
International Journal on Software Tools for Technology Transfer
https://doi.org/10.1007/s10009-019-00520-8

REGULAR PAPER

Approximate reduction of finite automata for high-speed network
intrusion detection

Milan Češka1 · Vojtěch Havlena1 · Lukáš Holík1 ·Ondřej Lengál1 · Tomáš Vojnar1

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Weconsider the problemof approximate reduction of non-deterministic automata that appear in hardware-accelerated network
intrusion detection systems (NIDSes). We define an error distance of a reduced automaton from the original one as the
probability of packets being incorrectly classified by the reduced automaton (wrt the probabilistic distribution of packets in
the network traffic). We use this notion to design an approximate reduction procedure that achieves a great size reduction
(much beyond the state-of-the-art language-preserving techniques) with a controlled and small error. We have implemented
our approach and evaluated it on use cases from Snort, a popular NIDS. Our results provide experimental evidence that the
method can be highly efficient in practice, allowing NIDSes to follow the rapid growth in the speed of networks.

Keywords Reduction · Nondeterministic finite automata · Deep packet inspection · High-speed network monitoring

1 Introduction

The recent years have seen a boom in the number of secu-
rity incidents in computer networks. In order to alleviate the
impact of network attacks and intrusions, Internet service
providers want to detect malicious traffic at their network’s
entry points and on the backbones between sub-networks.
Software-based network intrusion detection systems (NID-
Ses), such as the popular open-source system Snort [50],
are capable of detecting suspicious network traffic by testing

B Ondřej Lengál
lengal@fit.vutbr.cz
http://www.fit.vutbr.cz/∼lengal

Milan Češka
ceskam@fit.vutbr.cz
http://www.fit.vutbr.cz/∼ceskam

Vojtěch Havlena
ihavlena@fit.vutbr.cz
http://www.fit.vutbr.cz/∼ihavlena

Lukáš Holík
holik@fit.vutbr.cz
http://www.fit.vutbr.cz/∼holik

Tomáš Vojnar
vojnar@fit.vutbr.cz
http://www.fit.vutbr.cz/∼vojnar

1 IT4Innovations Centre of Excellence, FIT, Brno University of
Technology, Brno, Czech Republic

(among others) whether a packet payload matches a regular
expression (regex) describing known patterns of malicious
traffic. NIDSes collect and maintain vast databases of such
regexes that are typically divided into groups according to
types of the attacks and target protocols.

Regex matching is the most computationally demanding
task of a NIDS as its cost grows with the speed of the net-
work traffic as well as with the number and complexity
of the regexes being matched. The current software-based
NIDSes cannot perform the regex matching on networks
beyond1Gbps [5,28], so they cannot handle the current speed
of backbone networks ranging between tens and hundreds
of Gbps. A promising approach to speed up NIDSes is to
(partially) offload regex matching into hardware [27,28,36].
The hardware then serves as a pre-filter of the network traffic,
discarding the majority of the packets from further process-
ing. Such pre-filtering can easily reduce the traffic the NIDS
needs to handle by two or three orders of magnitude [28].

Field-programmable gate arrays (FPGAs) are the lead-
ing technology in high-throughput regex matching. Due to
their inherent parallelism, FPGAs provide an efficient way
of implementing non-deterministic finite automata (NFAs),
which naturally arise from the input regexes. Although
the amount of available resources in FPGAs is continually
increasing, the speed of networks grows even faster. Work-
ing with multi-gigabit networks requires the hardware to
use many parallel packet processing branches in a single

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-019-00520-8&domain=pdf
http://orcid.org/0000-0002-0300-9727
http://orcid.org/0000-0001-6957-1651
http://orcid.org/0000-0002-3038-5875
http://orcid.org/0000-0002-2746-8792

M. Češka et al.

FPGA [36]; each of them implementing a separate copy of
the concerned NFA, and so reducing the size of the NFAs
is of the utmost importance. Various language-preserving
automata reduction approaches exist, mainly based on com-
puting (bi)simulation relations on automata states (cf. the
related work). The reductions they offer, however, do not sat-
isfy the needs of high-speed hardware-accelerated NIDSes.

Our answer to the problem is approximate reduction of
NFAs, allowing for a trade-off between the achieved reduc-
tion and the precision of the regex matching. To formalize
the intuitive notion of precision, we propose a novel proba-
bilistic distance of automata. It captures the probability that
a packet of the input network traffic is incorrectly accepted
or rejected by the approximated NFA. The distance assumes
a probabilistic model of the network traffic. (We show later
how such a model can be obtained.)

Having formalized the notion of precision, we specify the
target of our reductions as two variants of an optimization
problem: (1) minimizing the NFA size given the maximum
allowed error (distance from the original), or (2) minimiz-
ing the error given the maximum allowed NFA size. Finding
such optimal approximations is, however, computationally
hard (PSPACE-complete, the same as precise NFA mini-
mization).

Consequently, we sacrifice the optimality and, motivated
by the typical structure of NFAs that emerge from a set
of regexes used by NIDSes (a union of many long “tenta-
cles”with occasional small strongly connected components),
we limit the space of possible reductions by restricting the
set of operations they can apply to the original automaton.
Namely, we consider two reduction operations: (i) collapsing
the future of a state into a self-loop (this reduction over-
approximates the language), or (ii) removing states (such
a reduction is under-approximating).

The problem of identifying the optimal sets of states on
which these operations should be applied is still PSPACE-
complete.The restrictedproblem is, however,more amenable
to an approximation by a greedy algorithm. The algorithm
applies the reductions state-by-state in an order determined
by a pre-computed error labelling of the states. The process
is stopped once the given optimization goal in terms of the
size or error is reached. The labelling is based on the proba-
bility of packets that may be accepted through a given state
and hence over-approximates the error that may be caused by
applying the reduction at a given state. As our experiments
show, this approach can give us high-quality reductionswhile
ensuring formal error bounds.

Finally, it turns out that even the pre-computation of
the error labelling of the states is costly (again PSPACE-
complete). Therefore, we propose several ways to cheaply
over-approximate it such that the strong error bound guaran-
tees are still preserved. In particular, we are able to exploit
the typical structure of the “union of tentacles” of the hard-

ware NFA in an algorithm that is exponential in the size of
the largest “tentacle” only, which gives us a method that is
indeed much faster in practice.

We have implemented our approach and evaluated it on
regexes used to classifymalicious traffic in Snort.We obtain
quite encouraging experimental results demonstrating that
our approach provides a much better reduction than lan-
guage-preserving techniques with an almost negligible error.
In particular, our experiments, going down to the level of an
actual implementation of NFAs in FPGAs, confirm that we
can squeeze into an up-to-date FPGA chip real-life regexes
encoding malicious traffic, allowing them to be used with a
negligible error for filtering at speeds of 100Gbps (and even
400Gbps). This is far beyond what one can achieve with
current exact reduction approaches.

This paper is an extended version of the paper that
appeared in the proceedings of TACAS’18 [12], containing
complete proofs of the presented lemmas and theorems.
Related Work Hardware acceleration for regex matching
at the line rate is an intensively studied technology that
uses general-purpose hardware [3,4,29–33,49,53] as well
as FPGAs [8,14,25,27,28,36,39,45,47]. Most of the works
focus on DFA implementation and optimization techniques.
NFAs can be exponentially smaller than DFAs but need,
in the worst case, O(n) memory accesses to process each
byte of the payload where n is the number of states. In
most cases, this incurs an unacceptable slowdown. Several
works alleviate this disadvantage of NFAs by exploiting
reconfigurability and fine-grained parallelism of FPGAs,
allowing one to process one character per clock cycle (e.g.
[8,27,28,36,39,45,47]).

In [33], which is probably the closest work to ours,
the authors consider a set of regexes describing network
attacks. They replace a potentially prohibitively large DFA
by a tree of smaller DFAs, an alternative to using NFAs
that minimizes the latency occurring in a non-FPGA-based
implementation. The language of every DFA-node in the tree
over-approximates the languages of its children. Packets are
filtered through the tree from the root downwards until they
belong to the language of the encountered nodes, and may
be finally accepted at the leaves, or are rejected otherwise.
The over-approximating DFAs are constructed using a simi-
lar notion of probability of an occurrence of a state as in our
approach. Themain differences fromourwork are that (1) the
approach targets approximation of DFAs (not NFAs), (2) the
over-approximation is based on a given traffic sample only (it
cannot benefit from a probabilistic model), and (3) no prob-
abilistic guarantees on the approximation error are provided.

Approximation of DFAs was considered in various other
contexts. Hyper-minimization is an approach that is allowed
to alter language membership of a finite set of words [21,35].
ADFAwith agivenmaximumnumber of states is constructed
in [20], minimizing the error defined either by (i) counting

123

Approximate reduction of finite automata for high-speed network intrusion detection

prefixes ofmisjudgedwords up to some length, or (ii) the sum
of the probabilities of the misjudged words wrt the Poisson
distribution over Σ∗. Neither of these approaches considers
reduction of NFAs nor allows to control the expected error
with respect to the real traffic.

In addition to the metrics mentioned above when dis-
cussing the works [20,21,35], the following metrics should
also be mentioned. The Cesaro–Jaccard distance studied in
[44] is, in spirit, similar to [20] and does also not reflect
the probability of individual words. The edit distance of
weighted automata from [41] depends on the minimum edit
distance between pairs of words from the two compared
languages, again regardless of their statistical significance.
One might also consider using the error metric on a pair of
automata introduced by Angluin in the setting of PAC (prob-
ably approximately correct) learning of DFAs [1], where
n words are sampled from a given distribution and their (non-
)acceptance tested in the two automata. If the outputs of both
automata agree on all n words, one can say that with confi-
dence δ the distance between the two automata is at most ε,
where δ and ε can be determined from n. None of these
notions is suitable for our needs.

Language-preserving minimization of a given NFA is
a PSPACE-complete problem [26,34]. More feasible (poly-
nomial time) is language-preserving size reduction of NFAs
based on (bi)simulations [9,13,24,42],which does not aim for
a truly minimal NFA. A number of advanced variants exist,
based onmulti-pebble or look-ahead simulations, or on com-
binations of forward and backward simulations [15,18,37].
The practical efficiency of these techniques is, however, often
insufficient to allow them to handle the large NFAs that occur
in practice and/or they do not manage to reduce the NFAs
enough. Finally, even a minimal NFA for the given set of
regexes is often too big to be implemented in the given FPGA
operating on the required speed (as shown even in our exper-
iments). Our approach is capable of a much better reduction
for the price of a small change of the accepted language.

2 Preliminaries

We use 〈a, b〉 to denote the set {x ∈ R | a ≤ x ≤ b} and N

to denote the set {0, 1, 2, . . . }. Given a pair of sets X1 and
X2, we use X1 � X2 to denote their symmetric difference,
i.e. the set {x | ∃!i ∈ {1, 2} : x ∈ Xi }. We use the notation
[v1, . . . , vn] to denote a vector of n elements, 1 to denote
the all 1’s vector [1, . . . , 1] (the dimension of 1 is always
clear from the context), A to denote a matrix, and A
 for its
transpose, and I for the identity matrix.

In the following, we fix a finite non-empty alphabet Σ .
A non-deterministic finite automaton (NFA) is a quadru-
ple A = (Q, δ, I , F) where Q is a finite set of states,
δ : Q × Σ → 2Q is a transition function, I ⊆ Q is a set

of initial states, and F ⊆ Q is a set of accepting states. We
use Q[A], δ[A], I [A], and F[A] to denote Q, δ, I , and F ,
respectively, and q

a−→ q ′ to denote that q ′ ∈ δ(q, a). Often,
we abuse notation and treat δ as a subset of Q × Σ × 2Q .
A sequence of states ρ = q0 · · · qn is a run of A over
a word w = a1 · · · an ∈ Σ∗ from a state q to a state q ′,
denoted as q

w,ρ� q ′, if ∀1 ≤ i ≤ n : qi−1
ai−→ qi , q0 = q,

and qn = q ′. Sometimes, we use ρ in set operations where it
behaves as the set of states it contains. We also use q

w� q ′
to denote that ∃ρ ∈ Q∗ : q w,ρ� q ′ and q � q ′ to denote
that ∃w : q w� q ′. The language of a state q is defined as
LA(q) = {w | ∃qF ∈ F : q w� qF } and its banguage (back-
language) is defined as L�

A(q) = {w | ∃qI ∈ I : qI w� q}.
Both notions can be naturally extended to a set S ⊆ Q:
LA(S) = ⋃

q∈S LA(q) and L�

A(S) = ⋃
q∈S L

�

A(q). We
drop the subscript A when the context is obvious.A accepts
the language L(A) defined as L(A) = LA(I). A is called
deterministic (DFA) if |I | = 1 and ∀q ∈ Q and ∀a ∈ Σ :
|δ(q, a)| ≤ 1, and unambiguous (UFA) if ∀w ∈ L(A) :
∃!qI ∈ I , ρ ∈ Q∗, qF ∈ F : qI w,ρ� qF .

The restriction of A to S ⊆ Q is an NFA A|S given
as A|S = (S, δ ∩ (S × Σ × 2S), I ∩ S, F ∩ S). We define
the trim operation as trim(A) = A|C where C = {q | ∃qI ∈
I , qF ∈ F : qI � q � qF }. For a set of states R ⊆ Q, we
use reach(R) to denote the set of states reachable from R,
reach(R) = {r ′ | ∃r ∈ R : r � r ′}. We use the number of
states of A as a measure of its size, i.e. |A| = |Q|.

A (discrete probability) distribution over a countable set X
is a mapping Pr : X → 〈0, 1〉 such that

∑
x∈X Pr(x) = 1.

An n-state probabilistic automaton (PA) over Σ is a triple
P = (α, γ , {Δa}a∈Σ)where α ∈ 〈0, 1〉n is a vector of initial
weights, γ ∈ 〈0, 1〉n is a vector of final weights, and for every
a ∈ Σ , Δa ∈ 〈0, 1〉n×n is a transition matrix for symbol a.
We abuse notation and use Q[P] to denote the set of states
Q[P] = {1, . . . , n}. Moreover, the following two properties
need to hold: (i)

∑{α[i] | i ∈ Q[P]} = 1 (the initial prob-
ability is 1) and (ii) for every state i ∈ Q[P] it holds that∑{Δa[i, j] | j ∈ Q[P], a ∈ Σ} + γ [i] = 1. (The probabil-
ity of accepting or leaving a state is 1.) We define the support
of P as the NFA supp(P) = (Q[P], δ[P], I [P], F[P]) s.t.
δ[P] = {(i, a, j) | Δa[i, j] > 0},
I [P] = {i | α[i] > 0},
F[P] = {i | γ [i] > 0}.
Let us assume that every PA P is such that supp(P) =
trim(supp(P)). For a word w = a1 . . . ak ∈ Σ∗, we use
Δw to denote the matrix Δa1 · · · Δak . For the empty word
ε, we define Δε = I . It can be easily shown that P
represents a distribution over words w ∈ Σ∗ defined as
PrP (w) = α
 ·Δw · γ . We call PrP (w) the probability of w

in P . Given a language L ⊆ Σ∗, we define the probability
of L in P as PrP (L) = ∑

w∈L PrP (w).

123

M. Češka et al.

In some of the proofs later, we use the PA PExp defined as
PExp = (

1, [μ], {[μ]a}a∈Σ

)
where μ = 1

|Σ |+1 . PExp models
a distribution over the words from Σ∗ using a combination
of an exponential distribution (for selecting the length l of
a word) and the uniform distribution (for selecting symbols
in a word of the length l). In particular, the purpose of PExp

is to assign every word w ∈ Σ∗ the (nonzero) probability
PrPExp(w) = μ|w|+1; any other PA assigning nonzero prob-
abilities to all words would work as well.

If Conditions (i) and (ii) from the definition of PAs are
dropped, we speak about a pseudo-probabilistic automaton
(PPA), which may assign a word from its support a quantity
that is not necessarily in the range 〈0, 1〉, denoted as the sig-
nificance of the word below. PPAs may arise during some of
our operations performed on PAs. Note that PPAs can be seen
as instantiations of multiplicity or weighted automata [46].

3 Approximate reduction of NFAs

In this section, we first introduce the key notion of our
approach: a probabilistic distance of a pair of finite automata
wrt a given probabilistic automaton that, intuitively, repre-
sents the significance of particular words. We discuss the
complexity of computing the probabilistic distance. Finally,
we formulate two problems of approximate automata reduc-
tion via probabilistic distance.

3.1 Probabilistic distance

We start by defining our notion of a probabilistic distance
of two NFAs. Assume NFAs A1 and A2 and a probabilistic
automatonP specifying the distribution PrP : Σ∗ → 〈0, 1〉.
The probabilistic distance dP (A1,A2) between A1 and A2

wrt PrP is defined as

dP (A1,A2) = PrP (L(A1)� L(A2)).

Intuitively, the distance captures the significance of thewords
accepted by one of the automata only. We use the distance
to drive the reduction process towards automata with small
errors and to assess the quality of the result. (The distance is
sometimes called the symmetric difference semi-metric [17].)

The value of PrP (L(A1)� L(A2)) can be computed as
follows. Using the fact that (1) L1 � L2 = (L1\L2)�(L2\
L1) and (2) L1\L2 = L1\(L1 ∩ L2), we get

dP (A1,A2)

= PrP (L(A1)\L(A2)) + PrP (L(A2)\L(A1))

= PrP (L(A1)\(L(A1) ∩ L(A2)))

+ PrP (L(A2)\(L(A2) ∩ L(A1)))

= PrP (L(A1))+PrP (L(A2)) − 2 · PrP (L(A1) ∩ L(A2)).

Hence, the key step is to compute PrP (L(A)) for an NFAA
and aPAP . Problems similar to computing such a probability
have been extensively studied in several contexts including
verification of probabilistic systems [2,6,52].

In our approach, we apply the method of [6] and compute
PrP (L(A)) in the following way. We first check whether
the NFA A is unambiguous. This can be done by using the
standard product construction (denoted as ∩) for comput-
ing the intersection of the NFA A with itself and trimming
the result, formally B = trim(A ∩ A), followed by a check
whether there is some state (p, q) ∈ Q[B] s.t. p �= q [40].
If A is ambiguous, we either determinize it or disambiguate
it [40], leading to a DFA/UFA A′, respectively.1 Then, we
construct the trimmed product of A′ and P (this can be
seen as computing A′ ∩ supp(P) while keeping the prob-
abilities from P on the edges of the result), yielding a PPA
R = (αR, γR, {ΔR

a }a∈Σ).2 Intuitively, R represents not
only the words of L(A) but also their probability in P (we
give the formal definition ofR inside the proof of Lemma 2).
Now, letΔ = ∑

a∈Σ Δa be thematrix that expresses, for any
p, q ∈ Q[R], the significance of getting from p to q via any
a ∈ Σ . Further, it can be shown (cf. the proof of Lemma 1)
that the matrix Δ∗, representing the significance of going
from p to q via anyw ∈ Σ∗, can be computed as (I −Δ)−1.
Then, to get PrP (L(A)), it suffices to take α
 · Δ∗ · γ .
Note that, due to the determinization/disambiguation step,
the obtained value indeed is PrP (L(A)) despite R being
a PPA. The two lemmas below summarize the complexity of
this step for NFAs and UFAs, respectively.

Lemma 1 Let P be a PA and A an NFA. The problem of
computing PrP (L(A)) is PSPACE-complete.

Proof Themembership inPSPACE can be shown as follows.
The computation described above corresponds to solving
a linear equation system. The system has an exponential
size because of the blowup caused by the determiniza-
tion/disambiguation of A required by the product construc-
tion. The equation system can, however, be constructed by
a PSPACE transducer Meq. Moreover, as solving linear
equation systems can be done using a polylogarithmic-space
transducer MSysLin, one can combine these two transducers
to obtain a PSPACE algorithm. Details of the construction
follow:

First, we construct a transducer Meq that, given an NFA
A = (QA, δA, IA, FA) and a PA P = (α, γ , {Δa}a∈Σ) on
its input, constructs a system of m = 2|QA| · |Q[P]| linear
equations S(A,P) of m unknowns ξ [R,p] for R ⊆ QA and
p ∈ Q[P] representing the product of A′ and P , where A′

1 In theory, disambiguation can produce smaller automata, but, in our
experiments, determinization proved to work better.
2 R is not necessarily a PA since there might be transitions in P that
are either removed or copied several times in the product construction.

123

Approximate reduction of finite automata for high-speed network intrusion detection

is a deterministic automaton obtained fromA using the stan-
dard subset construction. The system of equations S(A,P)

is defined as follows (cf. [6]):

ξ [R,p]=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if LA(R) ∩ LP ′(p)=∅,
∑

a∈Σ

∑

p′∈Q[P]

(
Δa[p, p′] · ξ [δA(R,a),p′]

) + γ [p]
if R ∩ FA �= ∅,

∑

a∈Σ

∑

p′∈Q[P]
Δa[p, p′] · ξ [δA(R,a),p′]

otherwise,

such that P ′ = supp(P) and δA(R, a) = ⋃
r∈R δ(r , a).

The test LA(R) ∩ LP ′(p) = ∅ can be performed by check-
ing ∃r ∈ R : LA(r) ∩ LP ′(p) = ∅, which can be done in
polynomial time.

It holds that PrP (L(A)) = ∑
p∈Q[P] α[p] · ξ [IA,p].

Although the size ofS(A,P) (which is the output ofMeq) is
exponential in the size of the input ofMeq, the internal con-
figuration of Meq only needs to be of polynomial size, i.e.
Meq works in PSPACE. Note that the size of each equation
is at most polynomial.

Given a system S ofm linear equations withm unknowns,
solving S can be done in the time O(log2 m) using O(mk)

processors for a fixed k [16, Corollary 2] (i.e. it is in the
class NC).3 According to [19, Lemma 1b], an O(log2 m)

time-bounded parallel machine can be simulated by an
O(log4 m) space-bounded Turing machine. Therefore, there
exists anO(log4 m) space-bounded Turing machineMSysLin

that solves a system ofm linear equations withm unknowns.
As a consequence, MSysLin can solve S(A,P) using the
space

O(log4(2|QA| · |Q[P]|)) = O(log4 2|QA| + log4 |Q[P]|))
= O(|QA|4 + log4 |Q[P]|)).

The missing part is how to combine Meq and MSysLin

to avoid using the exponential-size output tape of Meq. For
this, we use the following standard technique for combining
reductions [43, Proposition 8.2].

We take turns in simulating MSysLin and Meq. We start
with simulatingMSysLin.WhenMSysLinmoves its head right,
we pause it and simulateMeq until it outputs the correspond-
ing bit, which is fed into the input of MSysLin. Then we
pause Meq and resume the run of MSysLin. On the other
hand, whenMSysLin moves its head left (from the k-th posi-
tion on the tape),we pause it, restartMeq from its initial state,
and simulate it until it outputs the (k − 1)-st bit of its output
tape, and then pauseMeq and return the control toMSysLin.
In order to keep track of the position k of the head ofMSysLin

on its tape, we use a binary counter.

3 We use log k to denote the base-2 logarithm of k.

The internal configuration of bothMeq andMSysLin is of
a polynomial size and the overhead of keeping track of the
position of the head ofMSysLin also requires only polynomial
space.Therefore, thewhole transducer runs in a polynomially
bounded space.

The PSPACE-hardness is obtained by a reduction from
the (PSPACE-complete) universality of NFAs: using the
PA PExp defined in Sect. 2, which assigns every word a
nonzero probability. it holds that

L(A) = Σ∗ iff PrPExp(L(A)) = 1.

��

Lemma 2 Let P be a PA andA a UFA. The problem of com-
puting PrP (L(A)) is in PTIME.

Proof We modify the proof from [6] into our setting. First,
we give a formal definition of the product of a PA P =
(α, γ , {Δa}a∈Σ) and an NFA A = (Q, δ, I , F) as the
(|Q[P]| · |Q|)-state PPAR = (αR, γR, {ΔR

a }a∈Σ) where4

αR[(qP , qA)] = αR[qP] · |{qA} ∩ I |,
γR[(qP , qA)] = γR[qP] · |{qA} ∩ F |,

ΔR
a [(qP , qA), (q ′

P , q ′
A)]=Δa[qP , q ′

P] · |{q ′
A}∩δ(qA, a)|.

Note thatR is not necessarily a PA anymore because forw ∈
Σ∗ such that PrP (w) > 0, (i) ifw /∈ L(A), then PrR(w) = 0
and (ii) if w ∈ L(A) and A can accept w using n different
runs, then PrR(w) = n · PrP (w). As a consequence, the
probabilities of allwords fromΣ∗ are no longer guaranteed to
add up to 1. IfA is unambiguous, the second issue is avoided
and R preserves the probabilities of words from L(A), i.e.
PrR(w) = PrP (w) for allw ∈ L(A), soR can be seen as the
restriction of PrP to L(A). In the following, we assume R
is trimmed.

In order to compute PrP (L(A)), we construct a matrix E
defined as E = ∑

a∈Σ ΔR
a . Because R is trimmed, the

spectral radius of E, denoted as ρ(E), is less than one, i.e.
ρ(E) < 1. (The proof of this fact can be found, for example,
in [6].) Intuitively, ρ(E) < 1 holds because we trimmed
the redundant states from the product of P and A. We fur-
ther use the following standard result in linear algebra: if
ρ(E) < 1, then (i) the matrix I − E is invertible and (ii)
the sum of powers of E, denoted as E∗, can be computed
as E∗ = ∑∞

i=0 E
i = (I − E)−1 [23]. Moreover, note that

matrix inversion can be done in polynomial time [48].
E∗ represents the reachability between nodes of R, i.e.

E∗[r , r ′] is the sum of significances of all (possibly infinitely

4 We assume an implicit bijection between states of the productR and
{1, . . . , |Q[R]|}.

123

M. Češka et al.

many) paths from r to r ′ inR. When related to P andA, the
matrix E∗ represents the reachability in P wrt L(A), i.e.

E∗[(qP , qA), (q ′
P , q ′

A)]
=

∑ {
Δw[qP , q ′

P] ∣
∣ qA

w� q ′
A, w ∈ Σ∗} . (1)

We prove Equation (1) using the following reasoning. First,
we show that

En[(qP , qA), (q ′
P , q ′

A)]
=

∑ {
Δw[qP , q ′

P] ∣
∣ qA

w� q ′
A, w ∈ Σn

}
, (2)

i.e. En represents the reachability inP wrt L(A) for words of
lengthn.WeproveEquation (2) by induction onn: For n = 0,
the equation follows from the fact that E0 = I . For n = 1,
the equation follows directly from the definition of R and
Δ. Next, suppose that Equation (2) holds for n > 1; we
show that it holds also for n + 1. We start with the following
reasoning:

bEn+1[(qP , qA), (q ′
P , q ′

A)]
= EnE)[(qP , qA), (q ′

P , q ′
A)]

= sum
{
En[(qP , qA), (q ′′

P , q ′′
A)] · E[(q ′′

P , q ′′
A),

(q ′
P , q ′

A)]
∣
∣
∣ (q ′′

P , q ′′
A) ∈ Q[R]

}
.

The last line is obtained via the definition of matrix multipli-
cation. Further, using the induction hypothesis, we get

bEn+1[(qP , qA), (q ′
P , q ′

A)]
= sum

{ ∑ {
Δw[qP , q ′′

P]
∣
∣
∣ qA

w� q ′′
A, w ∈ Σn

}
·

∑ {
Δa[q ′′

P , q ′
P]

∣
∣
∣ q ′′

A
a−→ q ′

A, a ∈ Σ
} ∣

∣
∣
∣

(q ′′
P , q ′′

A) ∈ Q[R]
}

=
∑ { ∑ {

Δw[qP , q ′′
P] · Δa[q ′′

P , q ′
P]

∣
∣
∣ qA

w� q ′′
A,

q ′′
A

a−→ q ′
A, a ∈ Σ,w ∈ Σn

} ∣
∣
∣
∣ (q ′′

P , q ′′
A) ∈ Q[R]

}

=
∑ {

Δw′ [qP , q ′
P]

∣
∣
∣ qA

w′
� q ′

A, w′ ∈ Σn+1
}
.

Since E∗ = ∑∞
i=0 E

i , Equation (1) follows. Using the
matrix E∗, it remains to compute PrP (L(A)) as

PrP (L(A)) = α

R · E∗ · γR.

��

3.2 Automata reduction using probabilistic distance

We now exploit the probabilistic distance introduced above
to formulate the task of approximate reduction of NFAs as
two optimization problems. Given an NFA A and a PA P
specifying the distribution PrP : Σ∗ → 〈0, 1〉, we define

– size-driven reduction: for n ∈ N, find an NFA A′ such
that |A′| ≤ n and the distance dP (A,A′) is minimal,

– error-driven reduction: for ε ∈ 〈0, 1〉, find an NFA A′
such that dP (A,A′) ≤ ε and the size |A′| is minimal.

The following lemma shows that the natural decision prob-
lem underlying both of the above optimization problems is
PSPACE-complete, which matches the complexity of com-
puting the probabilistic distance as well as that of the exact
reduction of NFAs [26].

Lemma 3 Consider an NFA A, a PA P , a bound on the
number of states n ∈ N, and an error bound ε ∈ 〈0, 1〉.
It is PSPACE-complete to determine whether there exists
an NFA A′ with n states s.t. dP (A,A′) ≤ ε.

Proof Membership in PSPACE: We non-deterministically
generate an automatonA′ with n states and test (in PSPACE,
as shown in Lemma 1) that dP (A,A′) ≤ ε. This shows the
problem is in NPSPACE = PSPACE.

PSPACE-hardness: We use a reduction from the problem
of checking universality of anNFAA = (Q, δ, I , F)overΣ ,
i.e. from checking whether L(A) = Σ∗, which is PSPACE-
complete. First, for a reason that will become clear later, we
test ifA accepts all words overΣ of length 0 and 1,which can
be done in polynomial time. It holds that L(A) = Σ∗ iff there
is a 1-state NFA A′ s.t. dPExp(A,A′) ≤ 0. (PExp is defined
in Sect. 2.) The implication from left to right is clear:A′ can
be constructed as A′ = ({q}, {q a−→ q | a ∈ Σ}, {q}, {q})).
To show the reverse implication, we note that we have tested
that {ε}∪Σ ⊆ L(A). Since the probability of any word from
{ε}∪Σ ⊆ L(A) inPExp is nonzero, the only 1-stateNFA that
processes those words with zero error is the NFAA′ defined
above. Because the language of A′ is L(A′) = Σ∗, it holds
that dPExp(A,A′) ≤ 0 iff L(A) = Σ∗. ��

The notions defined above do not distinguish between
introducing a false positive (A′ accepts a word w /∈
L(A)) or a false negative (A′ rejects a word w ∈ L(A))
answers. To this end, we define over-approximating and
under-approximating reductions as reductions for which the
conditions L(A) ⊆ L(A′) and L(A) ⊇ L(A′) hold.

A naïve solution to the reductions would enumerate all
NFAs A′ of sizes from 0 up to k (resp. |A|), for each of
them compute dP (A,A′), and take an automaton with the
smallest probabilistic distance (resp. a smallest one satisfying

123

Approximate reduction of finite automata for high-speed network intrusion detection

Algorithm 1: A greedy size-driven reduction
Input : NFA A = (Q, δ, I , F), PA P , n ≥ 1
Output: NFA A′, ε ∈ R s.t. |A′| ≤ n and dP (A,A′) ≤ ε

1 V ← ∅;
2 for q ∈ Q in the order �A,label(A,P) do
3 V ← V ∪ {q}; A′ ← reduce(A, V);
4 if |A′| ≤ n then break
5 return A′, ε = error(A, V , label(A,P));

the restriction on dP (A,A′)). Obviously, this approach is
computationally infeasible.

4 A heuristic approach to approximate
reduction

In this section, we introduce two techniques for approxi-
mate reduction of NFAs that avoid the need to iterate over
all automata of a certain size. The first approach is based on
under-approximating the automata by removing states—we
call it the pruning reduction—while the second approach
is based on over-approximating the automata by adding
self-loops to states and removing redundant states—we call
it the self-loop reduction. Finding an optimal automaton
using these reductions is also PSPACE-complete, but more
amenable to heuristics like greedy algorithms. We start with
introducing two high-level greedy algorithms, one for the
size- and one for the error-driven reduction, and follow by
showing their instantiations for the pruning and the self-loop
reduction.A crucial role in the algorithms is played by a func-
tion that labels states of the automata by an estimate of the
error that will be caused when some of the reductions is
applied at a given state.

4.1 A general algorithm for size-driven reduction

Algorithm 1 shows a general greedy method for performing
the size-driven reduction. In order to use the same high-
level algorithm in both directions of reduction (over-/under-
approximating), it is parameterized with the functions: label,
reduce, and error. The real intricacy of the procedure is
hidden inside these three functions. Intuitively, label(A,P)

assigns every state of anNFAA an approximation of the error
that will be caused wrt the PA P when a reduction is applied
at this state, while the purpose of reduce(A, V) is to create
a new NFAA′ obtained fromA by introducing some error at
states from V .5 Further, error(A, V , label(A,P)) estimates

5 Weemphasize that this does notmean that states fromV will be simply
removed from A—the performed operation depends on the particular
reduction.

the error introduced by the application of reduce(A, V), pos-
sibly in amore precise (and costly)way than by just summing
the concerned error labels: Such a computation is possible
outside of the main computation loop. We show instantia-
tions of these functions later, when discussing the reductions
used. Moreover, the algorithm is also parameterized with
a total order �A,label(A,P) that defines which states ofA are
processed first and which are processed later. The ordering
may take into account the pre-computed labelling. The algo-
rithm accepts an NFA A, a PA P , and n ∈ N and outputs
a pair consisting of an NFA A′ of the size |A′| ≤ n and an
error bound ε such that dP (A,A′) ≤ ε.

The main idea of the algorithm is that it creates a set V
of states where an error is to be introduced. V is constructed
by starting from an empty set and adding states to it in the
order given by �A,label(A,P), until the size of the result of
reduce(A, V) has reached the desired bound n (in our set-
ting, reduce is always antitone, i.e. for V ⊆ V ′, it holds
that |reduce(A, V)| ≥ |reduce(A, V ′)|). We now define the
necessary condition for label, reduce, and error that makes
Algorithm 1 correct.

Condition C1 holds if for every NFAA, PAP , and a set V ⊆
Q[A], we have that

(a) error(A, V , label(A,P)) ≥ dP (A, reduce(A, V)),
(b) |reduce(A, Q[A])| ≤ 1, and
(c) reduce(A,∅) = A.

C1(a) ensures that the error computed by the reduction
algorithm indeed over-approximates the exact probabilistic
distance,C1(b) is a boundary condition for the case when the
reduction is applied at every state of A, and C1(c) ensures
that when no error is to be introduced at any state, we obtain
the original automaton.

Lemma 4 Algorithm 1 is correct if C1 holds.

Proof Follows straightforwardly from Condition C1. ��

4.2 A general algorithm for error-driven reduction

In Algorithm 2, we provide a high-level method of com-
puting the error-driven reduction. The algorithm is in many
ways similar to Algorithm 1; it also computes a set of
states V where an error is to be introduced, but an impor-
tant difference is that we compute an approximation of the
error in each step and only add q to V if it does not raise the
error over the threshold ε. Note that the error does not need
to be monotone, so it may be advantageous to traverse all
states from Q and not terminate as soon as the threshold is
reached. The correctness of Algorithm 2 also depends onC1.

Lemma 5 Algorithm 2 is correct if C1 holds.

Proof Follows straightforwardly from Condition C1. ��

123

M. Češka et al.

Algorithm 2: A greedy error-driven reduction.
Input : NFA A = (Q, δ, I , F), PA P , ε ∈ 〈0, 1〉
Output: NFA A′ s.t. dP (A,A′) ≤ ε

1 	 ← label(A, P);
2 V ← ∅;
3 for q ∈ Q in the order �A,label(A,P) do
4 e ← error(A, V ∪ {q},);
5 if e ≤ ε then V ← V ∪ {q}
6 return A′ = reduce(A, V);

4.3 Pruning reduction

The pruning reduction is based on identifying a set of states
to be removed from an NFA A, under-approximating the
language ofA. In particular, forA = (Q, δ, I , F), the prun-
ing reduction finds a set R ⊆ Q and restricts A to Q\R,
followed by removing useless states, to construct a reduced
automatonA′ = trim(A|Q\R). Note that the natural decision
problem corresponding to this reduction is also PSPACE-
complete.

Lemma 6 Consider an NFA A, a PA P , a bound on the
number of states n ∈ N, and an error bound ε ∈ 〈0, 1〉.
It is PSPACE-complete to determine whether there exists
a subset of states R ⊆ Q[A] of size |R| = n such that
dP (A,A|R) ≤ ε.

Proof Membership in PSPACE: We non-deterministically
generate a subset R of Q[A] having n states and test (in
PSPACE, as shown in Lemma 1) that dP (A,A|R) ≤ ε. This
shows the problem is in NPSPACE = PSPACE.

PSPACE-hardness:Weuse a reduction from thePSPACE-
complete problem of checking universality of an NFA A =
(Q, δ, I , F) over Σ . Consider a symbol x /∈ Σ . Let us con-
struct an NFA A′ over Σ ∪ {x} s.t. L(A′) = x∗.L(A).
A′ is constructed by adding a fresh state qnew to A that
can loop over x and make a transition to any initial state
of A over x : A′ = (Q �{qnew}, δ ∪ {qnew x−→ q | q ∈
I ∪ {qnew}}, I ∪ {qnew}, F). We set n = |A′| + 1. Fur-
ther, we also construct an (n + 1)-state NFA B accepting
the language xn .Σ∗ defined as B = (QB, δB, {q1}, {qn+1})
where QB = {q1, . . . , qn+1} and δB = {qi x−→ qi+1 | 1 ≤
i ≤ n} ∪ {qn+1

a−→ qn+1 | a ∈ Σ}. Moreover, let P be
a PA representing a distribution PrP that is defined for each
w ∈ (Σ ∪ {x})∗ as

PrP (w) =

⎧
⎪⎨

⎪⎩

μ|w′|+1 for w = xn .w′, w′ ∈ Σ∗,
and μ = 1

|Σ |+1 ,

0 otherwise.

(3)

Note that PrP (xn .w) = PrPExp(w) for w ∈ Σ∗, and
PrP (u) = 0 for u /∈ xn .Σ∗ (P can be easily con-
structed from PExp.) Also note that B accepts exactly those
words w such that PrP (w) �= 0 and that PrP (L(B)) =
1. Using the automata defined above, we construct an
NFA C = A′ ∪ B where the union of two NFAs is
defined as A1 ∪ A2 = (Q[A1] � Q[A2], δ[A1] � δ[A2],
I [A1] � I [A2], F[A1] � F[A2]). NFA C has 2n states, the
language of C is L(C) = x∗.L(A) ∪ xn .Σ∗ and its probabil-
ity is PrP (L(C)) = 1.

The important property of C is that if there exists a set
R ⊆ Q[C] of the size |R| = n s.t. dP (C, C|R) ≤ 0, then
L(A) = Σ∗. The property holds because since |Q[A′]| =
n−1, whenwe remove n states from C, at least one state from
Q[B] is removed, making the whole subautomaton of C cor-
responding to B useless, and, therefore, L(C|R) ⊆ x∗.L(A).
Because dP (C, C|R) ≤ 0, we know that PrP (L(C|R)) = 1, so
xn .Σ∗ ⊆ x∗.L(A) = L(C|R) and, therefore, L(A) = Σ∗.
For the other direction, if L(A) = Σ∗, then there exists a set
R ⊆ Q[A′] ∪ Q[B] of the size |R| = n s.t. dP (C, C|R) ≤ 0.
(In particular, R can be such that R ⊆ Q[B].) ��

Although Lemma 6 shows that the pruning reduction is as
hard as a general reduction (cf. Lemma 3), the pruning reduc-
tion is more amenable to using heuristics like the greedy
algorithms from Sects. 4.1 and 4.2. We instantiate reduce,
error, and label in these high-level algorithms in the follow-
ing way (the subscript p stands for pruning):

reducep(A, V) = trim(A|Q\V),

errorp(A, V ,) = min
V ′∈�V �p

∑ {
	(q) | q ∈ V ′} ,

where �V �p is defined in the rest of this paragraph: Because
of the use of trim in reducep, for a pair of sets V , V ′
s.t. V ⊂ V ′, it holds that reducep(A, V) may, in general,
yield the same automaton as reducep(A, V ′). Therefore, in
order to obtain a tight approximation, we wish to compute
the least error that is obtained when removing the states
in V . We define a partial order �p on 2Q as V1 �p V2
iff reducep(A, V1) = reducep(A, V2) and V1 ⊆ V2, and use
�V �p to denote the set of minimal elements of the set of
elements that are smaller than V (wrt �p). The value of the
approximation errorp(A, V ,) is therefore the minimum of
the sum of errors over all sets from �V �p.

Note that the size of �V �p can again be exponential, and
thus we employ a greedy approach for guessing an opti-
mal V ′. Clearly, this cannot affect the soundness of the
algorithm, but only decreases the precision of the bound
on the distance. Our experiments indicate that for automata
appearing in NIDSes, this simplification has typically only a
negligible impact on the precision of the bounds.

For computing the state labelling, we provide the follow-
ing three functions, which differ in the precision they provide

123

Approximate reduction of finite automata for high-speed network intrusion detection

and the difficulty of their computation (naturally, more pre-
cise labellings are harder to compute): label1p, label

2
p, and

label3p. Given an NFA A and a PA P , they generate the
labellings 	1p, 	

2
p, and 	3p, respectively, defined as

	1p(q) =
∑ {

PrP (L�

A(q ′))
∣
∣ q ′ ∈ reach({q}) ∩ F

}
,

	2p(q) = PrP
(
L�

A(F ∩ reach(q))
)

,

	3p(q) = PrP
(
L�

A(q).LA(q)
)

.

A state label 	(q) approximates the error of the words
removed from L(A) when q is removed. More concretely,
	1p(q) is a rough estimate saying that the error can be
bounded by the sum of probabilities of the banguages of
all final states reachable from q. (In the worst case, all those
final states might become unreachable.) Note that 	1p(q) (1)
counts the error of a word accepted in two different final
states of reach(q) twice and (2) it also considers words that
are accepted in some final state in reach(q) without going
through q. The labelling 	2p deals with (1) by computing
the total probability of the banguage of the set of all final
states reachable from q, and the labelling 	3p in addition
also deals with (2) by only considering words that traverse
through q. (They can, however, be accepted in some final
state not in reach(q) by a run completely disjoint from q and
reach(q) ∩ F , so even 	3p can still be imprecise.) Note that if
A is unambiguous, then 	1p = 	2p.

Each state labelling is given as the probability (or the sum
of probabilities in the case of 	1p) of the language related to q.
Therefore, when computing the particular label of q, we first
modify A to obtain A′ accepting the language related to the
labelling. Then, we compute the value of PrP (L(A′)) using
the algorithm fromSect. 3.1. Recall that this step is in general
costly, due to the determinization/disambiguation ofA′. The
key property of the labelling computation resides in the fact
that if A is composed of several disjoint sub-automata, the
automaton A′ is typically much smaller than A and thus
the computation of the label is considerably less demanding.
Since the automata appearing in regex matching for NIDS
are composed of the union of “tentacles”, the particular A′s
are very small, which enables an efficient component-wise
computation of the labels.

The following lemma states the correctness of using the
pruning reduction as an instantiation of Algorithms 1 and 2
and also the relation among 	1p, 	

2
p, and 	3p.

Lemma 7 For every x ∈ {1, 2, 3}, the functions reducep,
errorp, and labelxp satisfyC1. Moreover, consider an NFAA,
a PA P , and let 	xp = labelxp(A,P) for x ∈ {1, 2, 3}. Then,
for each q ∈ Q[A], we have 	1p(q) ≥ 	2p(q) ≥ 	3p(q).

Proof We start by proving the inequalities 	1p(q) ≥ 	2p(q) ≥
	3p(q) for each q ∈ Q[A], which will then help us prove

the first part of the lemma. The first inequality follows from
the fact that if the banguages of reachable final states are not
disjoint, in the case of 	1p, we may sum probabilities of the
same words multiple times. The second inequality follows
from the inclusion L�

A(q).LA(q) ⊆ L�

A(F ∩ reach(q)).
Second, we prove that the functions reducep, errorp, and

labelxp satisfy the properties of C1:

– C1(a): In order to show the inequality

errorp(A, V , labelxp(A,P)) ≥ dP (A, reducep(A, V)),

we prove it for 	3p = label3p(A,P); the rest follows from
	1p(q) ≥ 	2p(q) ≥ 	3p(q), which is proved above.
Consider some set of states V ⊆ Q[A] and a set V ′ ∈
�V �p s.t. for any V ′′ ∈ �V �p, it holds that∑{	3p(q) | q ∈
V ′} ≤ ∑{	3p(q) | q ∈ V ′′}. We have

L(A)� L(reducep(A, V))

= L(A)� L(reducep(A, V ′)) �def. of �p�

= langofA\L(reducep(A, V ′))
�L(A) ⊇ L(reducep(A, V ′))�

⊆
⋃

q∈V ′
L�

A(q).LA(q). �def. of reducep�

(4)

Finally, using (4), we obtain

dP (A, reducep(A, V))

= PrP (L(A)� L(reducep(A, V ′)))
�def. of dP�

≤
∑

q∈V ′
PrP (L�

A(q).LA(q)) �(4)�

=
∑

{	3p(q) | q ∈ V ′} �def. of 	3p�

= min
V ′′∈�V �p

∑
{	3p(q) | q ∈ V ′′} �def. of V ′�

= errorp(A, V , 	3p). �def. of errorp�

– C1(b): |reducep(A, Q[A])| ≤ 1 because

|reducep(A, Q[A])| = |trim(A|∅)| = 0.

– C1(c): reducep(A,∅) = A since

reducep(A,∅) = trim(A|Q[A]) = A.

(We assume that A is trimmed at the input.) ��

123

M. Češka et al.

4.4 Self-loop reduction

The main idea of the self-loop reduction is to over-approxi-
mate the language of A by adding self-loops over every
symbol at selected states. Thismakes some states ofA redun-
dant, allowing them to be removed without introducing any
more error. Given an NFA A = (Q, δ, I , F), the self-loop
reduction searches for a set of states R ⊆ Q, which will have
self-loops added, and removes other transitions leading out of
these states, making some states unreachable. The unreach-
able states are then removed.

Formally, let sl(A, R) be the NFA (Q∪{s}, δ′, I , F∪{s})
where s /∈ Q and the transition function δ′ is defined such
that δ′(s, a) = {s} and, for all states p ∈ Q and symbols
a ∈ Σ , δ′(p, a) = (δ(p, a)\R) ∪ {s} if δ(p, a) ∩ R �= ∅
and δ′(p, a) = δ(p, a) otherwise. Similarly to the pruning
reduction, the natural decision problem corresponding to the
self-loop reduction is also PSPACE-complete.

Lemma 8 Consider an NFA A, a PA P , a bound on the
number of states n ∈ N, and an error bound ε ∈ 〈0, 1〉.
It is PSPACE-complete to determine whether there exists
a subset of states R ⊆ Q[A] of size |R| = n such that
dP (A, sl(A, R)) ≤ ε.

Proof Membership in PSPACE can be proved in the same
way as in the proof of Lemma 6.

PSPACE-hardness: We reduce from the PSPACE-comp-
lete problem of checking universality of an NFA A =
(Q, δ, I , F). First, we check whether I [A] �= ∅. We have
that L(A) = Σ∗ iff there exists a set of states R ⊆ Q of the
size |R| = |Q| such that dPExp(A, sl(A, R)) ≤ 0. (Note that
this means that a self-loop is added to every state of A.) ��

The required functions in the error- and size-driven reduc-
tion algorithms are instantiated in the following way (the
subscript sl stands for self-loop):

reducesl(A, V) = trim(sl(A, V)),

errorsl(A, V ,) =
∑

{	(q) | q ∈ min (�V �sl)} ,

where �V �sl is defined in a similar manner as �V �p in the
previous section (using a partial order �sl defined similarly
to �p; the difference is that in this case, the order �sl has
a single minimal element, though).

The functions label1sl, label
2
sl, and label

3
sl compute the state

labellings 	1sl, 	
2
sl, and 	3sl for an NFA A and a PA P , which

are defined as follows:

	1sl(q) = weightP (L�

A(q)),

	2sl(q) = PrP
(
L�

A(q).Σ∗) ,

	3sl(q) = 	2sl(q) − PrP
(
L�

A(q).LA(q)
)

.

In the definitions above, the function weightP (w) for
a PAP = (α, γ , {Δa}a∈Σ) and a wordw ∈ Σ∗ is defined as
weightP (w) = α
 ·Δw ·1 (i.e. similarly as PrP (w) but with
the final weights γ discarded), and weightP (L) for L ⊆ Σ∗
is defined as weightP (L) = ∑

w∈L weightP (w).
Intuitively, the state labelling 	1sl(q) computes the proba-

bility that q is reached from an initial state, so if q is pumped
upwith all possibleword endings, this is themaximumpossi-
ble error introduced by the added word endings. This has the
following sources of imprecision: (1) the probability of some
words may be included twice, e.g. when L�

A(q) = {a, ab},
the probabilities of all words from {ab}.Σ∗ are included
twice in 	1sl(q) because {ab}.Σ∗ ⊆ {a}.Σ∗, and (2) 	1sl(q)

can also contain probabilities of words already accepted on
a run traversing q. The state labelling 	2sl deals with (1) by

considering the probability of the language L�

A(q).Σ∗, and
	3sl deals also with (2) by subtracting from the result of 	2sl
the probabilities of the words that pass through q and are
accepted.

The computation of the state labellings for the self-loop
reduction is done in a similar way as the computation of the
state labellings for the pruning reduction (cf. Sect. 4.3). For a
computation of weightP (L), one can use the same algorithm
as for PrP (L), only the final vector for PA P is set to 1. The
correctness of Algorithms 1 and 2 when instantiated using
the self-loop reduction is stated in the following lemma.

Lemma 9 For every x ∈ {1, 2, 3}, the functions reducesl,
errorsl, and labelxsl satisfyC1. Moreover, consider an NFAA,
a PA P , and let 	xsl = labelxsl(A,P) for x ∈ {1, 2, 3}. Then,
for each q ∈ Q[A], we have 	1sl(q) ≥ 	2sl(q) ≥ 	3sl(q).

Proof First, we prove the inequalities 	1sl(q) ≥ 	2sl(q) ≥
	3sl(q) for each q ∈ Q[A], whichwe then use to prove the first
part of the lemma. We start with the equality weightP (w) =
PrP (w.Σ∗), which follows from the fact that for each state
p of P the sum of probabilities of all words, when consider-
ing p as the only initial state of P , is 1. Then, we obtain the
equality

∑

w∈L�
A(q)

weightP (w) =
∑

w∈L�
A(q)

PrP (w.Σ∗),

which, in turn, implies

	1sl(q) = weightP (L�

A(q)) =
∑

w∈L�
A(q)

PrP
(
w.Σ∗)

≥ PrP
(
L�

A(q).Σ∗)= 	2sl(q).

(5)

For example, for L�

A(q) = {w,wa} where w ∈ Σ∗ and
a ∈ Σ , we have

123

Approximate reduction of finite automata for high-speed network intrusion detection

weightP (L�

A(q)) = weightP ({w,wa})
= weightP (w) + weightP (wa)

= PrP (w.Σ∗) + PrP (wa.Σ∗),
(6)

while

PrP
(
L�

A(q).Σ∗) = PrP
({w,wa}.Σ∗) = PrP

(
w.Σ∗) .

The inequality 	2sl ≥ 	3sl holds trivially.
Second, we prove that the functions reducesl, errorsl, and

labelxsl satisfy the properties of C1:

– C1(a): To show that errorsl(A, V , labelxsl(A,P)) ≥
dP (A, reducesl(A, V)), we prove that the inequality
holds for 	3sl = label3sl(A,P); the rest follows from
	1sl(q) ≥ 	2sl(q) ≥ 	3sl(q) proved above.
Consider some set of states V ⊆ Q[A] and the set
V ′ = min(�V �sl). We can estimate the symmetric dif-
ference of the languages of the original and the reduced
automaton as

L(A)� L(reducesl(A, V))

= L(A)� L(reducesl(A, V ′)) �def. of �sl�

= L(reducesl(A, V ′))\L(A)

�L(A) ⊆ L(reducesl(A, V ′))�

⊆
⋃

q∈V ′
L�

A(q).Σ∗\
⋃

q∈V ′
L�

A(q).LA(q).

�def. of reducesl�

(7)

The last inclusion holds because sl(A, V) adds self-loops
to the states in V , so the newly accepted words are for
sure those that traverse through V , and they are for sure
not those that could be accepted by going through V
before the reduction (but they could be accepted without
touching V , hence the inclusion). We can estimate the
probabilistic distance of A and reducesl(A, V) as

dP (A, reducesl(A, V))

≤ PrP
(⋃

q∈V ′
L�

A(q).Σ∗\
⋃

q∈V ′
L�

A(q).LA(q)

)

�(7)�

≤ PrP
(⋃

q∈V ′

(
L�

A(q).Σ∗\L�

A(q).LA(q)
))

�properties of union and set difference�

≤
∑

q∈V ′
PrP

(
L�

A(q).Σ∗\L�

A(q).LA(q)
)

�union bound�

=
∑

q∈V ′

(
PrP

(
L�

A(q).Σ∗) − PrP
(
L�

A(q).LA(q)
))

�prop. of Pr and the fact that L�

A(q).LA(q) ⊆ L�

A(q).Σ∗�

=
∑

{	3sl(q) | q ∈ min(�V �sl)}
�def. of 	3sl and V ′�
= errorsl(A, V , 	3sl). (8)

– C1(b): |reducesl(A, Q[A])| ≤ 1 because, from the defi-
nition, |reducesl(A, Q[A])| = |trim(sl(A, Q[A]))| ≤ 1.

– C1(c): reducesl(A,∅) = A since

reducesl(A,∅) = trim(sl(A,∅)) = A.

(We assume that A is trimmed at the input.) ��

5 Reduction of NFAs in network intrusion
detection systems

We have implemented our approach in a Python prototype
named Appreal (APProximate REduction of Automata and
Languages)6 and evaluated it on the use case of network
intrusion detection using Snort [50], a popular open-source
NIDS. The version of Appreal used for the evaluation in
the current paper is available as an artefact [11] for the
TACAS’18 artefact virtual machine [22].

5.1 Network traffic model

The reduction we describe in this paper is driven by a prob-
abilistic model representing a distribution over the words
from Σ∗, and the formal guarantees are also wrt this model.
We use learning to obtain a model of network traffic over the
8-bit ASCII alphabet at a given network point. Our model is
created from several gigabytes of network traffic from amea-
suring point of the CESNET Internet provider connected to a
100Gbps backbone link. (Unfortunately, we cannot provide
the traffic dump since it may contain sensitive data.)

Learning a PA representing the network traffic faithfully
is hard. The PA cannot be too specific—although the number
of different packets that can occur is finite, it is still extremely
large. (A conservative estimate assuming the most com-
mon scenario Ethernet/IPv4/TCP would still yield a number
over 210,000.) If we assigned nonzero probabilities only to
the packets from the dump (which are less than 220), the
obtained model would completely ignore virtually all pack-
ets that might appear on the network, and, moreover, the
model would also be very large (millions of states), making
it difficult to use in our algorithms. A generalization of the
obtained traffic is therefore needed.

A natural solution is to exploit results from the area of
PA learning, such as [10,51]. Indeed, we experimented with

6 https://github.com/vhavlena/appreal/tree/tacas18

123

https://github.com/vhavlena/appreal/tree/tacas18

M. Češka et al.

the use of Alergia [10], a learning algorithm that constructs
a PA from a prefix tree (where edges are labelled with multi-
plicities) by merging nodes that are “similar.” The automata
that we obtained were, however, too general. In particular,
the constructed automata destroyed the structure of network
protocols—the merging was too permissive and the general-
ization merged distant states, which introduced loops over a
very large substructure in the automaton. (Such a case usually
does not correspond to the design of network protocols.) As
a result, the obtained PAmore or less represented the Poisson
distribution, having essentially no value for us.

In Sect. 5.2, we focus on the detection of malicious traffic
transmitted over HTTP. We take advantage of this fact and
create a PA representing the traffic while taking into account
the structure of HTTP. We start by manually creating a DFA
that represents the high-level structure of HTTP. Then, we
proceed by feeding 34,191 HTTP packets from our sample
into the DFA, at the same time taking notes about how many
times every state is reached and how many times every tran-
sition is taken. The resulting PA PHTTP (of 52 states) is then
constructed from the DFA and the labels in the obvious way.

The described method yields automata that are much
better than those obtained using Alergia in our exper-
iments. A disadvantage of the method is that it is only
semi-automatic—the basic DFA needed to be provided by
an expert. We have yet to find an algorithm that would suit
our needs for learning more general network traffic.

5.2 Evaluation

We start this section by introducing the experimental setting,
namely, the integration of our reduction techniques into the
tool chain implementing efficient regex matching, the con-
crete settings of Appreal, and the evaluation environment.
Afterwards, we discuss the results evaluating the quality of
the obtained approximate reductions as well as of the pro-
vided error bounds. Finally, we present the performance of
our approach and discuss its key aspects. We selected the
most interesting results demonstrating the potential as well
as the limitations of our approach.

General setting. Snort detects malicious network traffic
based on rules that contain conditions. The conditions take
into consideration, among others, network addresses, ports,
or Perl compatible regular expressions (PCREs) that the
packet payload should match. In our evaluation, we select
a subset of Snort rules, extract the PCREs from them, and
use Netbench [45] to transform them into a single NFA A.
Before applying Appreal, we use the state-of-the-art NFA
reduction tool Reduce [38] to reduce A. Reduce per-
forms a language-preserving reduction ofA using advanced
variants of simulation [37]. (In the experiment reported in
Table 3, we skip the use of Reduce at this step as discussed

later in the performance evaluation.) The automaton ARed

obtained as the result of Reduce is the input of Appreal,
which performs one of the approximate reductions fromSect.
4 wrt the traffic model PHTTP, yielding AApp. After the
approximate reduction, we, one more time, use Reduce and
obtain the result A′.

Settings of Appreal In the use case of NIDS pre-filtering,
it may be important to never introduce a false negative, i.e.
to never drop a malicious packet. Therefore, we focus our
evaluation on the self-loop reduction (Sect. 4.4). In particular,
we use the state labelling function label2sl, since it provides a
good trade-off between the precision and the computational
demands. (Recall that the computation of label2sl can exploit
the “tentacle” structure of the NFAs we work with.) We give
more attention to the size-driven reduction (Sect. 4.1) since,
in our setting, a bound on the available FPGA resources is
typically given and the task is to create an NFA with the
smallest error that fits inside. The order �A,	2sl

over states

used in Sect. 4.1 and Sect. 4.2 is defined as s �A,	2sl
s′ ⇔

	2sl(s) ≤ 	2sl(s
′).

Evaluation environment All experiments ran on a 64-bit
Linux Debian workstation with the Intel Core(TM) i5-661
CPU running at 3.33GHz with 16GiB of RAM.

Description of tables In the caption of every table, we pro-
vide the name of the input file (in the directory regexps/
tacas18/ of the repository of Appreal) with the selection
of Snort regexes used in the particular experiment, together
with the type of the reduction (size- or error-driven). All
reductions are over-approximating (self-loop reduction). We
further provide the size of the input automaton |A|, the size
after the initial processing by Reduce (|ARed|), and the time
of this reduction (time(Reduce)). Finally, we list the times of
computing the state labelling label2sl onARed (time(label2sl)),
the exact probabilistic distance (time(Exact)), and also the
number of look-up tables (LUTs(ARed)) consumed on the
targeted FPGA (Xilinx Virtex 7 H580T) when ARed was
synthesized (more on this in Sect. 5.3). The meaning of the
columns in the tables is the following:

k/ε is the parameter of the reduction. In partic-
ular, k is used for the size-driven reduction
and denotes the desired reduction ratio k =

n
|ARed| for an input NFA ARed and the

desired size of the output n. On the other
hand, ε is the desired maximum error on
the output for the error-driven reduction.

|AApp| shows the number of states of the automa-
ton AApp after the reduction by Appreal
and the time the reduction took. (We omit it
when it is not interesting.)

123

Approximate reduction of finite automata for high-speed network intrusion detection

Table 1 Results for the
http-malicious regex,
|Amal| = 249, |ARed

mal| = 98,
time(Reduce) = 3.5s,
time(label2sl) = 38.7s,
time(Exact) = 3.8–6.5 s, and
LUTs(ARed

mal) = 382

k |AApp
mal| |A′

mal| Error Exact Traffic LUTs
bound error error

(a) Size-driven reduction

0.1 9 (0.65 s) 9 (0.4 s) 0.0704 0.0704 0.0685 –

0.2 19 (0.66 s) 19 (0.5 s) 0.0677 0.0677 0.0648 –

0.3 29 (0.69 s) 26 (0.9 s) 0.0279 0.0278 0.0598 154

0.4 39 (0.68 s) 36 (1.1 s) 0.0032 0.0032 0.0008 –

0.5 49 (0.68 s) 44 (1.4 s) 2.8e−05 2.8e−05 4.1e−06 –

0.6 58 (0.69 s) 49 (1.7 s) 8.7e−08 8.7e−08 0.0 224

0.8 78 (0.69 s) 75 (2.7 s) 2.4e−17 2.4e−17 0.0 297

ε |AApp
mal| |A′

mal| Error Exact Traffic
bound error error

(b) Error-driven reduction

0.08 3 3 0.0724 0.0724 0.0720

0.07 4 4 0.0700 0.0700 0.0683

0.04 35 32 0.0267 0.0212 0.0036

0.02 36 33 0.0105 0.0096 0.0032

0.001 41 38 0.0005 0.0005 0.0003

1e−04 47 41 7.7e−05 7.7e−05 1.2e−05

1e−05 51 47 6.6e−06 6.6e−06 0.0

|A′| contains the number of states of the NFAA′
obtained after applying Reduce on AApp

and the time used by Reduce at this step
(omitted when not interesting).

Error bound shows the estimation of the error of A′ as
determined by the reduction itself, i.e. it is
the probabilistic distance computed by the
corresponding function error from Sect. 4.

Exact error contains the values of dPHTTP(A,A′) that
we computed after the reduction in order
to evaluate the precision of the result given
in Error bound. The computation of this
value is very expensive (time(Exact)) since
it inherently requires determinization of the
whole automaton A. We do not provide it
in Table 3 (presenting the results for the
automaton Abd with 1,352 states) because
the determinization ran out ofmemory. (The
step is not required in the reduction pro-
cess.)

Traffic error shows the error that we obtained when
compared A′ with A on an HTTP traffic
sample, in particular the ratio of packets
misclassified by A′ to the total number of
packets in the sample (242,468). Compar-
ing Exact error with Traffic error gives
us a feedback about the fidelity of the traf-

fic model PHTTP. We note that there are
no guarantees on the relationship between
Exact error and Traffic error.

LUTs is the number of LUTs consumed by A′
when synthesized into the target FPGA.
Hardware synthesis is a costly step, there-
fore we provide this value only for selected
interesting NFAs.

5.2.1 Approximation errors

Table 1 presents the results of the self-loop reduction for the
NFA Amal describing regexes from http-malicious.
We can observe that the differences between the upper
bounds on the probabilistic distance and its real value are
negligible (typically in the order of 10−4 or less).We can also
see that the probabilistic distance agrees with the traffic error.
This indicates a good quality of the trafficmodel employed in
the reduction process. Further, we can see that our approach
can provide useful trade-offs between the reduction error and
the reduction factor. Finally, Table 1b shows that a significant
reduction is obtained when the error threshold ε is increased
from 0.04 to 0.07.

Table 2 presents the results of the size-driven self-
loop reduction for NFA Aatt describing http-attacks
regexes. We can observe that the error bounds provide again
a very good approximation of the real probabilistic distance.

123

M. Češka et al.

Table 2 Results for the http-attacks regex, size-driven reduction,
|Aatt| = 142, |ARed

att| = 112, time(Reduce) = 7.9s, time(label2sl) =
28.3min, time(Exact) = 14.0–16.4min

k |AApp
att| |A′

att| Error Exact Traffic
bound error error

0.1 11 (1.1s) 5 (0.4s) 1.0 0.9972 0.9957

0.2 22 (1.1s) 14 (0.6s) 1.0 0.8341 0.2313

0.3 33 (1.1s) 24 (0.7s) 0.081 0.0770 0.0067

0.4 44 (1.1s) 37 (1.6s) 0.0005 0.0005 0.0010

0.5 56 (1.1s) 49 (1.2s) 3.3e−06 3.3e−06 0.0010

0.6 67 (1.1s) 61 (1.9s) 1.2e−09 1.2e−09 8.7e−05

0.7 78 (1.1s) 72 (2.4s) 4.8e−12 4.8e−12 1.2e−05

0.9 100 (1.1s) 93 (4.7s) 3.7e−16 1.1e−15 0.0

On the other hand, the difference between the probabilistic
distance and the traffic error is larger than that for Amal.
Since all experiments use the same probabilistic automaton
and the same traffic, this discrepancy is accounted to the dif-
ferent set of packets that are incorrectly accepted by ARed

att.
If the probability of these packets is adequately captured in
the traffic model, the difference between the distance and
the traffic error is small and vice versa. This also explains
an even larger difference in Table 3 (presenting the results
for Abd constructed from http-backdoor regexes) for
k ∈ 〈0.2, 0.4〉. Here, the traffic error is very small and caused
by a small set of packets (approx. 70), whose probability is
not correctly captured in the traffic model. Despite this prob-
lem, the results clearly show that our approach still provides
significant reductions while keeping the traffic error small:
about a fivefold reduction is obtained for the traffic error
0.03% and a tenfold reduction is obtained for the traffic error
6.3%. We discuss the practical impact of such a reduction in
Sect. 5.3.

5.2.2 Performance of the approximate reduction

In all our experiments (Tables 1, 2, 3), we can observe that
the most time-consuming step of the reduction process is
the computation of state labellings. (It takes at least 90% of
the total time.) The crucial observation is that the structure
of the NFAs fundamentally affects the performance of this
step. Although after Reduce, the size of Amal is very sim-
ilar to the size of Aatt, computing label2sl takes more time
(28.3min vs. 38.7 s). The key reason behind this slowdown
is the determinization (or alternatively disambiguation) pro-
cess required by the product construction underlying the state
labelling computation (cf. Sect. 4.4). For Aatt, the process
results in a significantly larger product when compared to the
product forAmal. The size of the product directly determines
the time and space complexity of solving the linear equation
system required for computing the state labelling.

Table 3 Results for http-backdoor, size-driven reduction,
|Abd| = 1, 352, time(label2sl) = 19.9min, LUTs(ARed

bd) = 2, 266

k |AApp
bd | |A′

bd| Error Traffic LUTs
bound error

0.1 135 (1.2m) 8 (2.6 s) 1.0 0.997 202

0.2 270 (1.2m) 111 (5.2 s) 0.0012 0.0631 579

0.3 405 (1.2m) 233 (9.8 s) 3.4e−08 0.0003 894

0.4 540 (1.3m) 351 (21.7 s) 1.0e−12 0.0003 1,063

0.5 676 (1.3m) 473 (41.8 s) 1.2e−17 0.0 1,249

0.7 946 (1.4m) 739 (2.1m) 8.3e−30 0.0 1,735

0.9 1216 (1.5m) 983 (5.6m) 1.3e−52 0.0 2,033

As explained in Sect. 4, the computation of the state
labelling label2sl can exploit the “tentacle” structure of the
NFAs appearing inNIDSes and thus can be done component-
wise. On the other hand, our experiments reveal that the
use of Reduce typically breaks this structure and thus the
component-wise computation cannot be effectively used.
For the NFA Amal, this behaviour does not have any
major performance impact as the determinization leads to
a moderate-sized automaton and the state labelling compu-
tation takes less than 40s. On the other hand, this behaviour
has a dramatic effect for the NFAAatt. By disabling the ini-
tial application of Reduce and thus preserving the original
structure of Aatt, we were able to speed up the state label
computation from 28.3 to 1.5min. Note that other steps of
the approximate reduction took a similar time as before dis-
abling Reduce and also that the trade-offs between the error
and the reduction factor were similar. Surprisingly, disabling
Reduce caused that the computation of the exact probabilis-
tic distance became computationally infeasible because the
determinization ran out of memory.

Due to the size of the NFA Abd, the impact of disabling
the initial application of Reduce is even more fundamen-
tal. In particular, computing the state labelling took only
19.9min, in contrast to running out of memory when the
Reduce is applied in the first step. (Therefore, the input
automaton is not processed by Reduce in Table 3; we still
give the number of LUTs of its reduced version for compari-
son, though.) Note that the size ofAbd also slows down other
reduction steps (the greedy algorithm and the final Reduce
reduction). We can, however, clearly see that computing the
state labelling is still the most time-consuming step of the
process.

5.3 The real impact in an FPGA-accelerated NIDS

To demonstrate the practical usefulness and impact of the
proposed approximation techniques, we employ the reduced
automata in a real use case from the area of HW-accelerated

123

Approximate reduction of finite automata for high-speed network intrusion detection

deep packet inspection. We consider the framework of [36]
implementing a high-speed NIDS pre-filter in an FPGA. The
crucial challenge is to obtain a pre-filter with a sufficiently
small false positive rate (and no false negatives), while being
able to handle the traffic of current networks operating on
100 Gbps and beyond. The implementation of NFAs per-
forming regex matching in FPGAs uses two types of HW
resources: LUTs, which are used to build the combinational
circuit representing the NFA transition function, and flip-
flops, representing NFA states. In our use case, we omit the
analysis of flip-flop consumption because it is always domi-
nated by the LUT consumption.

In our setting, the amount of resources available for the
FPGA-based regex matching engine is 15,000 LUTs and the
frequency of the engine is 200MHz using a 32-bit-wide data
path. As explained in [36], the engine containing a single unit
(i.e. the singleNFA implementation) can achieve the through-
put of 6.4Gbps (200MHz × 32b). Therefore, 16 units are
required for the desired link speed of 100Gbps and 63 units
are needed to handle 400Gbps. With the given amount of
LUTs, the size of a single NFA is thus bounded by 937
LUTs (15,000/16) for 100Gbps and 238 LUTs for 400Gbps,
respectively. These bounds directly limit the complexity of
regexes the engine can handle.

We now analyse the resource consumption of the match-
ing engine for two automata, http-backdoor (ARed

bd) and
http-malicious (ARed

mal), and evaluate the impact of the
reduction techniques. Recall that the automata represent two
important sets of know network attacks from Snort [50].

– 100Gbps: For this speed, ARed
mal can be used without

any approximate reduction as it is small enough (it has
382 LUTs) to fit in the available space. On the other hand,
ARed

bd without the approximate reduction is way too large
to fit. (It has 2,266 LUTs and thus at most 6 units fit
inside the available space, yielding the throughput of only
38.4Gbps, which is unacceptable.) The column LUTs in
Table 3 shows that using our framework, we are able to
reduceARed

bd such that it uses 894 LUTs (for k = 0.3), and
so all of the 16 needed units fit into the FPGA, yielding
the throughput over 100Gbps and the theoretical error
bound of a false positive ≤ 3.4 × 10−8 wrt the network
traffic model PHTTP.

– 400Gbps: Regex matching at this speed is extremely
challenging. In the case of ARed

bd , the reduction k = 0.1
is required to fit 63 units in the available space. As such
a reduction has error bound almost 1, this solution is
not useful due to a prohibitively high false positive rate.
The situation is better for ARed

mal. In the exact version,
at most 39 units can fit inside the FPGA with the maxi-
mum throughput of 249.6Gbps. On the other hand, when
using our reduced automata, we are able to place 63 units

into the FPGA, each of the size 224 LUTs (k = 0.6), and
achieve a throughput of over 400 Gbps with the theoret-
ical error bound of a false positive ≤ 8.7× 10−8 wrt the
model PHTTP.

6 Conclusion

We have proposed a novel approach for approximate reduc-
tion of NFAs used in network traffic filtering. Our approach
is based on a proposal of a probabilistic distance of the origi-
nal and reduced automaton using a probabilistic model of the
input network traffic, which characterizes the significance of
particular packets. We characterized the computational com-
plexity of approximate reductions based on the described
distance and proposed a sequence of heuristics allowing one
to perform the approximate reduction in an efficient way. Our
experimental results are quite encouraging and show that we
can often achieve a very significant reduction for a negligi-
ble loss of precision. We showed that using our approach,
FPGA-accelerated network filtering on large traffic speeds
can be applied on regexes of malicious traffic where it could
not be applied before.

In the future, we plan to investigate other approximate
reductions of theNFAs,maybe using some variant of abstrac-
tion from abstract regularmodel checking [7], adapted for the
given probabilistic setting. Another important issue for the
future is to develop better ways of learning a suitable proba-
bilistic model of the input traffic.

Acknowledgements We thank Jan Kořenek, Vlastimil Košař, and
Denis Matoušek for their help with translating regexes into automata
and synthesis of FPGA designs, and Martin Žádník for providing us
with the backbone network traffic. We thank Stefan Kiefer for help-
ing us proving the PSPACE part of Lemma 1 and Petr Peringer for
testing our artefact. We also thank the anonymous reviewers for their
useful comments, which improved the quality of the paper. The work
on this paper was supported by the Czech Science Foundation project
16-24707Y, the IT4IXS: IT4Innovations Excellence in Science project
(LQ1602), and the FIT BUT internal project FIT-S-17-4014.

References

1. Angluin, D.: Learning regular sets from queries and counterexam-
ples. Inf. Comput. 75(2), 87–106 (1987). https://doi.org/10.1016/
0890-5401(87)90052-6

2. Baier, C., Kiefer, S., Klein, J., Klüppelholz, S., Müller, D.,Worrell,
J.: Markov chains and unambiguous Büchi automata. In: CAV’16,
pp. 23–42. Springer (2016)

3. Becchi, M., Crowley, P.: A hybrid finite automaton for practical
deep packet inspection. In: CoNEXT’07, p. 1. ACM (2007)

4. Becchi,M., Crowley, P.: An improved algorithm to accelerate regu-
lar expression evaluation. In: ANCS’07, pp. 145–154. ACM (2007)

5. Becchi, M., Wiseman, C., Crowley, P.: Evaluating regular expres-
sion matching engines on network and general purpose processors.
In: Proceedings of the 5th ACM/IEEE Symposium on Architec-

123

https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6

M. Češka et al.

tures for Networking and Communications Systems, ANCS ’09,
pp. 30–39. ACM (2009)

6. Benedikt, M., Lenhardt, R., Worrell, J.: Model checking
Markov chains against unambiguous Büchi automata. CoRR
arXiv:1405.4560v2 (2016)

7. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract
regular (tree) model checking. STTT 14(2), 167–191 (2012)

8. Brodie,B.C., Taylor,D.E., Cytron,R.K.:A scalable architecture for
high-throughput regular-expression patternmatching. In: ISCA’06,
pp. 191–202. IEEE Computer Society (2006)

9. Bustan, D., Grumberg, O.: Simulation-based minimization. ACM
Trans. Comput. Log. 4(2), 181–206 (2003)

10. Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars
by means of a state merging method. In: Proceedings of the Second
International Colloquium on Grammatical Inference and Applica-
tions, ICGI ’94, pp. 139–152. Springer (1994)

11. Češka, M., Havlena, V., Holík, L., Lengál, O., Vojnar, T.: Approx-
imate reduction of finite automata for high-speed network intru-
sion detection. In: Figshare (2018). https://doi.org/10.6084/m9.
figshare.5907055

12. Češka, M., Havlena, V., Holík, L., Lengál, O., Vojnar, T.: Approxi-
mate reduction of finite automata for high-speed network intrusion
detection. In: Proceedings of TACAS’18, LNCS, vol. 10806.
Springer (2018)

13. Champarnaud, J., Coulon, F.: NFA reduction algorithms by means
of regular inequalities. Theor. Comput. Sci. 327(3), 241–253
(2004)

14. Clark, C.R., Schimmel, D.E.: Efficient reconfigurable logic cir-
cuits for matching complex network intrusion detection patterns.
In: FPL’03, Lecture Notes in Computer Science, vol. 2778, pp.
956–959. Springer (2003)

15. Clemente, L.: Büchi automata can have smaller quotients. In:
ICALP’11, Lecture Notes in Computer Science, vol. 6756, pp.
258–270. Springer (2011)

16. Csanky, L.: Fast parallel matrix inversion algorithms. In: 16th
Annual Symposium on Foundations of Computer Science, pp. 11–
12 (1975). https://doi.org/10.1109/SFCS.1975.14

17. Deza,M.M., Deza, E.: Encyclopedia of Distances. Springer, Berlin
(2009)

18. Etessami, K.: A hierarchy of polynomial-time computable simu-
lations for automata. In: CONCUR 2002—Concurrency Theory,
13th International Conference, Brno, Czech Republic, August 20-
23, 2002, Proceedings, Lecture Notes in Computer Science, vol.
2421, pp. 131–144. Springer (2002)

19. Fortune, S., Wyllie, J.: Parallelism in random access machines. In:
Proceedings of the Tenth Annual ACM Symposium on Theory of
Computing, STOC ’78, pp. 114–118. ACM, New York, NY, USA
(1978). https://doi.org/10.1145/800133.804339

20. Gange, G., Ganty, P., Stuckey, P.J.: Fixing the state budget: approx-
imation of regular languages with small DFAs. In: ATVA’17,
Lecture Notes in Computer Science, vol. 10482, pp. 67–83.
Springer (2017)

21. Gawrychowski, P., Jez, A.: Hyper-minimisation made efficient. In:
MFCS’09, LectureNotes in Computer Science, vol. 5734, pp. 356–
368. Springer (2009)

22. Hartmanns, A., Wendler, P.: TACAS 2018 artifact evaluation VM.
In: Figshare (2018). https://doi.org/10.6084/m9.figshare.5896615

23. Hogben, L.: Handbook of Linear Algebra, 2nd edn. CRC Press,
Boca Raton (2013)

24. Hopcroft, J.E.: An N log N algorithm for minimizing states in a
finite automaton. Technical report (1971)

25. Hutchings, B.L., Franklin, R., Carver, D.: Assisting network intru-
sion detection with reconfigurable hardware. In: FCCM’02, pp.
111–120. IEEE Computer Society (2002)

26. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM
J. Comput. 22(6), 1117–1141 (1993)

27. Kaštil, J., Kořenek, J., Lengál, O.: Methodology for fast pattern
matching by deterministic finite automaton with perfect hashing.
In: 2009 12th Euromicro Conference on Digital System Design,
Architectures, Methods and Tools, pp. 823–829 (2009)

28. Kořenek, J., Kobierský, P.: Intrusion detection system intended for
multigigabit networks. In: 2007 IEEE Design and Diagnostics of
Electronic Circuits and Systems, pp. 1–4 (2007)

29. Kumar, S., Chandrasekaran, B., Turner, J.S., Varghese, G.: Curing
regular expressions matching algorithms from insomnia, amnesia,
and acalculia. In: ANCS’07, pp. 155–164. ACM (2007)

30. Kumar, S., Dharmapurikar, S., Yu, F., Crowley, P., Turner, J.S.:
Algorithms to accelerate multiple regular expressions matching
for deep packet inspection. In: SIGCOMM’06, pp. 339–350. ACM
(2006)

31. Kumar, S., Turner, J.S., Williams, J.: Advanced algorithms for
fast and scalable deep packet inspection. In: ANCS’06, pp. 81–
92. ACM (2006)

32. Liu, C., Wu, J.: Fast deep packet inspection with a dual finite
automata. IEEE Trans. Comput. 62(2), 310–321 (2013)

33. Luchaup, D., DeCarli, L., Jha, S., Bach, E.: Deep packet inspection
with DFA-trees and parametrized language overapproximation. In:
INFOCOM’14, pp. 531–539. IEEE (2014)

34. Malcher, A.: Minimizing finite automata is computationally hard.
Theor. Comput. Sci. 327(3), 375–390 (2004)

35. Maletti, A., Quernheim, D.: Optimal hyper-minimization. CoRR
arXiv:1104.3007 (2011)

36. Matoušek, D., Kořenek, J., Puš, V.: High-speed regular expression
matching with pipelined automata. In: 2016 International Con-
ference on Field-Programmable Technology (FPT), pp. 93–100
(2016)

37. Mayr, R., Clemente, L.: Advanced automata minimization. In:
POPL’13, Transactions on Computer Logic, pp. 63–74. ACM
(2013)

38. Mayr, R., et al.: Reduce: A tool for minimizing nondeterminis-
tic finite-word and Büchi automata. http://languageinclusion.org/
doku.php?id=tools (2017). Accessed 30 Sept 2017

39. Mitra, A., Najjar, W.A., Bhuyan, L.N.: Compiling PCRE to FPGA
for accelerating SNORT IDS. In: ANCS’07, pp. 127–136. ACM
(2007)

40. Mohri, M.: A disambiguation algorithm for finite automata and
functional transducers. In: CIAA’12, pp. 265–277. Springer (2012)

41. Mohri, M.: Edit-distance of weighted automata. In: CIAA’02, Lec-
ture Notes in Computer Science, vol. 2608, pp. 1–23. Springer
(2002)

42. Paige, R., Tarjan, R.E.: Three partition refinement algorithms.
SIAM J. Comput. 16(6), 973–989 (1987)

43. Papadimitriou, C.M.: Computational Complexity. Addison-
Wesley, Reading (1994)

44. Parker, A.J., Yancey, K.B., Yancey, M.P.: Regular language dis-
tance and entropy. CoRR arXiv:1602.07715 (2016)

45. Puš, V., Tobola, J., Košař, V., Kaštil, J., Kořenek, J.: Netbench:
framework for evaluationof packet processing algorithms. In: Sym-
posium On Architecture For Networking And Communications
Systems pp. 95–96 (2011)

46. Shützenberger, M.: On the definition of a family of automata. Inf.
Control 4, 245–270 (1961)

47. Sidhu, R.P.S., Prasanna, V.K.: Fast regular expression matching
using FPGAs. In: FCCM’01, pp. 227–238. IEEEComputer Society
(2001)

48. Solodovnikov, V.I.: Upper bounds on the complexity of solving
systems of linear equations. J. Sov.Math. 29(4), 1482–1501 (1985)

49. Tan, L., Sherwood, T.: A high throughput string matching archi-
tecture for intrusion detection and prevention. In: ISCA’05, pp.
112–122. IEEE Computer Society (2005)

50. The Snort Team: Snort. http://www.snort.org. Accessed 30 Sept
2017

123

http://arxiv.org/abs/1405.4560v2
https://doi.org/10.6084/m9.figshare.5907055
https://doi.org/10.6084/m9.figshare.5907055
https://doi.org/10.1109/SFCS.1975.14
https://doi.org/10.1145/800133.804339
https://doi.org/10.6084/m9.figshare.5896615
http://arxiv.org/abs/1104.3007
http://languageinclusion.org/doku.php?id=tools
http://languageinclusion.org/doku.php?id=tools
http://arxiv.org/abs/1602.07715
http://www.snort.org

Approximate reduction of finite automata for high-speed network intrusion detection

51. Thollard, F., Clark, A.: Learning stochastic deterministic regu-
lar languages. In: G. Paliouras, Y. Sakakibara (eds.) Grammatical
Inference: Algorithms and Applications: 7th International Col-
loquium, ICGI 2004, Athens, Greece, October 11–13, 2004.
Proceedings, pp. 248–259. SpringerBerlinHeidelberg,Berlin,Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-30195-0_22

52. Vardi, M.Y.: Automatic verification of probabilistic concurrent
finite state programs. In: SFCS ’85, pp. 327–338. IEEE

53. Yu, F., Chen, Z., Diao, Y., Lakshman, T.V., Katz, R.H.: Fast and
memory-efficient regular expression matching for deep packet
inspection. In: ANCS’06, pp. 93–102. ACM (2006)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/978-3-540-30195-0_22

	Approximate reduction of finite automata for high-speed network intrusion detection
	Abstract
	1 Introduction
	2 Preliminaries
	3 Approximate reduction of NFAs
	3.1 Probabilistic distance
	3.2 Automata reduction using probabilistic distance

	4 A heuristic approach to approximate reduction
	4.1 A general algorithm for size-driven reduction
	4.2 A general algorithm for error-driven reduction
	4.3 Pruning reduction
	4.4 Self-loop reduction

	5 Reduction of NFAs in network intrusion detection systems
	5.1 Network traffic model
	5.2 Evaluation
	5.2.1 Approximation errors
	5.2.2 Performance of the approximate reduction

	5.3 The real impact in an FPGA-accelerated NIDS

	6 Conclusion
	Acknowledgements
	References

