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a b s t r a c t

The theoretical part of the paper analyzes discretized Stokes systems with local Coulomb’s
slip boundary conditions. Solutions to discretemodels are defined bymeans of fixed-points
of an appropriate mapping. We prove the existence of a fixed-point, establish conditions
guaranteeing its uniqueness and examine how they depend on the discretization param-
eter h and the slip coefficient κ . The second part of the paper is devoted to computational
aspects. Numerical experiments are presented.
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1. Introduction

The no-slip condition, i.e. the velocity of a fluid vanishes on the boundary of a computational domain, is the standard
boundary condition in fluid flow models. It characterizes the adhesion of a fluid on the solid wall. However in many real
problems a slip of a fluid is observed (water flow along hydrophobic surfaces, e.g.). The simplest slip model is the Navier slip
condition

στ = −kuτ , (1)

where στ is the shear stress, uτ the tangential component of the velocity vector u, and k > 0 is an adhesive coefficient. From
(1) we see that a slip is instantaneous whenever στ ̸= 0. Hence (1) is not able to model situations when a slip may occur
only if στ attains certain threshold bound g which is at the same time the upper bound of |στ |. Such type of the constitutive
law between uτ and στ can be written in the form of an inclusion for an appropriate multi-valued mapping, namely the
subgradient of a convex functional. The resulting mathematical formulation involving a fluid model and threshold slip
boundary conditions leads to an inequality problem whose complexity depends on the particular choice of the threshold
bound g . In the simplest case, g is given a-priori. This corresponds to the Tresca model of friction well-known in solid
mechanics. For themathematical analysis of the Stokes and Navier–Stokes systemwith the Tresca slip model we refer to [1].
Results have been extended to time dependent problems in [2], while regularity of solutions has been studied in [3]. The
case of the slip bound g depending on the value of the tangential component uτ leads to an implicit type inequality which
is more involved [4,5]. Recently, convergence analysis of a finite element approximation of the Stokes systemwith this type
of a solution-dependent g including computational aspects, and numerical experiments are done in [6].

This paper is focusedon the Stokes systemwith the slipmodel of local Coulomb’s typewhich corresponds to the slip bound
g = κ|σν |, where κ > 0 is a slip coefficient and σν is the normal stress (see [7]). The slip bound g is again solution-dependent,
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but it depends on σν this time. This fact makes the resulting mathematical problemmuchmore involved compared with the
previous one due to the fact that σν is only a functional over a trace space and its norm appears in the definition of g . To
our knowledge the existence of a solution is still open in this case. A possible way how to overcome the low regularity of
σν is to use a non-local version of Coulomb’s law [8,9] or to impose a-priori bounds on σν as in [10]. However, the weak
formulation of this problem can be derived provided that σν is sufficiently smooth. This helps to understand the definition
of the respective discrete problem. The main attention of the paper is paid to the analysis of discrete models of the Stokes
systemwith local Coulomb’s slip and their properties depending on the discretization parameter h and the slip coefficient κ .
In particular, we will study the existence of solutions and establish sufficient conditions under which the solution is unique.
With these results at hand, convergence analysis can be done as soon as continuous setting of the problem will be settled.
It is worth mentioning that the conditions guaranteeing uniqueness of the solution are mesh dependent for given κ unlike
the case when g depends on |uτ | as shown in [6].

The paper is organized as follows: In Section 2 we present the weak formulation of the problem and its fixed-point
variant assuming that σν is sufficiently regular. To define the respective fixed-point mapping Ψ , three field formulation of
the auxiliary Stokes systemwith the Tresca slip model is used, i.e. the formulation in terms of the velocity field u, pressure p
and the Lagrangemultiplier λ releasing the impermeability condition prescribed on the slip part S of the boundary. Section 3
is devoted to the definition of the discrete problem and the analysis of its properties. To this end the mixed finite element
formulation of the Stokes system with Tresca slip by P1+bubble/P1 elements is used. As far as the discretization of λ is
concerned, two variants of elements on S are considered: piecewise linear on the partition of S which is generated by the
triangulation of the computational domain and piecewise constant on a coarse partition of S. Using the discrete Lagrange
multiplier λh, the discrete formΨh of the fixed-point mappingΨ is introduced. Solutions to the discrete problem are defined
by fixed-points ofΨh. The existence andpossible uniqueness of fixed-points ofΨh (and so of solutions to the discrete problem)
are studied. The algebraic formulation of the problem is given in Section 4. Finally, results of numerical experiments are
presented in Section 5.

2. Setting of the problem

LetΩ ⊂ R2 be a bounded domain with the Lipschitz boundary ∂Ω which is split into two non-empty, non-overlapping
portions Γ and S open in ∂Ω . In Ω we shall consider the Stokes system with the no-slip condition on Γ , impermeability
and the Coulomb type slip boundary conditions on S, respectively. The classical formulation of this problem reads as follows:
find the velocity u = (u1, u2) and the pressure p satisfying:

− div(2µDu) + ∇p = f inΩ
div u = 0 inΩ

u = 0 on Γ
uν = 0 on S

|στ (u)| ≤ κ|σν(u, p)| on S
κ|σν(u, p)|uτ = −|uτ |στ (u) on S

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(2)

where f represents volume forces acting on the fluid,µ > 0 is the (constant) dynamic viscosity, κ > 0 is the slip coefficient,
uν = u · ν, uτ = u · τ is the normal, and tangential components of u on S, respectively. Further, στ (u) = 2µDuν · τ,
σν(u, p) = 2µDuν ·ν−p is the shear stress, and normal stress corresponding to (u, p), respectively andDu =

1
2 (∇u+ (∇u)T)

is the symmetric part of the gradient of u. To simplify presentation we shall assume that 2µ = 1 in Sections 2 and 3.
The last condition in (2) says that the slip at a point x ∈ S may occur only when |στ (u(x))| = κ(x)|σν(u(x), p(x))| and στ (u)

and uτ have the opposite signs.
To give the weak formulation of (2) we shall assume that the velocity u and the pressure p are regular in such a way that

σν(u, p) ∈ L2(S).
We introduce the following function spaces:

W (Ω) = {v ∈ (H1(Ω))2| v = 0 on Γ } ,

V (Ω) = {v ∈ W (Ω)| vν = 0 on S} ,

Q (Ω) = {q ∈ L2(Ω)|
∫
Ω

qdx = 0} .

If σν(u, p) ∈ L2(S), the weak formulation of (2) leads to the following inequality type problem:

Find (u, p) ∈ V (Ω) × Q (Ω) s. t.

a(u, v − u) − b(v − u, p) + j(|σν(u, p)|, vτ ) − j(|σν(u, p)|, uτ ) ≥ (f , v − u)0,Ω

b(u, q) = 0 ∀(v, q) ∈ V (Ω) × Q (Ω) ,

⎫⎪⎪⎬⎪⎪⎭ (P)
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where a : W (Ω) × W (Ω) → R, b : W (Ω) × Q (Ω) → R are the bilinear forms defined by

a(u, v) =

∫
Ω

Du : Dvdx, b(v, q) =

∫
Ω

div vqdx ,

and j : L2
+
(S) × W (Ω) → R is the slip term

j(g, vτ ) = κ

∫
S
g|vτ |ds .1

The Green formula applied to the bilinear forms a, b together with an appropriate choice of test functions v in (P) leads
to (2) provided that the solution (u, p) is smooth enough.

Problem (P) can be also formulated bymeans of the fixed-point approach. To this end, the unknown argument |σν(u, p)|
appearing in j will be replaced by a function g ∈ L2

+
(S) given a-priori. Instead of (P) we consider much simpler problem

(Pg ) which is parametrized by g:

Find (ug , pg ) ∈ V (Ω) × Q (Ω) s. t.

a(ug , v − ug ) − b(v − ug , pg ) + j(g, vτ ) − j(g, ug
τ ) ≥ (f , v − ug )0,Ω

b(ug , q) = 0 ∀(v, q) ∈ V (Ω) × Q (Ω) .

⎫⎪⎪⎬⎪⎪⎭ (Pg )

It is well-known that (Pg ) has a unique solution for any g ∈ L2
+
(S) (see [1,2]).

Under the assumption that σν(ug , pg ) ∈ L2(S) for any g ∈ L2
+
(S) one can define the mapping Ψ : L2

+
(S) → L2

+
(S) by

Ψ (g) = |σν(ug , pg )| on S ∀g ∈ L2
+
(S) . (3)

Comparing the definition of (P) and (Pg ) we see that a pair (u, p) solves (P) if and only if it solves (Pg ) with g = |σν(u, p)|,
i.e. |σν(u, p)| is a fixed-point of Ψ .

Nowwe present an alternative form of the fixed-point mappingΨ which will be discretized and used in the next section.
This form is based on the dualization of the impermeability condition vν = 0 on S.

Denote

X(S) = {ϕ ∈ L2(S) | ∃v ∈ W (Ω) : ϕ = vν on S}

and let X ′(S) be its dual with the duality pairing ⟨ , ⟩.
For any g ∈ L2

+
(S) we consider the problem:

Find (ug , pg , λg ) ∈ W (Ω) × Q (Ω) × X ′(S) s. t.

a(ug , v − ug ) − b(v − ug , pg ) − ⟨λg , vν − ug
ν⟩ + j(g, vτ ) − j(g, ug

τ ) ≥ (f , v − ug )0,Ω

b(ug , q) + ⟨ψ, ug
ν⟩ = 0 ∀(v, q, ψ) ∈ W (Ω) × Q (Ω) × X ′(S) .

⎫⎪⎪⎬⎪⎪⎭ (M g )

It is easy to verify that (M g ) has a unique solution (ug , pg , λg ) for any g ∈ L2
+
(S). In addition, its first two components (ug , pg )

solve (Pg ) and λg = σν(ug , pg ). Thus, the mapping Ψ from (3) can be also expressed by

Ψ (g) = |λg | on S . (4)

Remark 1. Problem (Pg ) is theweak formulation of the Stokes systemwith the so-called Tresca type slip condition inwhich
the slip bound function g is given a priori.

Remark 2. The weak formulation (P) is written in a formal way. It is correct provided that σν(u, p) ∈ L2(S) otherwise a
non-local form of Coulomb’s slip has to be used as in [8,9].

3. Discretization of (P)

This section deals with a discretization of problem (P). To this end we introduce the discrete form of the fixed-point
mapping Ψ defined by (4). It will be based on a finite element discretization of (M g ). In what follows we suppose thatΩ is
a polygonal domain and to simplify our presentation that the slip part S is represented by one straight segment parallel to the
x1-axis.

1 For the sake of simplicity of our presentation we consider κ > 0 to be constant on S.
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Let {Th} be a family of regular triangulations ofΩ , where h > 0 stands for the norm of Th. On any Th ∈ {Th}we construct
the following finite element spaces:

Sh(Ω) = {vh ∈ (C(Ω))2| vh|T = vh|T
+ bT, vh|T

∈ (P1(T))2

bT ∈ (P3(T))2 is the bubble function, ∀T ∈ Th} ,

S 0
h (Ω) = Sh(Ω) ∩ (H1

0 (Ω))2 ,
Wh(Ω) = Sh(Ω) ∩ W (Ω) ,

Qh(Ω) = {qh ∈ C(Ω)| qh|T ∈ P1(T) ∀T ∈ Th,

∫
Ω

qhdx = 0} ,

Λh(S) = {ψh ∈ C(S̄)| ∃vh ∈ Wh(Ω) : ψh = vhν on S} ,
Λh+(S) = {ψh ∈ Λh(S)| ψh ≥ 0 on S} .

Remark 3. Owing to the assumption on the shape of S it holds that

Λh(S) = {ψh ∈ C(S̄)| ψh|∆
∈ P1(∆), ∀∆ ∈ Dh, ψh(a) = 0, ∀a ∈ Γ̄ ∩ S̄} ,

where Dh = Th|S is the partition of S̄ generated by Th.

It is well-known that the pairs {S 0
h (Ω),Qh(Ω)}, {Wh(Ω),Λh(S)} satisfy the following LBB-conditions:

∃β1 > 0 : sup
vh∈S 0

h (Ω)

b1(vh, qh)
∥vh∥1,Ω

≥ β1∥qh∥0,Ω , ∀qh ∈ Qh(Ω) and ∀h > 0 , (5)

and

∃β2 > 0 : sup
vh∈Wh(Ω)

b2(vhν, ψh)
∥vh∥1,Ω

≥ β2∥ψh∥−1/2,S , ∀ψh ∈ Λh(S) and ∀h > 0 , (6)

respectively, where

b1(vh, qh) =

∫
Ω

div vhqhdx , (vh, qh) ∈ Wh(Ω) × Qh(Ω) ,

b2(vhν, ψh) =

∫
S
vhνψhds , (vh, ψh) ∈ Wh(Ω) ×Λh(S) ,

∥ψh∥−1/2,S = sup
v∈W (Ω)

b2(vν, ψh)
∥v∥1,Ω

.

For (5), (6) we refer to [11], and [12], respectively. From (5), (6) and Theorem 3.1 in [13] it follows that the sum b1 + b2
satisfies the LBB-condition, as well:

∃β3 := β3(β1, β2) > 0 : sup
vh∈Wh(Ω)

b1(vh, qh) + b2(vhν, ψh)
∥vh∥1,Ω

≥ β3(∥qh∥0,Ω + ∥ψh∥−1/2,S) , (7)

holds for any (qh, ψh) ∈ Qh(Ω) ×Λh(S) and any h > 0.
For any gh ∈ Λh+(S) we define the discretization of (M gh ) by:

Find (ugh
h , p

gh
h , λ

gh
h ) ∈ Wh(Ω) × Qh(Ω) ×Λh(S) s. t.

a(ugh
h , vh − ugh

h ) − b1(vh − ugh
h , p

gh
h ) − b2(vhν − ugh

hν, λ
gh
h ) + j(gh, vhτ ) − j(gh, u

gh
hτ ) ≥ (f , vh − ugh

h )0,Ω

b1(u
gh
h , qh) + b2(u

gh
hν, ψh) = 0 ∀(vh, qh, ψh) ∈ Wh(Ω) × Qh(Ω) ×Λh(S) .

⎫⎪⎪⎬⎪⎪⎭ (M gh )h

Theorem 1. There exists a unique solution to (M gh )h for any gh ∈ Λh+(S). In addition, there exists a constant2 c := c(∥f ∥0,Ω ,
β1, β2) which does not depend on gh ∈ Λh+(S), κ and h such that

∥ugh
h ∥1,Ω + ∥pghh ∥0,Ω + ∥λ

gh
h ∥−1/2,S ≤ c. (8)

Proof. Korn’s inequality and (7) ensure the existence and uniqueness of the solution as well as the estimate (8) for some
constant c > 0. Only what it remains to show is that c does not depend on the above mentioned quantities. Inserting vh = 0
and 2ugh

h into (M gh )h we see that

a(ugh
h , u

gh
h ) ≤ a(ugh

h , u
gh
h ) + j(gh, u

gh
hτ ) = (f , ugh

h )0,Ω , (9)

2 In the sequel the symbol c denotes a generic positive constant. If one needs to point out that c depends on specific parameters then the ones appear
as the arguments of c.
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and

a(ugh
h , vh) − b1(vh, p

gh
h ) − b2(vhν, λ

gh
h ) + j(gh, vhτ ) ≥ (f , vh)0,Ω (10)

holds for any vh ∈ Wh(Ω). The bound of ∥ugh
h ∥1,Ω by a constant c := c(∥f ∥0,Ω ) is a consequence of (9). If we restrict ourselves

to test functions vh ∈ S 0
h (Ω) then (10) becomes

a(ugh
h , vh) − b1(vh, p

gh
h ) = (f , vh)0,Ω ∀vh ∈ S 0

h (Ω) . (11)

From this and (5) it follows that ∥pghh ∥0,Ω ≤ c := c(∥f ∥0,Ω , β1).
To show uniform boundedness of ∥λghh ∥−1/2,S with respect to gh ∈ Λh+(S), κ and h, we introduce the space

W 0
h (Ω) = {vh ∈ Wh(Ω)| vh = (0, vh2)} .

Inserting vh ∈ W 0
h (Ω) into (10) we obtain:

a(ugh
h , vh) − b1(vh, p

gh
h ) − b2(vh2, λ

gh
h ) = (f , vh)0,Ω ∀vh ∈ W 0

h (S) , (12)

using that vhτ = 0 and vhν = ±vh2 on S for any vh ∈ W 0
h (Ω). Since

sup
vh∈Wh(Ω)

b2(vh2, ψh)
∥vh∥1,Ω

= sup
vh∈W0

h (Ω)

b2(vh2, ψh)
∥vh∥1,Ω

, (13)

there exists a constant c := c(∥f ∥0,Ω , β1, β2) such that ∥λ
gh
h ∥−1/2,S ≤ c making use of (6) and (12). □

Remark 4. The fact that the constant c in (8) does not depend on h is a consequence of (5) and (6).

Remark 5. Let (ugh
h , p

gh
h , λ

gh
h ) solve (M gh )h. Thenugh

h is the discrete velocity fieldwhich is the solution to the following discrete
velocity formulation:

ugh
h ∈ Vh,div(Ω) : a(ugh

h , vh − ugh
h ) + j(gh, vhτ ) − j(gh, u

gh
hτ )

≥ (f , vh − ugh
h )0,Ω ∀vh ∈ Vh,div(Ω) ,

}
(Pgh )h

where

Vh,div(Ω) = {vh ∈ Wh(Ω)| b1(vh, qh) = 0 ∀qh ∈ Qh(Ω) ,
b2(vhν, ψh) = 0 ∀ψh ∈ Λh(S)}

= {vh ∈ Wh(Ω)| b1(vh, qh) = 0 ∀qh ∈ Qh(Ω), vhν = 0 on S} . (14)

Now we shall investigate how the solution (ugh
h , p

gh
h , λ

gh
h ) to (M gh )h depends on gh ∈ Λh+(S). Let Φh : Λh+(S) →

Wh(Ω) × Qh(Ω) ×Λh(S) be the mapping defined by

Φh(gh) = (ugh
h , p

gh
h , λ

gh
h ) ∀gh ∈ Λh+(S) , (15)

and denote

|||Φh(gh)|||:= ∥ugh
h ∥1,Ω + ∥pghh ∥0,Ω + ∥λ

gh
h ∥−1/2,S .

Theorem 2. The mapping Φh is Lipschitz continuous inΛh+(S):

∃c := c(β1, β2) s. t. |||Φh(gh) −Φh(gh)|||≤ cκ∥gh − gh∥0,S ∀gh, gh ∈ Λh+(S) (16)

and c does not depend on f , gh, gh, κ and h.

Proof. Let gh, gh ∈ Λh+(S) be given and (uh, ph, λh) := (ugh
h , p

gh
h , λ

gh
h ), (uh, ph, λh) := (ugh

h , p
gh
h , λ

gh
h ) be the solution to (M gh )h,

and (M gh )h, respectively. Then uh, uh solve problem (Pgh )h, and (Pgh )h, respectively, see Remark 5. Inserting vh = uh into
(Pgh )h and vh = uh into (Pgh )h, adding both inequalities, we get:

a(uh − uh, uh − uh) ≤ j(gh − gh, uhτ ) − j(gh − gh, uhτ ) ≤ κ∥gh − gh∥0,S∥uhτ − uhτ∥0,S .

Consequently

∥uh − uh∥1,Ω ≤ cκ∥gh − gh∥0,S , (17)

where c depends on the norm of the respective trace mapping and on the constant of Korn’s inequality.
Subtracting Eqs. (11) satisfied by (uh, ph) and (uh, ph) we have:

a(uh − uh, vh) − b1(vh, ph − ph) = 0 ∀vh ∈ S 0
h (Ω) .
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This, (5) and (17) entail:

∃c := c(β1) : ∥ph − ph∥0,Ω ≤ cκ∥gh − gh∥0,S . (18)

Finally, subtracting Eqs. (12) corresponding to (M gh )h and (M gh )h we obtain:

a(uh − uh, vh) − b1(vh, ph − ph) − b2(vhν, λh − λh) = 0 ∀vh ∈ W 0
h (Ω) .

From this, (6), (13), (17) and (18) we may conclude that

∃c := c(β1, β2) : ∥λh − λh∥−1/2,S ≤ cκ∥gh − gh∥0,S . □ (19)

Now we proceed to the discretization of the fixed-point mapping Ψ defined by (4). The main difficulty we face in the
discrete case is the fact that if ψh ∈ Λh(S) then |ψh| belongs to Λh+(S) if it does not change the sign on S or its sign
changes only at the nodes of Dh. To overcome this difficulty we define the mappingΨh : Λh+(S) → Λh+(S) representing the
discretization of Ψ by

Ψh(gh) = rh|λ
gh
h | , (20)

where rh is the piecewise linear Lagrange interpolation operator on Dh and λghh is the discrete normal stress given by the
third component of the solution to (M gh )h.

Definition 1. By the solution to the discrete Stokes system with the local Coulomb type slip condition we call any triplet
(ugh

h , p
gh
h , λ

gh
h ) solving (M gh )h, where gh is a fixed-point of Ψh.

In the next part of this section the existence of a fixed-point of Ψh and its possible uniqueness is investigated. Since we
shall use the global inverse inequalities for the spaceΛh(S), we shall suppose that any partition Dh ∈ {Dh} of S satisfies the
following condition:

∃γ > 0 : γ h ≤ |∆| ≤ h (21)

holds for any∆ ∈ Dh and h > 0.

Theorem 3. Let (21) be satisfied. Then the mapping Ψh has at least one fixed-point for any h, and κ . All fixed-points of Ψh belong
to the set

Bh = {ψh ∈ Λh+(S)| ∥ψh∥0,S ≤ ch−1/2
} ,

where the constant c > 0 does not depend on h, and κ .

Proof. We use Brouwer’s fixed-point theorem. Clearly, Ψh is continuous inΛh+(S). From the approximation properties and
the inverse inequalities valid for functions from Λh(S) it follows that there exists a constant c which does not depend on h
and such that

∥rh|λ
gh
h |∥0,S ≤ ∥rh|λ

gh
h | − |λ

gh
h |∥0,S + ∥λ

gh
h ∥0,S ≤ ch∥λghh ∥1,S + ∥λ

gh
h ∥0,S

≤ c∥λghh ∥0,S ≤ ch−1/2
∥λ

gh
h ∥−1/2,S

(8)
≤ ch−1/2 (22)

holds for any gh ∈ Λh+(S), h and also any κ in view of (8). Hence Ψh(Bh) ⊆ Bh. □

Theorem 4. Let (21) be satisfied. Then the mapping Ψh is Lipschitz continuous inΛh+(S):

∃c : ∥Ψh(gh) − Ψh(gh)∥0,S ≤ cκh−1/2
∥gh − gh∥0,S ∀gh, gh ∈ Λh+(S) ,

where the constant c does not depend on f , gh, gh, κ , and h.

Proof. Let gh, gh ∈ Λh+(S). Then

∥Ψh(gh) − Ψh(gh)∥0,S = ∥rh(|λ
gh
h | − |λ

gh
h |)∥0,S ≤ ∥rh(

⏐⏐|λghh | − |λ
gh
h |

⏐⏐)∥0,S

≤ ∥rh|λ
gh
h − λ

gh
h |∥0,S

(22)
≤ ch−1/2

∥λ
gh
h − λ

gh
h ∥−1/2,S

(19)
≤ cκh−1/2

∥gh − gh∥0,S

using the monotonicity of the piecewise linear Lagrange interpolation operator rh.

Consequence 1. If κ < ch1/2 for an appropriate constant c, which does not depend on h, the mapping Ψh is contractive.
Consequently, the fixed-point of Ψh is unique and the method of successive approximations

g0 ∈ Λh+(S) arbitrary;
gk+1 = Ψh(gk), k = 0, 1, . . .

}
(23)

is convergent. Notice that the condition on κ guaranteeing contractivity of Ψh is mesh dependent.



Please cite this article in press as: J. Haslinger, et al., Stokes system with local Coulomb’s slip boundary conditions: Analysis of discretized models and
implementation, Computers and Mathematics with Applications (2018), https://doi.org/10.1016/j.camwa.2018.04.032.

J. Haslinger et al. / Computers and Mathematics with Applications ( ) – 7

Each iterative step in (23) leads to the problem of finding the solution (ugk
h , p

gk
h , λ

gk
h ) of (M gk )h. Then gk+1 = rh|λ

gk
h |.

Below we present an alternative definition of the Lagrange multiplier spaceΛh(S). Instead of piecewise linear functions
we use piecewise constant functions. As we shall see this choice simplifies the definition of the discrete fixed-point mapping
on the one hand but the impermeability condition on S is satisfied only in an integral mean value sense on the other hand.

Let {DH}, H → 0+ be a system of partitions of S into segments∆ ∈ DH , |∆| ≤ H ∀∆ ∈ DH . Notice that DH is independent
of Th|S

. With any DH we associate the space of piecewise constant functions on DH :

ΛH (S) = {ψH ∈ L2(S) | ψH |∆
∈ P0(∆) ∀∆ ∈ DH}

and denote

ΛH+(S) = {ψH ∈ ΛH (S) | ψH ≥ 0 on S} .

The bilinear form b2 will be now defined onWh(Ω) ×ΛH (S):

b2(vhν, ψH ) =

∫
S
vhνψHds (vh, ψH ) ∈ Wh(Ω) ×ΛH (S) .

Next, we shall suppose that there exist constants γ̄ , ¯̄γ > 0 which do not depend on h,H > 0 such that

γ̄ ≤ H/h ≤ ¯̄γ (24)

and γ̄ is sufficiently large. Then the couple {Wh(Ω),ΛH (S)} satisfies the following LBB-condition:

∃β̄2 > 0 : sup
vh∈Wh(Ω)

b2(vhν, ψH )
∥vh∥1,Ω

≥ β̄2∥ψH∥−1/2,S (25)

holds for any ψH ∈ ΛH (S) and any h,H satisfying (24) [14,15]. In view of (5), (25) the same holds for the sum b1 + b2.
For the discretization of the Stokes problem with Coulomb’s slip condition we use the same approach as above but with

the spaceΛH (S) instead ofΛh(S). For any gH ∈ ΛH+(S) we consider the problem:

Find (ugH
h , p

gH
h , λ

gH
H ) ∈ Wh(Ω) × Qh(Ω) ×ΛH (S) s. t.

a(ugH
h , vh − ugH

h ) − b1(vh − ugH
h , p

gH
h ) − b2(vhν − ugH

hν , λ
gH
H ) + j(gH , vhτ ) − j(gH , u

gH
hτ ) ≥ (f , vh − ugH

h )0,Ω

b1(u
gH
h , qh) + b2(u

gH
hν , ψH ) = 0 ∀(vh, qh, ψH ) ∈ Wh(Ω) × Qh(Ω) ×ΛH (S) .

⎫⎪⎪⎬⎪⎪⎭ (M gH )h,H

Problem (M gH )h,H has a unique solution. Let us observe that this time the discrete velocityugH
h satisfies the impermeability

condition on S only in an integral sense:∫
∆

ugH
hν ds = 0 ∀∆ ∈ DH .

LetΦhH : ΛH+(S) → Wh(Ω) × Qh(Ω) ×ΛH (S) be the mapping defined by

ΦhH (gH ) = (ugH
h , p

gH
h , λ

gH
H ) .

It is easy to show that Theorems 1 and 2 remain valid with the appropriate modifications, namely

∃c := c(∥f ∥0,Ω , β1, β̄2) : ∥ugH
h ∥1,Ω + ∥pgHh ∥0,Ω + ∥λ

gH
H ∥−1/2,S ≤ c , (26)

where c does not depend on gH ∈ ΛH+(S), κ , H , h, and

∃c := c(β1, β̄2) : |||ΦhH (gH ) −ΦhH (ḡH )|||≤ cκ∥gH − ḡH∥0,S ∀gH , ḡH ∈ ΛH+ , (27)

where c does not depend on f , gH , ḡH κ , h, and H , respectively.
Since ψH ∈ ΛH (S) if and only if |ψH | ∈ ΛH+(S) one can define the approximation ΨhH : ΛH+(S) → ΛH+(S) of the

fixed-point mapping Ψ simply by

ΨhH (gH ) = |λ
gH
H | ∀gH ∈ ΛH+(S) .

To prove the existence and possible uniqueness of a fixed-point of ΨhH inΛH+(S) we shall suppose that in addition to (24)

∃γ > 0 : |∆′
| ≤ γ |∆| ∀∆,∆′

∈ DH and ∀H > 0 . (28)

Then also Theorems 3 and 4 remain true with appropriate modifications.

Theorem 5. Let (24) and (28) be satisfied. Then the mapping ΨhH has at least one fixed-point for any κ , h, and H. All fixed-points
belong to the set

BH = {ψH ∈ ΛH+(S) | ∥ψH∥0,S ≤ cH−1/2
} ,

where c does not depend on κ , h, and H.
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Proof. Let gH ∈ ΛH+(S). Then

∥|λ
gH
H |∥0,S ≤ cH−1/2

∥λ
gH
H ∥−1/2,S

(26)
≤ cH−1/2

making use of the inverse inequality. Hence ΨhH (BH ) ⊆ BH . □

Theorem 6. Let (24) and (28) be satisfied. Then the mapping ΨhH is Lipschitz continuous inΛH+(S):

∃c > 0 : ∥ΨhH (gH ) − ΨhH (ḡH )∥0,S ≤ cκH−1/2
∥gH − ḡH∥0,S ∀gH , ḡH ∈ ΛH+(S) ,

where c > 0 does not depend on f , gH , ḡH , κ , h, and H.

Proof. Let gH , ḡH ∈ ΛH+(S). Then

∥ΨhH (gH ) − ΨhH (ḡH )∥0,S = ∥|λ
gH
H | − |λ

ḡH
H |∥0,S ≤ ∥λ

gH
H − λ

ḡH
H ∥0,S

≤ cH−1/2
∥λ

gH
H − λ

ḡH
H ∥−1/2,S

(27)
≤ cH−1/2κ∥gH − ḡH∥0,S . □

Thus, Consequence 1 can be modified in a straightforward way.

4. Algebraic formulation and solvers

The mixed finite element approximation of (Pg ) uses the P1+bubble/P1 finite element pair [16] satisfying the LBB-
stability condition. The matrices are assembled by vectorized codes [17]. To release the impermeability constraint and to
regularize the non-smooth term j, we introduce the Lagrange multipliers λν , and λτ , respectively, in the resulting algebraic
formulation. The corresponding KKT (Karush–Kuhn–Tucker) system reads as follows: find (u,λτ ,λν, p) ∈ Rnu ×Rnc ×Rnc ×

Rnp such that

Au − b + TTλτ + NTλν + BTp = 0, (29)
Bu − Ep − c = 0, (30)
Nu = 0, (31)
(Tu)i = 0 ⇒ |λτ i| ≤ κgi,
(Tu)i > 0 ⇒ λτ i = κgi,
(Tu)i < 0 ⇒ λτ i = −κgi,

⎫⎬⎭ i ∈ N := {1, . . . , nc}, (32)

where A ∈ Rnu×nu is the symmetric, positive definite stiffness matrix arising from the discretization of the 2nd order elliptic
operator in (2)1, b ∈ Rnu is the discrete source term, and B ∈ Rnp×nu is the full row rank matrix representing the divergence
operator in (2)2. The symmetric, positive semidefinitematrix E ∈ Rnp×np and c ∈ Rnp arise from the elimination of the bubble
components (on the element level). Here, nu, np stand for the dimension of the solution components u, and p, respectively.
Further, the number of the nodes belonging to S̄\Γ̄ is denoted by nc . The normal, tangential vectors to S at these nodes define
the full row rank matrices T, and N ∈ Rnc×nu , respectively. The non-smooth term j(g, vτ ) is approximated by the composite
trapezoidal formula, inwhich the nodal values of g multiplied by the length of segments belonging to the partitionDh appear.
These products are denoted again as gi and g = (g1, . . . , gnc )

T . Let us mention that λν , λτ represent the discretizations of
−σν and −στ on S, respectively.

Using simplified notation

µ =
(
µT
τ ,µ

T
ν , q

T )T
∈ R2nc+np , C =

(
TT ,NT ,BT )T

∈ R(2nc+np)×nu , (33)

one can compute u from (29): u = A−1(b− CTλ). Eliminating u, we arrive at the dual minimization problem in terms of the
Lagrange multipliers:

λ = arg min
µ∈Λ(κg)

q(µ), (34)

where Λ(κg) = {µ ∈ R2nc+np : |µτ | ≤ κg}, the inequality ‘‘≤’’ and the absolute value |·| are understood component wisely,
q(µ) =

1
2µ

TFµ − µTd with F = CA−1CT
+ diag(0, 0, E), and d = CA−1b − (0T , 0T , cT )T . Note that F is symmetric, positive

definite.
The quadratic programming problem (34) will be solved in Section 5 by a variant of the path-following interior point

method (IPM) [18,19] and by the semismooth Newton method (SSNM) [20,21]. The method of successive approximations
(23) is implemented as follows.

Algorithm MSA Given λ0
∈ R2nc+np , ε > 0, and set k := 0.

(i) Solve λk+1
= argmin q(µ) subject to µ ∈ Λ(κ|λk

ν |).
(ii) Compute err k

:= ∥λk+1
− λk

∥/∥λk
∥.

(iii) If err k
≤ ε, stop, else set k := k + 1 and go to Step (i).

(iv) Return λ̄ = λk+1 and ū = A−1(b − CT λ̄).

Here, λk
ν denotes the second component of λk.
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Fig. 1. Velocity field (a) and pressure distribution (b) inΩ .

Fig. 2. Distribution of στ and ±κ|σν | along S.

5. Numerical experiments

This section presents numerical results of two model examples. Since the pressure p is determined up to an arbitrary
additive constant, one more boundary condition will be used to guarantee its uniqueness. In both examples, the boundary
ofΩ will be split into three non-empty, non-overlapping parts. Besides the no-slip, slip conditions on Γ , and S, respectively,
a value of the stress vector σ = 2µDuν − pν will be prescribed on ΓN . The numerical implementation uses the Algorithm
MSA presented in Section 4. Each iterative step (i), corresponding to the Stokes system with the Tresca type slip boundary
condition is solved by both, the interior point (IPM) and the semismooth Newton (SSNM) method.

5.1. Example 1

The computational domainΩ is seen in Fig. 1. It is a square like domain with the curved bottom S = {(x,−0.1 sin(2πx)),
x ∈ (0, 1)} representing the slip part of ∂Ω . The zero velocity is prescribed on the top Γ of Ω . The rest of ∂Ω represents
the part ΓN . The source term f = −µ div(2Duexp) + ∇pexp with µ = 1, uexp(x, y) = (− cos(2πx) sin(2πy) + sin(2πy),
sin(2πx) cos(2πy)−sin(2πx)), and pexp(x, y) = 2π (cos(2πy)−cos(2πx)). Further, σ = σexp|ΓN on ΓN , where σexp is the stress
vector resulting from uexp and pexp. Finally, the slip coefficient κ = 1. Data are chosen in such a way that both, stick and slip
zones appear on S.

The orientation and magnitude of the velocity vector u in Ω are depicted in Fig. 1(a). Pressure distribution is shown in
Fig. 1(b). The distributions of the shear stress στ , the threshold slip bound κ|σν |, the pressure p and the tangential velocity
uτ along straightened S are plotted in Figs. 2 and 3. One can see that S is split into the stick and slip parts accordingly to the
mutual relation between στ and κ|σν |. In Table 1 we compare the number of the fixed-point iterations iter and the number
of the matrix–vector multiplications NF for IPM and SSNM on different meshes, characterized by nu, np, and nc . The relative
error in the AlgorithmMSA is set ε = 10−7. One can see that the number iter is the same for IPM and SSNM and practically
it does not depend on the size of this problem. The number NF which characterizes the computational efficiency strongly
depends on the norm of the partition ofΩ . It is lower for SSNM on coarser and slightly higher on finer partitions compared
with IPM.
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Table 1
Comparison of IPM and SSNM.

nu/np/nc IPM SSNM

iter NF iter NF

544 / 289 / 17 16 4639 16 1808
2112 / 1089 / 33 19 6532 19 3986
8320 / 4225 / 65 17 9727 17 5909
18624 / 9409 / 97 17 8789 17 10455
33024 / 16641 / 129 16 10123 17 12729

Fig. 3. Distribution of p (a) and uτ (b) along S.

Fig. 4. Velocity field (a) and pressure distribution (b) inΩ , κ = 0.3.

5.2. Example 2

The nozzle is represented by the trapezoidal domain Ω depicted in Fig. 4. The Dirichlet condition u = (−160y2/9 +

1/10, 0) is prescribed on the left vertical side Γ = {0} × (−0.075, 0.075), while the stress vector σ vanishes on the
right vertical side ΓN = {1} × (−0.0375, 0.0375). The rest of ∂Ω represents the slip part S. Further f = 0 [N · m−3

] and
µ = 0.001003 [Pa · s].

In computations we use two values of slip coefficients, namely κ = 0.3 and 0.6. Again, the data are chosen in such a way
that both, the stick, and slip zones appear on S. This time the relative error in the ALGORITHMMSA is set ε = 10−8. The same
physical quantities as in the previous example are plotted in Figs. 4–9 for the slip coefficient κ = 0.3 and 0.6. As expected,
the slip zone for κ = 0.3 is larger than the one for κ = 0.6. From Table 2 we see that the number of the fixed-point iterations
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Fig. 5. Velocity field (a) and pressure distribution (b) inΩ , κ = 0.6.

Fig. 6. Distribution of στ and ±κ|σν | along S, κ = 0.3.

Fig. 7. Distribution of p (a) and uτ (b) along S, κ = 0.3.

iter again does not depend on the size of the problem. On the other hand SSNM needs at least seven times less matrix–vector
multiplications than IPM.

In Examples 1 and 2 two numerical methods for solving individual iterative steps of MSA, namely IPM and SSNM, are
compared. Our computational experiments (not only the ones presented in this paper) demonstrate that SSNM is superior
over IPM as far as the number of the matrix–vector multiplications is concerned. Another possibility how to solve our
problem and to avoid the method of successive approximations is to implement SSNM directly to the original fixed-point
formulationwhich is given by (29)–(31) and the following slightmodification of (32): instead of gi we use the ith component
of the vector |λν |. Unfortunately this approach turned out not to be very robust, meaning that SSNM either converged and
in that case convergence was fast or the method totally failed changing for example the shape of the computational domain
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Fig. 8. Distribution of στ and ±κ|σν | along S, κ = 0.6.

Fig. 9. Distribution of p (a) and uτ (b) along S, κ = 0.6.

Table 2
Comparison of IPM and SSNM.

nu/np/nc κ = 0.3 κ = 0.6

IPM SSNM IPM SSNM

iter NF iter NF iter NF iter NF

720 / 369 / 80 11 25201 11 3629 18 46835 18 6514
2720 / 1377 / 160 10 32243 10 4885 15 56377 15 7888
6000 / 3025 / 240 14 58835 10 5807 19 92069 15 11553
10560 / 5313 / 320 14 82050 10 7262 19 109864 15 14627
16400 / 8241 / 400 14 89426 10 9341 19 121433 15 17015
23520 / 11809 / 480 14 88700 10 10126 19 155552 16 20052

(among others). One of possible explanations of this behaviour is that the matrices of linear algebraic systems involved in
SSNM are no longer symmetric. On that account we preferred the implementation via MSA.

6. Conclusions

This paper is devoted to the theoretical analysis of the discretized Stokes systemwith Coulomb’s slip boundary conditions
and its numerical implementation. In the theoretical part we proved the existence of at least one solution using the fixed-
point method. Its uniqueness was established by the Banach fixed-point theorem. It must be quoted that the condition
guaranteeing the uniqueness result is only sufficient under which the respective fixed-point mapping is contractive. The
second part focuses on computational aspects. Computations are based on the method of successive approximations using
the dual formulation of each iterative step. Such formulation is derived from the KKT-system by eliminating the velocity
vector u. The resulting quadratic programming problem is solved by both, the semismooth Newton and interior-point
methods. The numerical experiments demonstrate the applicability of the proposed approach.
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