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Relation-induced connectedness in the digital plane

Josef Šlapal

Abstract. We introduce and discuss a connectedness induced by n-ary relations (n > 1 an
integer) on their underlying sets. In particular, we focus on certain n-ary relations with the
induced connectedness allowing for a definition of digital Jordan curves. For every integer
n > 1, we introduce one such n-ary relation on the digital plane Z

2 and prove a digital
analogue of the Jordan curve theorem for the induced connectedness. It follows that these
n-ary relations may be used as convenient structures on the digital plane for the study
of geometric properties of digital images. For n = 2, such a structure coincides with the
(specialization order of the) Khalimsky topology and, for n > 2, it allows for a variety of
Jordan curves richer than that provided by the Khalimsky topology.
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theorem.

1. Introduction

One of the basic tasks of computer imagery is to provide the digital plane Z
2

with a convenient structure that would enable us to study and process digital
images (cf. [9,10]). An important criterion of such a convenience is the validity
of a digital analogue of the Jordan curve theorem (recall that the classical
Jordan curve theorem states that a simple closed curve in the Euclidean plane
separates this plane into exactly two connected components). The classical,
graph theoretic, approach to the problem is based on using 4-adjacency and 8-
adjacency graphs for structuring Z

2 (see [14,15]). Unfortunately, neither the 4-
adjacency nor the 8-adjacency graph alone allows for an analogue of the Jordan
curve theorem (cf. [8]) so that a combination of the two adjacency graphs has
to be used. Despite this drawback, the classical approach to digital topology, a
specific branch of discrete geometry, has been used to solve numerous problems
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of digital image processing (see, e.g., [1]) and to create a great deal of useful
graphic software.

To eliminate the above drawback of the classical approach to digital topol-
ogy, a new, purely topological approach was proposed in [5] which utilizes
a convenient topology for structuring the digital plane, namely the Khalim-
sky topology. The convenience of the Khalimsky topology for structuring the
digital plane was shown in [5] by proving an analogue of the Jordan curve the-
orem for the topology. The topological approach was then developed by many
authors—see, e.g., [3,6,7,11–13,17,18].

Since the Khalimsky topology is an Alexandroff T0-topology, it is uniquely
determined by a partial order on Z

2, the so-called specialization order of the
topology. The connectedness in the Khalimsky space then coincides with the
connectedness in the underlying (simple) graph of the specialization order.
Thus, when studying the connectedness of digital images with respect to the
Khalimsky topology, this graph, rather than the Khalimsky topology itself,
may be used for structuring the digital plane. A disadvantage of this approach
is that Jordan curves in the (specialization order of the) Khalimsky topology
can never turn at the acute angle π

4 . It would, therefore, be useful to find some
new, more convenient structures on Z

2 that would allow Jordan curves to turn,
at some points, at the acute angle π

4 . In the present note, to obtain such a
convenient structure, we generalize the specialization order of the Khalimsky
topology, hence a binary relation on Z

2, by considering certain n-ary relations
on Z

2 (n > 1 an integer). We will define a connectedness induced by these
relations and prove a digital Jordan curve theorem for this connectedness.
Thus, the n-ary relations provide convenient structures on the digital plane
for the study of geometric properties of digital images, especially those that
are related to boundaries because boundaries of objects in digital images are
represented by digital Jordan curves.

2. Preliminaries

Throughout the paper, non-negative integers are considered to be finite ordi-
nals and they are called, as usual, natural numbers. Thus, given a natural
number n > 0, (xi| i < n) will denote the finite sequence (x0, x1, . . . , xn−1)
and (xi| i ≤ n) the finite sequence (x0, x1, . . . , xn). Sometimes, such finite
sequences will be considered to be just sets, namely the sets {xi; i < n} and
{xi; i ≤ n}, respectively.

We will work with some basic graph-theoretic concepts only - we refer to [2]
for them. By a graph G = (V,E), we understand an undirected simple graph
without loops where V �= ∅ is the vertex set of G and E ⊆ {{x, y}; x, y ∈
V, x �= y} is the set of edges in G. We will say that G is a graph on V . Two
vertices x, y ∈ V are said to be adjacent (to each other) if {x, y} ∈ E.
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Given graphs G1 = (V1, E1, ) and G2 = (V2, E2), we say that G1 is a
subgraph of G2 if V1 ⊆ V2 and E1 ⊆ E2. If, moreover, V1 = V2, then G1 is
called a factor of G2 and, if E1 = E2 ∩ {{x, y}; x, y ∈ V1}, then G1 is called
the induced subgraph of G2.

Recall that a walk in G is a (finite) sequence of vertices (i.e., elements of V )
such that every pair of consecutive vertices is adjacent. A walk with pairwise
different members is called a path. A sequence (xi| i < n) of vertices of G with
n > 2 is called a circle in G if (xi|i < n) is a path in G and x0 = xn. A
subset A ⊆ V is connected in G if any two points x, y ∈ A may be joined by
a path contained in A (i.e., there is a path (xi| i ≤ n) with x0 = x, xn = y
and {xi| i ≤ n} ⊆ A). A subset A ⊆ V is said to be a component of G if it
is a maximal (with respect to set inclusion) connected subset of V . A circle
C in a graph G is said to be a simple closed curve if, for every vertex z ∈ C,
C contains precisely two vertices adjacent to z. A simple closed curve J in a
graph with vertex set V is called a Jordan curve if it separates the set V into
precisely two components, i.e., if the induced subgraph V − J has exactly two
components.

Given a directed graph (i.e., a set with a binary relation) D = (X, ρ), we
define the underlying graph of D to be the (undirected simple) graph obtained
from D by just ignoring the loops and edge directions, i.e., the graph (X,E)
where E = {{x, y}; x �= y and (x, y) ∈ ρ ∪ ρ−1}.

For every point (x, y) ∈ Z
2, we denote by A4(x, y) and A8(x, y) the sets

of all points that are 4-adjacent and 8-adjacent to (x, y), respectively. Thus,
A4(x, y) = {(x + i, y + j); i, j ∈ {−1, 0, 1}, ij = 0, i + j �= 0} and A8(x, y) =
A4(x, y)∪{(x+ i, y + j); i, j ∈ {−1, 1}}. The graphs (Z2, A4) and (Z2, A8) are
called the 4-adjacency graph and 8-adjacency graph, respectively.

In digital image processing, 4-adjacency and 8-adjacency graphs are the
most frequently used structures on the digital plane. But, since the late 1980’s,
another structure on Z

2 has been used too, namely the Khalimsky topology
[5]. For the basic topological concepts used see [4]. The Khalimsky topology on
Z is the topology given by the subbase {{2k − 1, 2k, 2k + 1}; k ∈ Z}. (There
is another Khalimsky topology on Z, namely the one given by the subbase
{{2k, 2k + 1, 2k + 2}; k ∈ Z}, which will not be employed in this note.) The
Khalimsky topology on Z

m, m > 0 a natural number, is then obtained as the
topological product of m copies of the Khalimsky topology on Z. Recall that,
given a topology T on a set X, the specialization preorder of T is the preorder
≤ on X defined by x ≤ y ⇔ x ∈ {y} for all x, y ∈ X (where denotes the
closure operator with respect to T ). Since, for every m > 0, the Khalimsky
topology on Z

m is T0 (i.e., for all t, z ∈ Z
m, t ∈ {z} and z ∈ {t} imply

t = z), its specialization preorder is a (partial) order on Z
m. And, since the

Khalimsky topology (on Z
m) is an Alexandroff topology (i.e., for all A ⊆ Z

m,
A =

⋃
z∈A {z}), it is uniquely determined by its specialization order.
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Figure 1. A portion of the specialization order of the Khal-
imsky topology

The specialization order of the Khalimsky topology on Z
2 coincides with

the binary relation ≤ on Z
2 given as follows:

For any (x, y), (z, t) ∈ Z
2, (x, y) ≤ (z, t) if and only if one of the following

four conditions is satisfied:
(1) (x, y) = (z, t),
(2) x, y are even and (z, t) ∈ A8(x, y),
(3) x is even, y is odd, z = x + i where i ∈ {−1, 1}, and t = y,
(4) x is odd, y is even, z = x, and t = y + i where i ∈ {−1, 1}.

A portion of the specialization order ≤ of the Khalimsky topology is demon-
strated in Fig. 1 by a directed graph with vertex set Z2 where an oriented edge
from a point p to a point q means that q ≤ p.

The underlying graph of the specialization order of the Khalimsky topology
coincides with the connectedness graph of the topology, i.e., the graph with
vertex set Z2 in which two points are adjacent if and only if they are different
and constitute a connected subset of the Khalimsky space. It may be easily seen
that connectedness in the Khalimsky space coincides with the connectedness
in the connectedness graph of the Khalimsky topology, i.e., in the underlying
graph of the specialization order of the topology.

The significant Jordan curve theorem proved for the Khalimsky topology
in [5] may be formulated as follows:

Theorem 2.1. In the underlying graph of the specialization order of the Khal-
imsky topology, every simple closed curve with at least four points is a Jordan
curve.

It is readily verified that a simple closed curve (and thus also a Jordan
curve) in the underlying graph of the specialization order of the Khalimsky
topology may never turn at the acute angle π

4 . It could therefore be useful
to replace the specialization order of the Khalimsky topology with some more
convenient structure (relation on Z

2) that would allow Jordan curves to turn
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at the acute angle π
4 at some points. And this is what we will do in the next

section.

3. Connectedness induced by n-ary relations

Recall that, given a natural number n > 0 and a set X, an n-ary relation
on X is a subset R ⊆ Xn. Thus, the elements of R are sequences (ordered
n-tuples) (xi| i < n) consisting of elements of X (for the basic properties of
n-ary relations see, e.g., [16]). In the sequel, to eliminate the trivial case n = 1,
we will restrict our considerations to n > 1.

Given an n-ary relation R on a set X, we put
R∗ = {(xi| i ≤ m); (xi| i ≤ m) ∈ Xm+1, 0 < m < n, and there exists (yi| i <
n) ∈ R such that xi = yi for every i ≤ m or xi = ym−i for every i ≤ m}.
The elements of R∗ will be called R-initial segments.

Definition 3.1. Let Rj be an n-ary relation on a set Xj for every j =
1, 2, . . . ,m (m > 0 a natural number). Then we define the strong product
of the relations Rj , j = 1, 2, . . . ,m, to be the n-ary relation

∏m
j=1 Rj on

the cartesian product
∏m

j=1 Xj given by
∏m

j=1 Rj = {((x1
i , x

2
i , . . . , x

m
i )| i <

n); there is a nonempty subset J ⊆ {1, 2, . . . ,m} such that (xj
i | i < n) ∈

Rj for every j ∈ J and (xj
i | i < n) is a constant sequence for every j ∈

{1, 2, . . . ,m} − J}.

Remark 3.2. Note that the strong product
∏m

j=1 Rj in general differs from
the usual (cartesian) product R of the n-ary relations Rj on Xj , j =
1, 2, . . . ,m, which is defined to be the n-ary relation on

∏m
j=1 Xj given by

R = {((x1
i , x

2
i , . . . , x

m
i )| i < n); (xj

i | i < n) ∈ Rj for every j ∈ J} (cf. [16]).
Clearly, we always have R ⊆

∏m
j=1 Rj .

Definition 3.3. Let R be an n-ary relation on a set X. A sequence C = (xi| i ≤
r), r > 0 a natural number, of elements of X is called an R-walk if there is an
increasing sequence (ik| k ≤ p) of natural numbers with i0 = 0 and ip = r such
that ik − ik−1 < n and (xi| ik−1 ≤ i ≤ ik) ∈ R∗ for every k with 0 < k ≤ p.
The sequence (ik| k ≤ p) is said to be a binding sequence of C. An R-walk
C is called an R-path if its members are pairwise different and it is called an
R-circle if, for every pair i0, i1 of different natural numbers with i0, i1 ≤ r,
xi0 = xi1 is equivalent to {i0, i1} = {0, r}.

Observe that, if (x0, x1, . . . , xr) is an R-walk, then (xr, xr−1, . . . , x0) is an
R-walk, too (R-walks are closed under reversion). Further, if C1 = (xi| i ≤ r)
and C2 = (yi| i ≤ s) are R-walks such that xr = y0, then, putting zi = xi

for all i ≤ r and zi = yi−r for all i with r < i ≤ r + s, we get an R-walk
(zi| i ≤ r + s) (R-walks are closed under composition). We denote the R-walk
(zi| i ≤ r + s) by C1 ⊕ C2.
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Definition 3.4. Let R be an n-ary relation on a set X. A set A ⊆ X is said
to be R-connected if any two different elements x, y ∈ A can be joined by an
R-walk contained in A (i.e., there is an R-walk (xi| i ≤ r) with {xi| i ≤ r} ⊆ A
such that x0 = x and xr = y). A maximal R-connected set is called an R-
component.

If R is an n-ary relation on a set X and Y ⊆ X is a subset, then there is an
n-ary relation on Y induced by R, namely R ∩ Y n. If Y is R ∩ Y n-connected,
then we will briefly say that it is R-connected. A similar terminology applies
to R ∩ Y n-components.

Note that, given an n-ary relation R on a set X, every R-initial segment
(xi| i ≤ m) is R-connected. Indeed, if xi0 , xi1 ∈ {xi; i ≤ m} is a pair of dif-
ferent elements and (yi| i < n) ∈ R is an n-tuple with xi = yi for every i ≤ m
or xi = ym−i for every i ≤ m, then (xi0 , xi0−1, xi0−2, . . . , x0, x1, x2, . . . , xi1) or
(xi0 , xi0+1, xi0+2, . . . , xm, xm−1, xm−2, . . . xi1), respectively, is an R-walk con-
necting xi0 and xi1 which is contained in {xi; i ≤ m}. Of course, the union
of a finite sequence of nonempty R-connected sets is R-connected if the inter-
section of every consecutive pair of the sets is nonempty (because R-walks are
closed under composition). In particular, every R-walk is R-connected.

Theorem 3.5. Let Rj be an n-ary relation on a set Xj and Yj ⊆ Xj be a subset
for every j = 1, 2, . . . ,m (m > 0 a natural number). If Yj is Rj-connected for
every i = 1, 2, . . . , n, then

∏m
j=1 Yj is

∏m
j=1 Rj-connected.

Proof. If m = 1, then the statement is trivial. Therefore, we will suppose that
m > 1.

First, we will show that the statement is true if Yj = (yj
i | i ≤ pj) is an

Rj-initial segment for every j = 1, 2, . . . , m. For each j = 1, 2, . . . , m, there is
a sequence (xj

i | i < n) ∈ R such that yj
i = xj

i for all i ≤ pj or yj
i = xj

pj−i for all
i ≤ pj (because (yj

i | i ≤ pj) is an Rj-initial segment). Let y ∈
∏m

j=1{yj
i ; i ≤ pj}

be an arbitrary element. Then, for each j = 1, 2, . . . ,m, there is a natural
number qj , qj < pj , such that y = (y1

q1 , y
2
q2 , . . . , y

m
qm). It follows that either

(y1
q1−i| i ≤ q1) or (y1

i | q1 ≤ i ≤ p1) is an R1-initial segment with the first
member being y1

q1 and the last one x1
0. Denote this R1-initial segment by

(z1i | i ≤ r1) and put C1 = ((z1i , y2
q2 , y

3
q3 , . . . , y

m
qm)| i ≤ r1). Clearly, C1 is an

∏m
j=1 Rj-initial segment with all members belonging to

∏m
j=1{yj

i ; i ≤ pj}, with
the first member y, and with z1r1

= x1
0. It follows that either (y2

q2−i| i ≤ q2)
or (y2

i | q2 ≤ i ≤ p2) is an R2-initial segment with the first member being
y2

q2 and the last one x2
0. Denote this R2-initial segment by (z2i | i ≤ r2)

and put C2 = ((x1
0, z

2
i , y3

q3 , y
4
q4 , . . . , y

m
qm)| i ≤ r2). Clearly, C2 is a

∏m
j=1 Rj-

initial segment with all members belonging to
∏m

j=1{yj
i ; i ≤ pj} such that

z20 = y2
q2 and z2r2

= x2
0. Thus, C1 ⊕ C2 is a

∏m
j=1 Rj-walk with all mem-

bers belonging to
∏m

j=1{yj
i ; i ≤ pj}, with the first member y, and with the
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last one (x1
0, x

2
0, y

3
q3 , y

4
q4 , . . . , y

m
qm). Repeating this construction m-times, we get

∏m
j=1 Rj-initial segments C1, C2,. . . ,Cm with the members of each of them

belonging to
∏m

j=1{yj
i ; i ≤ pj} so that C1 ⊕ C2 ⊕ · · · ⊕ Cm is a

∏m
j=1 Rj-

walk with the first member being y and the last one (x1
0, x

2
0, . . . , x

m
0 ). We have

shown that any point of
∏m

j=1{yj
i ; i ≤ pj} can be connected with the point

(x1
0, x

2
0, . . . , x

m
0 ) by a

∏m
j=1 Rj-walk contained in

∏m
j=1{yj

i ; i ≤ pj}.

Second, we will show that the statement is true if Yj = (xj
i | i ≤ pj) is an

Rj-walk for every j = 1, 2, . . . ,m. If m = 1, then the statement is trivial. Let
m > 1. For each j = 1, 2, . . . , m, let (ijk| k ≤ qj) be a binding sequence of
(xj

i | i ≤ pj), i.e., a sequence of natural numbers with ij0 = 0 and ijqj = pj such
that (xj

i | ijk ≤ i ≤ ijk+1) is an Rj-initial segment whenever k < qj . For every j =
1, 2, . . . ,m, putting Cj

k = {xj
i ; ijk ≤ i ≤ ijk+1}, we get {xj

i ; i ≤ pj} =
⋃

k<qj
Cj

k.

Therefore,
∏m

j=1{xj
i ; i ≤ pj} =

⋃
k1<q1

⋃
k2<q2

. . .
⋃

km<qm

∏m
j=1 Cj

kj
where

∏m
j=1 Cj

kj
is

∏m
j=1 Rj-connected whenever kj < qj , j = 1, 2, . . . ,m, by the

previous part of the proof. Thus, for any kj < qj , j = 1, 2, . . . ,m − 1,
(
∏m

j=1 Cj
kj

| km < qm) is a finite sequence of
∏m

j=1 Rj-connected sets with
nonempty intersection for every consecutive pair of them. Hence, the set⋃

km<qm

∏m
j=1 Cj

kj
is

∏m
j=1 Rj-connected. Consequently, for every kj with

kj < qj , j = 1, 2, . . . ,m − 2, (
⋃

km<qm

∏m
j=1 Cj

kj
| km−1 < qm−1) is a finite

sequence of
∏m

j=1 Rj-connected sets with nonempty intersection for any con-
secutive pair of them. Thus, the set

⋃
km−1<qm−1

⋃
km<qm

∏m
j=1 Cj

kj
is

∏m
j=1 Rj-

connected. After repeating this argument m-times, we get the conclusion
that

⋃
k1<q1

⋃
k2<q2

. . .
⋃

km<qm

∏m
j=1 Cj

kj
=

∏m
j=1{yj

i ; i ≤ pj} is
∏m

j=1 Rj-
connected.

Finally, let Yj be an Rj-connected set for every j ∈ {1, 2, . . . ,m} and
let (x1, x2, . . . , xm), (y1, y2, . . . , ym) ∈

∏m
j=1 Xj be arbitrary points. Then, for

every j ∈ {1, 2, . . . ,m}, there is an Rj-walk (zj
i | i ≤ pj) joining the points xj

and yj which is contained in Yj . Hence, the set
∏m

j=1{zj
i | i ≤ pj} contains the

points (x1, x2, . . . , xm) and (y1, y2, . . . , ym) and is
∏m

j=1 Rj-connected by the
previous part of the proof. Thus, there is a

∏m
j=1 Rj-walk C joining the points

(x1, x2, . . . , xm) and (y1, y2, . . . , ym) which is contained in
∏m

j=1{zj
i | i ≤ pj}.

Since
∏m

j=1{zj
i | i ≤ pj} ⊆

∏m
j=1 Yj , C is contained in

∏m
j=1 Yj . Therefore,

∏m
j=1 Yj is a

∏m
j=1 Rj-connected set. The proof is complete. �

Definition 3.6. An n-ary relation R on a set X is said to be plain if the following
two conditions are satisfied:

(a) for every (xi| i < n) ∈ R, the elements xi, i < n, are pairwise different;
(b) for every g, h ∈ R, g �= h implies card(g ∩ h) ≤ 1.
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Definition 3.7. Let R be a plain n-ary relation on a set X. A nonempty, finite
and R-connected subset J of X is said to be an R-simple closed curve if every
point z ∈ J fulfills one of the following two conditions:

(1) There is a pair (xi| i ≤ p), (yi| i ≤ q) of R-initial segments such that
{xi; i ≤ p} ⊆ J , {yi; i ≤ q} ⊆ J , and {z} = {xp} = {y0} = {xi; i ≤
p}∩{yi; i ≤ q} while, for all the other R-initial segments (zi| i ≤ s) with
{zi; i ≤ s} ⊆ J , we have z /∈ {zi; i ≤ s}.

(2) There is an R-initial segment (xi| i ≤ p) such that {xi; i ≤ p} ⊆ J and
z ∈ {xi; 0 < i < p} while, for all the other R-initial segments (yi| i ≤ q)
with {yi; i ≤ q} ⊆ J , we have z /∈ {yi; i ≤ q}.

Proposition 3.8. Let R be a plain n-ary relation on a set X. Then every R-
simple closed curve J is an R-circle.

Proof. Since J is nonempty and R-connected, it contains an element z ∈ J
satisfying the condition (1) in Definition 3.7. Let I1 = (x1

i | i ≤ p1) and I2 =
(x2

i | i ≤ p2) be a pair of R-initial segments such that I1 ⊆ J , I2 ⊆ J , and
{z} = {x1

p1
} = {x2

0} = I1 ∩ I2. As x2
p2

∈ J , there is an R-initial segment
I3 = (x3

i | i ≤ p3) such that I3 ⊆ J and {x2
p2

} = {x3
0} = I2 ∩ I3. We may

repeat this argument and, since J is finite, after a finite number of steps we
will get an R-initial segment Ik = (xk

i | i ≤ pk), k > 2 a natural number, with
xn

pn
= x1

0. It is evident that the sequence (x1
0, x

1
1, . . . , x

1
p1

= x2
1, x

2
2, . . . , x

2
p2

=
x3
0, x

3
1, . . . , x

n−1
pn−1

= xn
0 , xn

1 , . . . xn
pn

) = I1 ⊕ I2 ⊕ · · · ⊕ Ik is an R-circle. �

Definition 3.9. Let R be a plain n-ary relation on a set X. An R-simple closed
curve J is called an R-Jordan curve if the subset X − J ⊆ X consists (i.e., is
the union) of precisely two R-components.

4. Plain n-ary relations on the digital plane

From now on, for every natural number n > 1, Rn will denote the plain n-ary
relation on Z given as follows:
Rn = {(xi| i < n) ∈ Z

n; there is an odd number l ∈ Z such that xi = l(n −
1) + i for all i < n or xi = l(n − 1) − i for all i < n}.
Thus, the n-tuples belonging to Rn are the arithmetic sequences (xi| i < n) of
integers with the difference being 1 or −1 and with x0 = l(n − 1) where l ∈ Z

is an odd number.
The relation R2 coincides with the specialization order of the Khalimsky

topology on Z and, therefore, R2-connectedness coincides with connectedness
with respect to the Khalimsky topology on Z.

Theorem 4.1. Z is Rn-connected (for every natural number n > 1).
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Proof. Put Dl = {l(n − 1) + i; i < n} for each l ∈ Z. Of course, Dl is Rn-
connected for every l ∈ Z (because (l(n − 1) + i; i < n) is an Rn-initial
segment). Let ω denote the least infinite ordinal and let (Bi| i < ω) be the
sequence given by Bi = D i

2
whenever i is even and Bi = D− i+1

2
whenever

i is odd, i.e., (Bi| i < ω) = (D0,D−1,D1,D−2,D2, . . .). For each l ∈ Z,
there holds Dl ∩ Dl+1 = {(l + 1)(n − 1)} �= ∅. Thus, we have B0 ∩ B1 �= ∅.
Let i0 be a natural number with i0 > 1. Then Bi0 ∩ Bi0−2 �= ∅ because
Bi0 = D i0

2
and Bi0−2 = D i0

2 −1
whenever i0 is even, while Bi0 = D− i0+1

2
and

Bi0−2 = D− i0+1
2 +1

whenever i0 is odd. Hence, (
⋃

i<i0
Bi)∩Bi0 �= ∅ for each i0,

0 < i0 < ω. Therefore,
⋃

i<ω Bi is Rn-connected. But
⋃

i<ω Bi =
⋃

l∈Z
Dl = Z,

which proves the statement. �

For every point x ∈ Z, we put L(x) = {y ∈ Z; y < x} and U(x) = {y ∈
Z; y > x}.

Proposition 4.2. Let n > 1 be a natural number and z ∈ Z a point. Then there
are points z1, z2 ∈ Z such that L(z1) and U(z2) are Rn-components of the
subset Z− {z} of Z and all the other components of Z− {z} are singletons. If
z = l(n − 1) + i where l, i ∈ Z, l is even and |i| ≤ 1, then z1 = z2 = z (so that
Z − {z} has no singleton components).

Proof. There are l0, i0 ∈ Z, l0 odd and |i0| < n, such that z = l0(n − 1) + i0.
Suppose that |i0| = n − 1. Then z = (l0 + 1)(n − 1) or z = (l0 − 1)(n − 1), so
that there is an even number m ∈ Z with z = m(n − 1). For every l ∈ Z, put

Il =
{

(l(n − 1) + i| i < n) if l is odd,
((l + 1)(n − 1) − i| i < n) if l is even.

Then Rn =
⋃

l∈Z
Il. We clearly have L(z) =

⋃
{Il; l ≤ (m − 2)} ∪ {i; (m −

1)(n − 1) ≤ i < z}. L(z) is Rn-connected because (Il| l ≤ (m − 2)) is a
sequence of n-tuples belonging to Rn with every pair of consecutive members
of the sequence having a point in common, (i| (m − 1)(n − 1) ≤ i < z) ∈ R∗

n

and (m − 1)(n − 1) ∈ Im−2 ∩ {i; (m − 1)(n − 1) ≤ i < z}. Similarly, U(z) =⋃
{Il; l ≥ (m + 1)} ∪ {i; z < i ≤ (m + 1)(n − 1)} is Rn-connected. Since L(z)

and U(z) are maximal Rn-connected subsets which are disjoint and satisfy
L(z) ∪ U(z) = Z − {z}, they are Rn-components

Suppose that |i0| < n − 1 where i0 ≥ 0. Then L(l0(n − 1) + 1) is Rn-
connected because it is the union of a sequence of n-tuples belonging to Rn,
namely the sequence (Il| l < l0) in which every pair of consecutive members
has a point in common. Further, since (l0(n − 1) + i| i < l0(n − 1) + i0) ∈ R∗

n

and L(l0(n − 1) + 1) ∩ {l0(n − 1) + i; i < l0(n − 1) + i0} �= ∅, the set L(z) =
L(l0(n − 1) + 1) ∪ {l0(n − 1) + i; i < l0(n − 1) + i0} is Rn-connected. It is
also evident that L(z) is a maximal Rn-connected subset of Z− {z}. Further,
U((l0 + 1)(n − 1) − 1) is Rn-connected because it is the union of a sequence
of n-tuples belonging to Rn, namely the sequence (Il| l ≥ l0 + 1) in which
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every pair of consecutive members has a point in common. It is also evident
that U(z) is a maximal Rn-connected subset of Z − {z}. Clearly, we have
Z−{z} = L(z)∪{i; z < i < (l0 +1)(n−1)}∪U((l0 +1)(n−1)−1) where the
sets L(z), {i; z < i < (l0 + 1)(n − 1)}, and U((l0 + 1)(n − 1) − 1) are pairwise
disjoint. The singleton subsets of {i; z < i < (l0 +1)(n−1)} are maximal Rn-
connected subsets of Z− {z} because, for every i with z < i < (l0 + 1)(n − 1),
there is no element j ∈ Z − {z} different from i having the property that
both i and j belong to the same Rn-initial segment contained in Z − {z}.
We have shown that L(z), U((l0 + 1)(n − 1) − 1), and the singletons {i},
z < i < (l0 +1)(n−1), are maximal Rn-connected subsets of Z−{z}. We may
show in an analogous way that U(z), L((l0 − 1)(n− 1)+1), and the singletons
{i}, (l0 − 1)(n − 1) < i < z, are the Rn-components of Z − {z} if i0 ≤ 0.

To prove the second part of the statement, suppose that z = l(n − 1) + i
where l, i ∈ Z, l is even and |i| ≤ 1. It was shown in the first part of the proof
that L(z) and U(z) are the (only) Rn-components of Z−{z} if i = 0 (because
then z = l0(n− 1)+ i0 where l0 = l − 1 is odd and i0 = (n− 1)). Suppose that
i = 1. Then z = l0(n − 1) + i0 where l0 = l + 1 and i0 = 1 − (n − 1). We have
(l0−1)(n−1)+1 = l(n−1)+1 = z, so that L((l0−1)(n−1)+1) = L(z). Since
{i; (l0−1)(n−1) < i < z} �= ∅, L(z) and U(z) are the (only) Rn-components of
Z−{z} according to the previous part of the proof. Using analogous arguments,
we may show that L(z) and U(z) are the (only) Rn-components of Z− {z} if
i = −1. The proof is complete. �

Remark 4.3. Recall [5] that a connected ordered topological space or, briefly,
COTS, is a connected topological space X such that, for any three-point subset
Y ⊆ X, there is a point x ∈ Y such that Y meets two components of the
subspace X − {x}. It was shown in [5] that a connected topological space
X is a COTS if and only if there is a total order on X such that, for every
x ∈ X, the sets L(x) and U(x) are components of the subspace X −{x}. Thus,
Proposition 4.2 results in the known fact that Z with the Khalimsky topology
is a COTS [5]. Hence, the relations Rn may be considered to be generalizations
of the Khalimsky topology on Z.

In the sequel, m will denote (similarly to n) a natural number with m > 0.
Using results of the previous section, we may propose new structures on digital
spaces convenient for the study of digital images. Such a structure on Z

m is
obtained as the strong product of m copies of Rn. More formally, we may con-
sider the relation Rm

n =
∏m

j=1 Rj where Rj = Rn for every j ∈ {1, 2, . . . ,m}.
Since it is evident that the strong product of a family of plain n-ary rela-
tions is a plain n-ary relation, Rm

n is plain. As an immediate consequence of
Theorems 3.5 and 4.1 we get:

Theorem 4.4. Z
m is Rm

n -connected.
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Figure 2. A portion of R2
n

We will restrict our considerations to m = 2 because this case is the most
important one with respect to possible applications in digital image processing.
Thus, we will focus on the n-ary relations R2

n (n > 1 a natural number).
A portion of R2

n is demonstrated in Fig. 2. The ordered n-tuples belonging
to R2

n are represented by arrows oriented from first to last terms. Between
any pair of neighboring parallel horizontal or vertical arrows (having the same
orientation), there are n − 2 more parallel arrows with the same orientation
that are not displayed in order to make the Figure transparent. It may easily be
seen that R2

2 coincides with the specialization order of the Khalimsky topology
on Z

2 (cf. Fig. 1). Thus, Theorem 2.1 is a Jordan curve theorem for R2
2. We

will prove a Jordan curve theorem for every R2
n with n > 2.

We denote by Gn the factor of the 8-adjacency graph (with the vertex set
Z
2) whose edges are those {(x1, y1), (x2, y2)} ∈ A8 that satisfy one of the

following four conditions for some k ∈ Z:

x1 − y1 = x2 − y2 = 2k(n − 1),
x1 + y1 = x2 + y2 = 2k(n − 1),
x1 = x2 = 2k(n − 1),
y1 = y2 = 2k(n − 1).

A section of the graph Gn is demonstrated in Fig. 3 where only the vertices
(2k(n−1), 2l(n−1)), k, l ∈ Z, are marked out (by bold dots) and thus, on every
edge drawn between two such vertices, there are 2n − 3 more (non-displayed)
vertices, so that the edge represents 2n − 2 edges in the graph Gn. Clearly,
every circle C in Gn is an R2

n-connected set because it is an R2
n-circle. Indeed,

C consists (i.e., is the union) of a finite sequence of elements of R2
n, hence

R2
n-initial segments, such that every two consecutive elements have a point in

common.

Definition 4.5. A circle J in the graph Gn is said to be fundamental if, whenever
((2k + 1)(n − 1), (2l + 1)(n − 1)) ∈ J for some k, l ∈ Z, one of the following
two conditions is true:
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Figure 3. Rn-Jordan curves

(1) {((2k +1)(n− 1)− 1, (2l +1)(n− 1)− 1), (2k +1)(n− 1)+1, (2l +1)(n−
1) + 1))} ⊆ J ,

(2) {((2k +1)(n− 1)− 1, (2l +1)(n− 1)+1), (2k +1)(n− 1)+1, (2l +1)(n−
1) − 1))} ⊆ J .

The fundamental circles in Gn are just the circles in Fig. 3 that turn only at
(some of) the vertices (2k(n − 1), 2l(n − 1)), k, l ∈ Z, i.e., the vertices marked
out by the bold dots. The following statement is evident:

Proposition 4.6. Every fundamental circle in G2
n is an R2

n-simple closed curve.

Theorem 4.7. If n > 2, then every fundamental circle J in Gn is an R2
n-

Jordan curve and the union of any of the two R2
n-components of Z2 − J with

J is R2
n-connected .

Proof. For every point z = ((2k + 1)(n − 1), (2l + 1)(n − 1)), k, l ∈ Z, each
of the following four subsets of Z2 will be called a fundamental triangle in Gn

(given by z):
(I) {(r, s) ∈ Z

2; 2k(n − 1) ≤ r ≤ (2k + 2)(n − 1), 2l(n − 1) ≤ s ≤ (2l +
2)(n − 1), s ≤ r + 2l(n − 1) − 2k(n − 1)},

(II) {(r, s) ∈ Z
2; 2k(n − 1) ≤ r ≤ (2k + 2)(n − 1), 2l(n − 1) ≤ s ≤ (2l +

2)(n − 1), s ≥ 2l(n − 1) + (2k + 2)(n − 1) − r},
(III) {(r, s) ∈ Z

2; 2k(n − 1) ≤ r ≤ (2k + 2)(n − 1), 2l(n − 1) ≤ s ≤ (2l +
2)(n − 1), s ≥ r + 2l(n − 1) − 2k(n − 1)},

(IV) {(r, s) ∈ Z
2; 2k(n − 1) ≤ r ≤ (2k + 2)(n − 1), 2l(n − 1) ≤ s ≤ (2l +

2)(n − 1), s ≤ 2l(n − 1) + (2k + 2)(n − 1) − r}.
Every fundamental triangle in Gn consists of 2n2 − n points and forms a seg-
ment having the shape of a (digital) “rectangular” triangle. The fundamental
triangles in Gn given by z are just the triangles in Fig. 3 obtained by dividing
the square (segment) with the middle point z and the edge length 2(n − 1)
by one of the two diagonals. Each of the diagonals is the hypotenuse of the
two fundamental triangles obtained by dividing the square by the diagonal
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and z is the middle point of the hypotenuse. Every line segment constitut-
ing an edge of a fundamental triangle consists of precisely 2n − 1 points.
Clearly, the edges of any fundamental triangle form an R2

n-simple closed
curve. We will show that every fundamental triangle is R2

n-connected and
so is every set obtained from a fundamental triangle by subtracting some of
its edges. Let z = ((2k + 1)(n − 1), (2l + 1)(n − 1)), k, l ∈ Z, be a point
and consider the fundamental triangle T = {(r, s) ∈ Z

2; 2k(n − 1) ≤ r ≤
(2k+2)(n−1), 2l(n−1) ≤ s ≤ (2l+2)(n−1), s ≤ r+2l(n−1)−2k(n−1)}. Then
T is the (digital) triangle ABC with the vertices A = (2k(n − 1), 2l(n − 1)),
B = ((2k + 2)(n − 1), 2l(n − 1)), C = ((2k + 2)(n − 1), (2l + 2)(n − 1)).
For every u ∈ Z, (2k + 1)(n − 1) ≤ u ≤ (2k + 2)(n − 1), the sequence
Du = ((u, y)| 2l(n − 1) ≤ y ≤ u + 2(l − k)(n − 1)) is an R2

n-walk (contained in
T because Du, if viewed as a set, equals {(x, y) ∈ T ; x = u}), so that Du is an
R2

n-connected set. Similarly, for every v ∈ Z, 2l(n−1) ≤ v ≤ (2l+1)(n−1), the
sequence Hv = ((x, v)| v+2(k− l)(n−1) ≤ x ≤ (2k+2)(n−1)) is an R2

n-walk
(contained in T because Hv, if viewed as a set, equals {(x, y) ∈ T ; y = v}), so
that Hv is an R2

n-connected set. We clearly have T =
⋃

{Du; (2k+1)(n−1) ≤
u ≤ (2k + 2)(n − 1)} ∪

⋃
{Hv; 2l(n − 1) ≤ v ≤ (2l + 1)(n − 1)}. It may be

easily seen that Du ∩ Hv �= ∅ whenever (2k + 1)(n − 1) ≤ u ≤ (2k + 2)(n − 1)
and 2l(n − 1) ≤ v ≤ (2l + 1)(n − 1). For every natural number i < 2n, we put

Si =

{
D(2k+1)(n−1)+ i

2
if i is even,

H2l(n−1)+ i−1
2

if i is odd.

Then (Si| i < 2n) is a sequence with the property that its members with even
indices form the sequence (Du| (2k + 1)(n − 1) ≤ u ≤ (2k + 2)(n − 1)) and
those with odd indices form the sequence (Hv| 2l(n−1) ≤ v ≤ (2l+1)(n−1)).
Hence,

⋃
{Si| i < 2n} =

⋃
{Du; (2k + 1)(n − 1) ≤ u ≤ (2k + 2)(n − 1)} ∪⋃

{Hv; 2l(n−1) ≤ v ≤ (2l+1)(n−1)} and every pair of consecutive members
of (Si| i < 2n) has a non-empty intersection. Thus, since T =

⋃
{Si| i < 2n},

T is R2
n-connected. For each of the other three fundamental triangles given by

z, the proof is analogous, and the same is true also for every set obtained from
a fundamental triangle (given by z) by subtracting some of its edges.

We will say that a (finite or infinite) sequence S of fundamental triangles is
a tiling sequence if the members of S are pairwise different and every member
of S, excluding the first one, has an edge in common with at least one of its
predecessors. Given a tiling sequence S of fundamental triangles, we denote
by S′ the sequence obtained from S by subtracting, from every member of
the sequence, all its edges that are not shared with any other member of
the sequence. By the first part of the proof, for every tiling sequence S of
fundamental triangles, the set

⋃
{T ; T ∈ S} is R2

n-connected and the same is
true for the set

⋃
{T ; T ∈ S′}.
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88 Josef Šlapal AEM

0 2 4 6 8 10 12

2

4

6

8

10

12

Figure 4. R3-Jordan curves

Let J be an R2
n-simple closed curve. Then J constitutes the border of a polygon

SF ⊆ Z
2 consisting of fundamental triangles. More precisely, SF is the union

of some fundamental triangles such that any pair of them is disjoint or meets
in just one edge in common. Let U be a tiling sequence of the fundamental
triangles contained in SF . Since SF is finite, U is finite, too, and we have
SF =

⋃
{T ; T ∈ U}. As every fundamental triangle T ∈ U is R2

n-connected,
so is SF . Similarly, U ′ is a finite sequence with SF − J =

⋃
{T ; T ∈ U ′} and,

since every member of U ′ is R2
n-connected (by the first part of the proof),

SF − J is connected, too.
Further, let V be a tiling sequence of fundamental triangles which are not
contained in SF . Since the complement of SF in Z

2 is infinite, V is infinite,
too. Put SI =

⋃
{T ; T ∈ V }. As every fundamental triangle T ∈ V is R2

n-
connected, so is also SI . Similarly, V ′ is an infinite sequence with SI − J =⋃

{T ; T ∈ V ′} and, since every member of V ′ is connected (by the first part
of the proof), SI − J is connected, too.
It may be easily seen that every R2

n-walk C = (zi| i ≤ k), k > 0 a natural
number, connecting a point of SF − J with a point of SI − J meets J (i.e.,
meets an edge of a fundamental triangle which is contained in J). Therefore,
the set Z

2 − J = (SF − J) ∪ (SI − J) is not R2
n-connected. We have shown

that SF − J and SI − J are R2
n-components of Z2 − J , SF − J is finite and

SI − J is infinite, with SF and SI R2
n-connected.

As the unions of the R2
n-components SF − J and SI − J with J are the

R2
n-connected sets SF and SI , respectively, the proof is complete. �

The fundamental circles in the graph Gn (n > 2 a natural number) provide
a rich variety of circles to be used for representing borders of objects in digital
images. The advantage of circles over Jordan curves in the Khalimsky topology
is that they may turn at the acute angle π

4 at some points.

Example. Every circle in the graph demonstrated in Fig. 4 that does not turn
at any point (4k + 2, 4l + 2), k, l ∈ Z, is an R2

3-Jordan curve by Theorem 4.7.
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Thus, for example, the triangle with vertices (0, 0), (8, 0), (4, 4) is an R2
3-Jordan

curve but not an R2
2-Jordan curve. For this triangle to become an R2

2-Jordan
curve, we have to delete the points (0, 0), (1, 0), (7, 0), (8, 0). But this will cause
a considerable deformation of the triangle.

5. Conclusions

We have shown that every n-ary relation induces connectedness on its under-
lying set. For certain n-ary relations, which are called plain, the induced con-
nectedness may be used to define the concepts of simple closed curves and
Jordan curves in the underlying sets of the relations. For every natural num-
ber n > 1, we introduced a particular plain n-ary relation Rn on the digital
line Z and discussed the (plain) relation R2

n on the digital plane Z
2 obtained

as the strong product of two copies of Rn. We proved that the connected-
ness on Z

2 induced by R2
n allows for digital analogues of the Jordan curve

theorem. Thus, we have shown that the n-ary relations R2
n, n > 1 a natural

number, provide convenient structures on the digital plane for the study of
digital images. While, for n = 2, this structure coincides with the Khalimsky
topology, for n > 2, the structures have the advantage over the Khalimsky
topology that they allow Jordan curves to turn at the acute angle π

4 at some
points. Since Jordan curves represent borders of objects in digital images, the
structures on Z

2 provided by the n-ary relations R2
n may be used in digital

image processing for solving problems related to boundaries, such as pattern
recognition, boundary detection, contour filling, data compression, etc.
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