite noisy but this channel preserves the visual information (e.g.
the zebra crossing on the left part of the image).

8 Martin Velas et al.

Fully
connected

layer
R || t (DoF)

CNN part

CNN part

CNN part

CNN part

CNN part

CNN part

Mn

Mn-1

Mn-2

Mn-3

...

input frames

Fig. 5: Topology of the network implementing Θ̃R and Θ̃t. All combinations of current Mn

and previous Mn−1,Mn−2, . . . frames (3 previous frames in this example) are pairwise
processed by the same CNN part (see structure in Figure 6) with shared weights. The final
estimation of rotation or translation parameters is done in the fully connected layer joining
the outputs of the CNN parts. For training, the euclidean loss was used.

3.2 From Regression to Classification

In our preliminary experiments, we trained the network Θ̃ estimating full 6DoF motion pa-
rameters. Unfortunately, such network provided very inaccurate results. The output param-
eters consist of two different motion modalities – rotation and translation Tn = [Rn|tn] –
and it is difficult to determine (or weight) the importance of angular and positional differ-
ences in backward propagation. So we decided to split the mapping into the estimation of
rotation parameters Θ̃R (10) and translation Θ̃t (11).

Rn = Θ̃R(Mn,Mn−1, . . . ,Mn−N) (10)

tn = Θ̃t(Mn,Mn−1, . . . ,Mn−N) (11)

Θ̃R : MN+1 → R3; Θ̃t : MN+1 → R3 (12)

The implementation of Θ̃R and Θ̃t by convolutional neural network is shown in Fig-
ure 5. We use multiple input frames in order to improve stability and robustness of the
method. Such a multi-frame approach was also successfully used in our previous work [20]
and comes from the assumption that motion parameters are similar within a small time win-
dow (0.1− 0.7 s in our experiments below).

The idea behind the proposed topology is the expectation that shared CNN components
for pairwise frame processing will estimate the motion map across the input frame space
(analogous to the optical flow in image processing). The final estimation of rotation or trans-
lation parameters is performed in the fully connected layer joining the outputs of purely
convolutional components.

Our experiments presented in the Table 1 prove the benefits of such multi-view approach
in comparison with the approach of processing only the current and the single previous

Convolutional Neural Networks for the Odometry Estimation 9

CONV
3x3
+

ReLu
+

POOL 2 64ch

CONV
3x3
+

ReLu
+

POOL 2

CONV
5x5
+

ReLu
+

POOL 2
3+3

360

64

64ch
64ch

Fig. 6: Topology of the shared CNN block denoted as “CNN part” in Figure 5. Each block
processes a pair of encoded LiDAR frames. The topology is quite shallow with small con-
volutional kernels, ReLu nonlinearities and max polling after each convolutional layer. The
output blob size is 45× 8× 64 (W ×H × Ch).

M3 M2 M1 M0

(a)

M3 M2 M1 M0

(b)

M3 M2 M1 M0

(c)

Fig. 7: Different strategies for the multi-view approach. In this example, current M3 and
three previous frames M2,M1,M0 are used as an input into the network. Each pair joined
by the node (black dot) is processed separately by the part of the convolutional network.
In the neighborly strategy (a), only the following frames are processed together. On the
other hand, all previous frames can be compared only with the current frame (b) or all
permutations (c) can be processed.

frame. We have also experimented with the different strategies for arranging the frames on
the input of our networks. We have tried all arrangements presented in Figure 7 and the best
odometry estimation was provided when all permutations (Figure 7c) were processed by the
convolutional part (as also shown in the previous Figure 5).

Comparing with the other two strategies, when only neighboring frames (Figure 7a)
were processed together or only the current frame was processed with the previous frames
(Figure 7b), the strategy with all the permutations (Figure 7c) is able to get a wider con-
text of the current situation. The idea behind is that the transformation of the current frame
with respect to the previous one would be internally estimated multiple times to make the
final decision (done by the fully connected layer) more precise. Following the example from
the Figure 7, the goal is the estimation of the transformation from frameM2 toM3 which we
will denote as a T2→3. Ideally, each CNN part would estimate the guess T̂ of transformation
between its input frames (e.g. T̂0→2 between frames M0 and M2). Different combinations
(13) of these guesses provide multiple pieces of evidence regarding the desired output trans-
formation.

T2→3 ≈ T̂2→3 ≈ T̂−1
1→2· T̂1→3 ≈ T̂−1

0→2· T̂0→3 ≈ T̂−1
0→1· T̂

−1
1→2· T̂0→3 ≈ . . . (13)

Splitting the task of odometry estimation into two separated networks and sharing the
same topology and input data significantly improved the results – especially the precision
of the estimated translation parameters. However, the precision of the predicted rotation
was still insufficient. The rotation is represented by Euler angles, but the experiments with
quaternions and axis-angles were also performed with no improvement. The original formu-
lations of our goal (1) can be considered as solving the regression task. However, the space

10 Martin Velas et al.

Fig. 8: Minimum and maximum rotations around x, y, z axis as observed in the training data
sequences of the KITTI dataset.

CNN part

CNN part

CNN part

Mn-1

R0(Mn)

R1(Mn)

R2(Mn)

RK-1(Mn)

...
CNN part

...
...

Fully-Connected

Fully-Connected

Fully-Connected

Fully-Connected

ro
ta

tio
n
 p

ro
b

a
b

ilitie
s

so
ftm

a
x

Fig. 9: Modification of the original topology (Figure 5) for precise estimation of rotation
parameters. Rotation parameter space (each axis separately) is densely sampled into K ro-
tations R0, R1, . . . , RK−1 and applied to the current frame Mn. Both the CNN part and
the fully connected layer are trained as comparators Γ with previous frame Mn−1 estimat-
ing the probability of the given rotation Ri. All the CNN blocks (structure can be found
in Figure 10) and fully connected layers share the weights of the activations.

of possible rotations between consequent frames is quite small for reasonable data (distri-
bution of rotations for KITTI dataset can be found in Figure 8). Such small space can be
densely sampled and we can reformulate this problem to the classification task (14, 15).

R = argmax
i∈{0,...,K−1}

Γ (Ri(Mn),Mn−1) (14)

Γ : M2 → R (15)

where Ri(Mn) represents rotation Ri of the current LiDAR frame Mn and Γ (.) estimates
the probability of Ri to be the correct rotation between the frames Mn and Mn−1.

A similar approach was previously used in the task of human age estimation [18]. In-
stead of training the CNN to estimate the age directly, a person image is classified to be
0, 1, . . . , 100 years old.

The implementation of Γ comparator by a convolutional neural network can be found
in Figure 9. In the following sections, this network will be referred to as the classification
CNN while the original one will be referred to as the regression CNN. We have also ex-
perimented with the classification-like formulation of the problem using the original CNN
topology (Figure 5) without sampling and applying the rotations, but this did not bring the
improvement.

For the classification network we experienced better results when wider input (hori-
zontal resolution R = 0.2◦) is provided to the network. This affected also the properties

Convolutional Neural Networks for the Odometry Estimation 11

CONV 5x3
stride 2x1

+
ReLu

+
POOL 2

CONV 5x3
stride 2x1

+
ReLu

+
POOL 2

3+3

1800

64

CONV 7x5
stride 2x1

+
ReLu

+
POOL 2

450x32x64
(WxHxCh) 112x16x64 27x7x8

Fig. 10: Modification of the CNN block of the classification network. Wider input (angular
resolution R = 0.2◦) and wider convolution kernels with horizontal stride 2 are used.

of the convolutional component (the CNN part), where wider convolution kernels are used
with horizontal stride (see Figure 10) to reduce the amount of data processed by the fully
connected layer.

Although the space of the observed rotations is quite small (approximately ±1◦ around
x and z axis, and ±4◦ for y axis, see Figure 8), sampling densely (by a fraction of degree)
this subspace of 3D rotations would result in thousands of possible rotations. Because such
amount of rotations would be infeasible to process, we decided to estimate the rotation
around each axis separately, so we trained 3 CNNs for rotations around x, y and z axis
separately. These networks share the same topology (Figure 9).

In the formulation of our classification problem (14), the final decision of the best ro-
tation R∗ is done by max polling. Since Γ estimates the probability of a rotation angle
p(Ri) (16), assuming the normal distribution we can also compute the maximum likelihood
solution by the weighted average (17).

p(Ri) = Γ (Ri(Mn),Mn−1) (16)

R∗ =

∑
i∈SW

p(Ri).Ri∑
i∈SW

p(Ri)
(17)

SW = argmax
S={i0,...,i0+W}

∑
i∈S

p(Ri) (18)

Moreover, this estimation can done for a window of fixed size W which is limited only
for the highest rotation probabilities (18). When the size of the window is set to 1, the result
is the same as for the max polling (picking the rotation of the highest probability).

3.3 Data Processing

We used the encoded Velodyne LiDAR data to train and test the proposed networks. As
previously mentioned, the original raw point cloud elements consist of the coordinates x, y
and z, the identification of laser beam that captured the given point and the received laser
intensity value. Encoding to the 2D representation transforms coordinates of x and z (in
the horizontal plane) into the depth information (represented by the range channel) and the
horizontal angle that is analogous to the column index in the encoded matrix. The measured
intensities and the y coordinates are mapped directly into the matrix channels, and the laser
beam index is represented by the line index in the 2D matrix. This means that our encoding
does not cause any loss of information (except for the aggregation of multiple points into
the same polar bin).

12 Martin Velas et al.

Furthermore, we use the same data normalization and rescaling as we used in our previ-
ous work [22]:

h =
yi

H
(19)

d = log (d) (20)

This applies only to the vertical height h and depth d, since the intensity values are already
normalized to interval (0; 1). We set the height normalization constant to H = 3, since in
the usual scenarios, the Velodyne (model HDL-64E) captures vertical slice approximately
3m high.

In our preliminary experiments, we trained the convolutional neural networks without
this normalization (19) and rescaling (20) and we also experimented with using the 3D point
coordinates as the channels of the CNN input matrices. All these approaches resulted only
in worse odometry precision.

4 Experimental Results

We implemented the proposed networks using Caffe6 deep learning framework. For training
and testing, data from the KITTI odometry benchmark7 were used together with provided
development kit for the evaluation and error estimation. The LiDAR data were collected by
Velodyne HDL-64E sensor mounted on top of a vehicle together with an IMU sensor and a
GPS localization unit with RTK correction signal providing precise position and orientation
measurements [8]. Velodyne spins with the frequency of 10Hz providing 10 LiDAR scans
per second. The dataset consist of 11 data sequences where the ground truth is provided. We
split these data into a training (sequences 00-07) and a testing set (sequences 08-10). For
the rest of the dataset (sequences 11-21) there is no ground truth and they serve only for the
KITTI benchmarking purposes. Therefore these sequences are not useful for us.

The error of the estimated odometry is evaluated by the development kit provided with
the KITTI benchmark. The data sequences are split into subsequences of 100, 200, . . . , 800
frames (10, 20, . . . , 80 seconds duration). The error es of each subsequence is computed as:

es =
‖Es,Cs‖2

ls
(21)

where Es is the expected position (from the ground truth data) and Cs is the estimated
position of the LiDAR where the last frame of subsequence was taken with respect to the
initial position (within the given subsequence). The difference is divided by the length ls
of the followed trajectory. The final error value is the average of errors es across all the
subsequences of all the lengths.

First, we trained and evaluated the regression networks (their topology is described
in Figure 5) for direct estimation of rotation or translation parameters. The results can be
found in Table 1. To determine the error of the network predicting translation or rotation
motion parameters, the missing rotation or translation parameters respectively were taken
from the ground truth data since the evaluation requires all the 6DoF parameters.

The evaluation shows that the proposed CNNs predict the translation (CNN-t in Table 1)
with a high precision – the best results were achieved for the network taking the current and

6 caffe.berkeleyvision.org
7 www.cvlibs.net/datasets/kitti/eval_odometry.php

Convolutional Neural Networks for the Odometry Estimation 13

Error Forward time [s/frame]
N CNN-t CNN-R CNN-Rt GPU CPU

1 0.0184 0.3794 0.3827 0.004 0.065

2 0.0129 0.2752 0.2764 0.013 0.194

3 0.0111 0.2615 0.2617 0.026 0.393

5 0.0102 0.2646 0.2656 0.067 0.987

7 0.0130 0.2534 0.2546 0.125 1.873

Table 1: Evaluation of the regression networks for different size of the input data – N is
the number of previous frames. The convolutional neural networks were used to determine
the translation parameters only (column CNN-t), the rotation only (CNN-R) and both the
rotation and translation (CNN-Rt) parameters for KITTI sequences 00–08. The error of the
estimated odometry together with the processing time per a single frame (using CPU only
or GPU acceleration) is presented.

Window size W Odom. error Window size Odom. error

1 (max polling) 0.03573 9 0.03704

3 0.03433 11 0.03712

5 0.03504 13 0.03719

7 0.03629 all 0.03719

Table 2: The impact of the window size on the error of odometry estimation, when the rota-
tion parameters are estimated by the classification strategy. Window size W = 1 is equiva-
lent to the max pooling, maximal likelihood solution is found also when “all” probabilities
are taken into the account without the window restriction.

N = 5 previous frames as the input. The results also show that all these networks outper-
form LOAM (error 0.0186, see evaluation in Table 3 for more details) in the estimation of
translation parameters. On the contrary, this method is unable to estimate rotations (CNN-R
and CNN-Rt) with a sufficient precision. All networks except for the largest one (N < 7)
are capable of real-time performance with GPU support (GeForce GTX 770 used) and the
smallest one also without any acceleration (running on i5-6500 CPU). It should be noted
that the Velodyne standard frame-rate is 10 fps.

We also wanted to explore whether the CNNs are capable of predicting the full 6DoF
motion parameters, including the rotation angles with a sufficient precision. Hence the clas-
sification network schema shown in Figure 9 was implemented and trained also using the
Caffe framework. The network predicts the probabilities for densely sampled rotation an-
gles. We used sampling resolution of 0.2◦, which is equivalent to the horizontal angular
resolution of Velodyne data in the KITTI dataset. Given the statistics from the training data
shown in Figure 8, we sampled the interval ±1.3◦ of rotations around x and z axis into 13
classes, and the interval ±5.6◦ into 56 classes, including approximately 30% tolerance.

Since the network predicts the probabilities of given rotations, the final estimation of
the rotation angle is obtained by max polling (14) or by the window approach of maximum
likelihood estimation (17, 18). Table 2 shows that optimal results are achieved when the
window size W = 3 is used.

14 Martin Velas et al.

Translation only Rotation and translation

LOAM LOAM CNN LOAM LOAM CNN CNN
Seq. # -full -online -regression -full -online -regression -classif.

00 0.0152 0.0193 0.0084 0.0225 0.0516 0.2877 0.0302

01 0.0368 0.0255 0.0079 0.0396 0.0385 0.1492 0.0444

02 0.0383 0.0293 0.0076 0.0461 0.0550 0.2290 0.0342

03 0.0120 0.0117 0.0166 0.0191 0.0294 0.0648 0.0494

04 0.0076 0.0085 0.0089 0.0148 0.0150 0.0757 0.0177

05 0.0092 0.0096 0.0056 0.0184 0.0246 0.1357 0.0235

06 0.0088 0.0130 0.0036 0.0160 0.0335 0.0812 0.0188

07 0.0137 0.0155 0.0077 0.0192 0.0380 0.1308 0.0177

Train avg. 0.0214 0.0197 0.0077 0.0287 0.0433 0.1970 0.0303

08 0.0107 0.0145 0.0096 0.0239 0.0349 0.2716 0.0289

09 0.0368 0.0380 0.0098 0.0322 0.0430 0.2373 0.0494

10 0.0213 0.0196 0.0128 0.0295 0.0399 0.2823 0.0327

Test avg. 0.0186 0.0208 0.0102 0.0268 0.0376 0.2655 0.0343

Table 3: Comparison of the odometry estimation precision by the proposed method and
LOAM for sequences of the KITTI dataset [8] (sequences 00 − 07 were used for training
the CNN, 08− 10 for testing only). LOAM was tested in the on-line mode (LOAM-online)
when the time spent for a single frame processing is limited to Velodyne fps (0.1s/frame)
and in the full mode (LOAM-full) where each frame is fully registered within the map.
Both the regression (CNN-regression) and the classification (CNN-classification) strategies
of our method are included. When only translation parameters are estimated, our method
outperforms LOAM. On the contrary, LOAM outperforms our CNN odometry when full
6DoF motion parameters are estimated.

We compared our CNN approach for odometry estimation with the LOAM method [24].
We used the originally published ROS implementation (see link in Section 2) with a slight
modification to enable KITTI Velodyne HDL-64E data processing. In the original package,
the input data format of Velodyne VLP-16 is “hardcoded”. The results of this implementa-
tion are labeled as LOAM-online in Table 3, since the data are processed online in real time
(10 fps). This real-time performance is achieved by skipping the full mapping procedure
(registration of the current frame against the internal map) for particular input frames.

Comparing with this original online mode of the LOAM method, our CNN approach
achieves better results in estimation of both translation and rotation motion parameters.
However, it is important to mention that our classification network for the orientation es-
timation requires 0.27 s per frame when using GPU acceleration.

The portion of skipped frames in the LOAM method depends on the input frame rate,
size of the input data, available computational power and it affects the precision of the
estimated odometry. In our experiments with the KITTI dataset (on the same machine as was
used for the CNN experiments), 31.7% of input frames are processed by the full mapping
procedure.

In order to determine the full potential of the LOAM method and for fair comparison, we
made further modifications of the original implementation, so that the mapping procedure

Convolutional Neural Networks for the Odometry Estimation 15

runs for each input frame. The results of this method are labeled as LOAM-full in Table 3 and,
in estimation of all 6DoF motion parameters, it outperforms our proposed CNNs. However,
the prediction of translation parameters by our regression networks is still significantly more
precise and faster and the average processing time of a single frame by the LOAM-full
method is 0.7 s.

The visualization of the estimated transformations can be found in the Figure 11. When
only the translation (t) parameters are estimated, both methods achieve very good precision
and the estimation is visually almost identical with the ground truth. When also the rotation
parameters are estimated, better performance of the LOAM can be observed. The most sig-
nificant error of our method can be observed for the sequence no. 08. The failing cases will
be elaborated in more detail at the end of this section.

We also provide the results for the training sequences in the Figure 12 and also in the
Table 3. The CNNs perform better on these data as expected. It is also important to mention
that this difference is not as dramatic and therefore it is possible to say that no significant
overfitting happened during the training process. There is also an interesting observation
that the LOAM method is quite failing on the sequence no. 02. This sequence is distinct
because of the presence of natural objects (many trees, grass, bushes). This can be probably
considered a very inconvenient environment for a method similar to LOAM, since LOAM
uses the features typical for flat surfaces and the corners of the “Manhattan world”.

In the next experiment, we wanted to discover which factor or element causes worse be-
havior of our approach when compared to LOAM, in terms of the rotation angles estimation.
In the Figures 13 and 14, we present dependency of the rotation error on the driving speed
and the magnitude of the rotation itself. These evaluations are made for the total rotation
and also for separate Euler angles. This experiment shows that this dependency is similar
for both methods. For higher driving speeds or larger rotations, the error of rotation raises.

It is possible to observe that the error of the cumulated rotation is lower for our CNN
approach than for LOAM. However, the total odometry error, presented in the experiment
above, is higher for our approach. This is caused by the larger error in heading orientation
(yaw Euler angle). Since the car platform is moving predominantly straight forward, the
precision of heading affects the total error more significantly. Another interesting conclusion
from the Figure 14 is that the LOAM method has problems with estimating roll for the higher
rotation magnitudes.

Since there are RGB images also available, we can visualize situations where the error
of the estimated odometry is the highest. Such situations are presented in the Figure 15 for
LOAM and in the Figure 16 for our CNNs. LOAM suffers from the biggest error when the
vehicle goes along the long smooth curves or when it passes a sharp, tilted turn. An error
occurred also after a sharp turn when the second vehicle appeared in the opposite direction.
Our CNN fails in situations when there is a significant change of direction – 180◦ turn or
a sudden change in the direction of the vehicle to avoid manhole covers. The convolutional
neural networks also fail when the vehicle stops at a crossing and the second car or truck
passes in front of the vehicle.

Both the results of our method and the outputs of the LOAM approach yield a very
large difference from the KITTI Odometry ground truth for the beginning of the sequence
no. 08. This situation is visualized and described in the Figure 17 and it is obvious that
this error is caused by the imprecision of the ground truth annotations rather than impreci-
sions of estimated odometry. It is possible that the navigation subsystem (GNSS, inertial,
odometer sensors) is not properly initialized yet and therefore an incorrectly large slope in
the positional data appears.

16 Martin Velas et al.
L

O
A

M
-f

ul
l(

t)

-200

-100

 0

 100

 200

 300

 400

 500

 600

-400 -300 -200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

08

 0

 100

 200

 300

 400

 500

-200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

09

-300

-200

-100

 0

 100

 200

 300

 400

 0 100 200 300 400 500 600 700

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

10

C
N

N
-r

eg
re

ss
io

n
(t

)

-200

-100

 0

 100

 200

 300

 400

 500

 600

-400 -300 -200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

08

 0

 100

 200

 300

 400

 500

-200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

09

-300

-200

-100

 0

 100

 200

 300

 400

 0 100 200 300 400 500 600 700

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

10

L
O

A
M

-f
ul

l(
R

+t
)

-300

-200

-100

 0

 100

 200

 300

 400

 500

 600

-400 -300 -200 -100 0 100 200 300 400 500

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

08

 0

 100

 200

 300

 400

 500

-200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

09

-300

-200

-100

 0

 100

 200

 300

 400

 0 100 200 300 400 500 600 700

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

10

C
N

N
-c

la
ss

ifi
ca

tio
n

(R
+t

)

-200

-100

 0

 100

 200

 300

 400

 500

 600

-400 -300 -200 -100 0 100 200 300 400 500

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

08

 0

 100

 200

 300

 400

 500

-200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

09

-300

-200

-100

 0

 100

 200

 300

 400

 0 100 200 300 400 500 600 700

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

10

Fig. 11: Visual comparison of the results for LOAM (1st and 3rd row) and our CNNs (2nd

and 4th row) on the KITTI sequences used for the testing only (sequences 08− 10). In the
first two rows, only translation (t) parameters are estimated. The differences between the
ground truth (red) and the estimated odometry (blue) are barely visible here. Bottom rows
show the cases when all 6DoF motion parameters (R+ t) are estimated.

Convolutional Neural Networks for the Odometry Estimation 17

LOAM-full:

 0

 100

 200

 300

 400

 500

-300 -200 -100 0 100 200 300

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

00

-1500

-1000

-500

 0

 0 500 1000 1500

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

01

 0

 200

 400

 600

 800

-200 0 200 400 600 800

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

02

-100

 0

 100

 200

 300

 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

03

 0

 50

 100

 150

 200

 250

 300

 350

 400

-200 -150 -100 -50 0 50 100 150 200

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

04

-100

 0

 100

 200

 300

 400

-200 -100 0 100 200

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

05

-100

 0

 100

 200

 300

-200 -100 0 100 200

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

06

-100

-50

 0

 50

 100

-200 -150 -100 -50 0

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

07

CNN-classification (R+t):

 0

 100

 200

 300

 400

 500

-300 -200 -100 0 100 200 300

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

00

-1500

-1000

-500

 0

 0 500 1000 1500

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

01

 0

 200

 400

 600

 800

-200 0 200 400 600 800

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

02

-100

 0

 100

 200

 300

 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

03

 0

 50

 100

 150

 200

 250

 300

 350

 400

-200 -150 -100 -50 0 50 100 150 200

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

04

-100

 0

 100

 200

 300

 400

-200 -100 0 100 200

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

05

-100

 0

 100

 200

 300

-200 -100 0 100 200

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

06

-100

-50

 0

 50

 100

-200 -150 -100 -50 0

z
[m

]

x [m]

Ground Truth
Visual Odometry
Sequence Start

07

Fig. 12: Visualization of the LOAM and our CNNs results (blue) for the KITTI train se-
quences (00 - 07). The reference ground truth is colored by the red color.

We also submitted the results of our networks (i.e. the regression CNN estimating trans-
lational parameters only and the classification CNN estimating rotations) to the KITTI
benchmark together with the outputs we achieved using the LOAM method in the online
and the full mapping mode. The results are similar as in our experiments – the best per-
forming LOAM-full achieves 3.49% and our CNNs 4.59% error. LOAM-online performed
worse than in our experiments with error 9.21%. Interestingly, the error of our refactored

18 Martin Velas et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60

E
rr

o
r

(r
o
ta

ti
o
n
)

[d
e
g
]

Speed [km/h]

LOAM
CNN

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60

E
rr

o
r

(r
o
ll
)

[d
e
g
]

Speed [km/h]

LOAM
CNN

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60

E
rr

o
r

(p
it
c
h
)

[d
e
g
]

Speed [km/h]

LOAM
CNN

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10 20 30 40 50 60

E
rr

o
r

(y
a
w

)
[d

e
g
]

Speed [km/h]

LOAM
CNN

Fig. 13: The dependency of the rotation angle error on the driving speed for both our CNN
method and the LOAM-full method. The error is evaluated for the total rotation and also for
all the Euler angles separately.

original implementation of LOAM is more significant than errors reported for the original
submission of the LOAM authors. This is probably caused by a fine-tuning of the method
for the KITTI dataset which has never been published and authors refused to share both the
specification/implementation used and the outputs of their method with us.

4.1 Discussion

The evaluation showed that our approach is able to estimate the translation motion param-
eters at a high rate with very good precision comparing to the state of the art method. This
is the most significant outcome of our work since with the aiding of the IMU sensor, online
odometry estimation and the point cloud registration is possible.

When we tried to demonstrate the ability of the proposed convolutional neural networks
to estimate both the translation and the rotation, our evaluation showed that the results we
achieved are inferior to the abilities of the LOAM approach. After deeper evaluation, we
were able to identify the issue – our method performs worse in the estimation of heading
direction. This is definitely the space for future work. One of the possible solutions would
be probably an improvement of the training dataset, where this heading changes can be
artificially introduced and a better model can be learned. The inspections of the failing cases
showed that the situations when the driving direction is changing are challenging for both
of the methods.

Convolutional Neural Networks for the Odometry Estimation 19

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20 25 30 35 40

E
rr

o
r

(r
o
ta

ti
o
n
)

[d
e
g
]

Rotation [deg]

LOAM
CNN

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1 2 3 4 5 6

E
rr

o
r

(r
o
ll
)

[d
e
g
]

Roll [deg]

LOAM
CNN

 0

 0.5

 1

 1.5

 2

 2.5

 0 1 2 3 4 5 6

E
rr

o
r

(p
it
c
h
)

[d
e
g
]

Pitch [deg]

LOAM
CNN

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5 10 15 20 25 30 35 40

E
rr

o
r

(y
a
w

)
[d

e
g
]

Yaw [deg]

LOAM
CNN

Fig. 14: The dependency of the rotation angle error on the rotation magnitude for both our
CNN method and the LOAM-full method. The error is evaluated for the total rotation and
also for all the Euler angles separately.

(a) (b)

(c) (d)

Fig. 15: Examples of failing cases with the largest error for LOAM: sharp sloped curve (a),
long smooth curve (b) and the situation, when the car appears in the opposite direction (d)
right after the vehicle turns left (c).

20 Martin Velas et al.

(a) (b)

(c) (d)

Fig. 16: Examples of failing cases with the largest error for our CNN method for the odom-
etry estimation: sharp curve with almost 180◦ orientation change (a), long smooth curve (b)
and the situation, when the car appears in the opposite direction (c) right after the vehicle
turns left (d).

FRONT

(a) (b)

Fig. 17: The error in the ground truth of the KITTI Odometry dataset. At the beginning of the
sequence 08, there is evidence in ground truth data about going uphill during the first turn
left (a). According to the image data available (b), there is no such slope on this crossing.

The last but probably not least contribution of our work is the evidence that the con-
volutional neural networks can be used as a general concept for processing 3D Velodyne
LiDAR data. This concept has been previously used in the ground segmentation task [22]
and also in the vehicle detection problem [14]. However, it is necessary to admit that our
(and also previous) approaches are limited to this type of 3D data. On the other hand, the
LOAM method was originally designed for a spinning 3D rangefinder and therefore it can
be considered more general in terms of input data.

5 Conclusion

This article presents a new method for the odometry estimation using convolutional neural
networks. The most important outcome of our work is the proposal of networks for a very

Convolutional Neural Networks for the Odometry Estimation 21

fast and accurate estimation of real-time translation motion parameters. For translation, the
networks overcome the state of the art performance both in terms of precision and the speed
in evaluations using the standard KITTI Odometry dataset.

The proposed solution can replace less accurate methods, such as odometry estimated
from wheel encoders on the mobile platform. It is also able to solve the problems of the GPS-
based systems in cases where the GNSS signal is insufficient or corrections are not available
(e.g. in the indoor environments, in the forests, mines, etc.). If the rotational movement
parameters (orientation) are provided by the IMU sensor, full 6DoF position is determined
online. For the 3D mapping processes, therefore, the preview of the results and the collected
data can be directly displayed to the system operator in the real time during the mission.

We also introduced an alternate topology of convolutional neural networks and a strategy
for the prediction of the orientation (Euler angles roll, pitch and yaw). This allows for full
estimation of visual odometry in real time. Our method uses the existing encoding of the
3D LiDAR data to be processed by CNN [14, 22]. It contributes as a proof of the universal
usability of the convolutional neural networks for this data set.

As a future work, we have the ambition to deploy our methods of the odometry estima-
tion in the real-word 3D LiDAR mapping solutions for both indoor and outdoor environ-
ments.

References

1. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis
and Machine Intelligence 14(2), 239–256 (1992). DOI 10.1109/34.121791

2. Bosse, M., Zlot, R.: Keypoint design and evaluation for place recognition in 2D lidar maps. Robotics
and Autonomous Systems 57(12), 1211 – 1224 (2009). Inside Data Association

3. Bosse, M., Zlot, R.: Place recognition using keypoint voting in large 3D lidar datasets. In: 2013 IEEE
International Conference on Robotics and Automation, pp. 2677–2684 (2013). DOI 10.1109/ICRA.
2013.6630945

4. Bosse, M., Zlot, R., Flick, P.: Zebedee: Design of a spring-mounted 3-d range sensor with application to
mobile mapping. IEEE Transactions on Robotics 28(5), 1104–1119 (2012). DOI 10.1109/TRO.2012.
2200990

5. Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image Vision Comput.
10, 145–155 (1992). DOI 10.1016/0262-8856(92)90066-C

6. Douillard, B., Quadros, A., et al.: Scan segments matching for pairwise 3D alignment. In: Robotics and
Automation (ICRA), 2012 IEEE Int. Conference on, pp. 3033–3040 (2012). DOI 10.1109/ICRA.2012.
6224788

7. Eissfeller, B., Ameres, G., Kropp, V., Sanroma, D.: Performance of gps, glonass and galileo. In: Pho-
togrammetric Week, vol. 7, pp. 185–199 (2007)

8. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The KITTI dataset. Int. Journal of
Robotics Research (IJRR) (2013)

9. Grant, W., Voorhies, R., Itti, L.: Finding planes in lidar point clouds for real-time registration. In: In-
telligent Robots and Systems (IROS), 2013 IEEE/RSJ Int. Conference on, pp. 4347–4354 (2013). DOI
10.1109/IROS.2013.6696980

10. Kukko, A.: Mobile laser scanning system development, performance and applications (2013). URL
http://urn.fi/URN:ISBN:978-951-711-307-6

11. Kukko, A., Kaartinen, H., Hyypp, J., Chen, Y.: Multiplatform mobile laser scanning: Usability and per-
formance. Sensors 12(9), 11712–11733 (2012). DOI 10.3390/s120911712. URL http://www.
mdpi.com/1424-8220/12/9/11712

12. Langley, R.B.: Rtk gps. GPS World 9(9), 70–76 (1998)
13. Lauterbach, H.A., Borrmann, D., He, R., Eck, D., Schilling, K., Nchter, A.: Evaluation of a backpack-

mounted 3d mobile scanning system. Remote Sensing 7(10), 13753–13781 (2015). DOI 10.3390/
rs71013753. URL http://www.mdpi.com/2072-4292/7/10/13753

14. Li, B., Zhang, T., Xia, T.: Vehicle detection from 3D lidar using fully convolutional network. CoRR
abs/1608.07916 (2016). URL http://arxiv.org/abs/1608.07916

22 Martin Velas et al.

15. Pandey, G., McBride, J., Savarese, S., Eustice, R.: Visually bootstrapped generalized icp. In: Robotics
and Automation (ICRA), 2011 IEEE Int. Conference on, pp. 2660–2667 (2011). DOI 10.1109/ICRA.
2011.5980322

16. Pandey, G., McBride, J.R., Savarese, S., Eustice, R.M.: Toward mutual information based automatic
registration of 3D point clouds. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 2698–2704 (2012). DOI 10.1109/IROS.2012.6386053

17. Pathak, K., Birk, A., et al.: Fast registration based on noisy planes with unknown correspondences for
3-D mapping. Robotics, IEEE Transactions on 26(3), 424–441 (2010). DOI 10.1109/TRO.2010.2042989

18. Rothe, R., Timofte, R., Gool, L.V.: Deep expectation of real and apparent age from a single image without
facial landmarks. International Journal of Computer Vision (IJCV) (2016)

19. Segal, A., Haehnel, D., Thrun, S.: Generalized-icp. In: Proceedings of Robotics: Science and Systems.
Seattle, USA (2009)

20. Velas, M., Spanel, M., Herout, A.: Collar line segments for fast odometry estimation from velodyne
point clouds. In: IEEE Int. Conference on Robotics and Automation, pp. 4486–4495 (2016). DOI
10.1109/ICRA.2016.7487648

21. Velas, M., Spanel, M., Hradis, M., Herout, A.: Cnn for imu assisted odometry estimation using velo-
dyne lidar. In: 2018 IEEE International Conference on Autonomous Robot Systems and Competitions
(ICARSC), pp. 71–77 (2018). DOI 10.1109/ICARSC.2018.8374163

22. Velas, M., Spanel, M., Hradis, M., Herout, A.: Cnn for very fast ground segmentation in velodyne li-
dar data. In: 2018 IEEE International Conference on Autonomous Robot Systems and Competitions
(ICARSC), pp. 97–103 (2018). DOI 10.1109/ICARSC.2018.8374167

23. Zhang, J., Kaess, M., Singh, S.: Real-time depth enhanced monocular odometry. In: 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 4973–4980 (2014). DOI 10.1109/IROS.
2014.6943269

24. Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems
Conference (RSS 2014) (2014)

25. Zhang, J., Singh, S.: Visual-lidar odometry and mapping: Low-rift, robust, and fast. In: IEEE ICRA.
Seattle, WA (2015)

