
An Experimental Evaluation of Fault-Tolerant
FPGA-based Robot Controller

Jakub Podivinsky, Jakub Lojda, Zdenek Kotasek
Faculty of Information Technology, Brno University of Technology,

Centre of Excellence IT4Innovations
Bozetechova 2, 612 66 Brno, Czech Republic
{ipodivinsky, ilojda, kotasek}@fit.vutbr.cz

Abstract

Field Programmable Gate Arrays (FPGAs) are be-
coming more popular in various areas. Single Event
Upsets (SEUs) are faults caused by a charged particle
in the configuration memory of SRAM-based FPGAs.
Such a charged particle can cause incorrect behavior in
the whole system. This problem becomes greater if such
a system operates in an environment with increased ra-
diation (e.g. space applications). Lots of techniques to
harden FPGAs against faults exist and new techniques
targeted to FPGA are in scope of many researchers.
One such technique is called Triple Modular Redun-
dancy (TMR). It is important to evaluate these tech-
niques on a real system with a real FPGA. An eval-
uation platform based on an artificial fault injection
and a functional verification for testing fault tolerance
methodologies is introduced in this paper. Parts of our
experimental system are hardened by using TMR and
its experimental evaluation is one of the main parts of
this paper. In this paper, we focus on the TMR fault
tolerance method and change the target functional unit,
on which the method is applied. This allows us to de-
termine the reliability gain obtained through the hard-
ening of a particular functional unit and allows us to
compare the results. We propose experiments with vari-
ous fault injection strategies (multiple and single faults)
and monitor impact of faults on both the electronic and
mechanical parts of the experimental system.

1. Introduction

Field Programmable Gate Arrays (FPGAs) are be-
coming more popular for a number of reasons. SRAM-
based FPGAs can provide hardware implementation
of applications that are often faster than processor-
based implementations and require lower costs than

Application-Specific Integrated Circuits (ASICs) [4].
Moreover, their reconfigurability makes them flexible
almost like processors do and offers us to change imple-
mented application during the life cycle of such a sys-
tem. FPGAs can be used in different areas, e.g. auto-
motive, aerospace or space. SRAM-based FPGAs con-
sist of programmable components (configurable logic
blocks, look-up tables, flip-flops, etc.) and their in-
terconnection. Configuration of FPGA is stored as a
bitstream in the configuration memory. Many FPGAs
use an SRAM memory as their configuration memory.
Sensitivity to faults caused by charged particles is the
problem of FPGAs from the reliability point of view.
A hit of charged particles can lead to the inversion of a
bit in configuration memory which can change imple-
mented behavior of the whole system. This problem is
called Single Event Upset (SEU). This may be a prob-
lem, especially when FPGAs are used in areas with
increased radiation, e.g. space applications [12].

Although 80-99% of SEUs hit unused bits of the
configuration bitstream [4], it is important to harden
FPGA-based systems against faults. Lots of fault tol-
erance techniques targeted to FPGAs exist and new
ones are subject of investigation. The use of spatial
redundancy for hardening user logic against SEUs is
presented in [12]. One of the main approaches of spa-
tial redundancy is Triple Modular Redundancy (TMR),
which many researchers are trying to improve. For
example, paper [14] proposes a new fault tolerance
method targeted to SRAM-based FPGAs. This tech-
nique is based on a heuristic and uses inaccurate mod-
ules in combination with TMR. This approach reduces
the power and area overhead of the hardened design.

Paper [15] presents improved TMR which interest
don’t care bits of LUT configuration bits. These LUTs
are classified to the set of SEU-sensitive and SEU-
insensitive. This improved approach just triplicates

978-1-5386-5710-2/18/$31.00 c©2018 IEEE

IEEE EWDTS, Kazan, Russia, September 14 - 17, 2018 63

sensitive LUTs and reduces the area overhead unlike
the classical TMR approach.

It is important to evaluate fault tolerance tech-
niques targeted to FPGAs. Three main approaches
are presented in [4]: 1) modeling tools, 2) fault em-
ulation testing and 3) accelerated radiation testing.
Authors of [2] present emulation method which em-
ulates effect of SEUs in the configuration of FPGAs.
Presented method is based on combination of simula-
tion and topological analysis of the circuit configured
in FPGA. Methotds based on synthesizable model of
faults are presented in [11]. Authors propose fault in-
jection tool which allows to inject faults to FPGA, but
various synthesizable fault models must be added to
the original design. This method requires modifica-
tions of the original circuit in the VHDL, additional
gates and wires must be inserted. FLIPPER, the evalu-
ation platform based on the fault injection directly into
an physical FPGA without modification of the original
circuit description, is presented in [1]. Thank to the
dynamic reconfiguration, it is possible to read, modify
and write back the configuration memory. FLIPPER
uses two boards with FPGAs, one is the main con-
trol board and second is board where tested circuit is
implemented. The main board control fault injection
which can be driven by the application operating on a
computer. Fault injection can be controller by a ad-
ditional functional unit implemented the same FPGA.
This approach is presented in [6]. The main reason is
the acceleration of the fault impact evaluation. Fault
injection process can be initialized from computer to
which experimental FPGA is connected.

In our previous work, we focused on several archi-
tectures with various fault tolerance methods. Such as
in paper [9], we target a processor based system and
its hardening. In paper [5], we focused on systems gen-
erated with the use of High-Level Synthesis (HLS) and
proposed a mechanism to incorporate fault tolerance
into storage elements and operations through redefini-
tion of data types behavior.

In our last research, we developed the evaluation
platform which allow us to test fault tolerance prop-
erties [8]. The developed platform uses functional ver-
ification and previously developed fault injector [13].
The main advantage of our platform is its ability to
test the impacts of injected faults not only on elec-
tronic controller implemented in FPGA, but also on
the mechanical part controlled by the tested electronic
controller, because lots of electronic systems control the
mechanical part which is an important component of
the whole system. In this paper, triplication (TMR) is
applied on our experimental system which is composed
of robot in a maze and its electronic controller and our

platform is used to analyze the reliability gained. It
should be noted that a great number of fault tolerant
systems are electromechanical applications. As an ex-
ample, the FT systems in planes can be used. That is
why we concentrated on a robot with its controller as
the experimental system.

In our research group, we also investigate new meth-
ods in the area of fault-tolerant systems design automa-
tion. Our aim is to create a fully automated environ-
ment to fault-tolerant systems design and its evalu-
ation. The experiments presented in this paper are
a step towards this new methodology, as it is impor-
tant to understand the behavior of various components
of the system utilizing different proportions of FPGA
primitive types during the presence of faults in these
components.

The paper has the following structure. Section 2
introduces our functional verification-based evaluation
platform and experimental electro-mechanical system.
Experiments and results with multiple and single fault
injection are presented in Section 4. Section 5 contains
the conclusion of this work and presents plans for our
future research.

2. Evaluation Platform and Experi-
mental System

This section briefly describes our evaluation plat-
form for evaluating fault tolerance methodologies
which was presented in journal publication [8].
Our platform is based on functional verification [7]
and standardized Universal Verification Methodology
(UVM) [3]. The task of functional verification is to
check if a hardware system matches a given specifica-
tion. In our case, functional verification is used as a
tool for checking if injected faults caused some discrep-
ancy on the output of the tested system. The platform
is shown in Figure 1. It is composed of several compo-
nents running on a computer and on an FPGA develop-
ment board. The important part of the platform is the
software part of the verification environment which is
running on a computer. The verification environment
observes communication between both parts of the ex-
perimental electro-mechanical system (electronic con-
troller and controlled mechanical part). The electronic
controller is run on an FPGA which is connected to the
simulation of the mechanical part (running on a com-
puter) through the Ethernet interface. Artificial faults
are injected through JTAG interface which is used by
the fault injector [13]. The fault injector uses partial
reconfiguration, it reads specified part of the bitstream
stored in configuration memory, inverts the specified
bit and writes it back to the configuration memory.

64 IEEE EWDTS, Kazan, Russia, September 14 - 17, 2018

Computer

Software Part of

Verification

Environment

Fault

Injector

ML506 Virtex 5 FPGA Board

FPGA with Hardware

Part of Verification

Environment

JTAG

Ethernet

Mechanical

Part

Figure 1. The evaluation platform architec-
ture.

Together with the platform, we need to introduce a
process for verifying fault tolerance properties which is
composed of three phases. The first phase of evalua-
tion process is simulation based verification. Verifica-
tion is completely done in an RTL simulator (Model-
Sim) in this phase. The task of this phase is to check if
the electronic controller operates correctly according to
the given specification. The task of the second phase is
verification of the electronic controller which is imple-
mented into an FPGA. Scenarios which was obtained
during first phase are repeated together artificial faults
injection into FPGA. Previously developed fault injec-
tor is used in this phase. The impact of injected faults
on the behavior of electronic part is monitored in this
phase. The goal of the third phase is the analysisof the
faults which lead to corruption of the mechanical part.
The second and third phases use the FPGA-based ver-
ification environment, where a device under test is run
on the FPGA. The second phase monitors the effect of
faults on communication between the electronic con-
troller an the mechanical part. The third phase checks
the values of sensors on the mechanical part and mon-
itors its behavior.

3. Case Study: Robot in A Maze

Our goal is to demonstrate the proposed platform
and evaluation process on a real electro-mechanical sys-
tem. Our experimental electro-mechanical system was
developed for these purposes. It is composed of a robot
for seeking a path in a maze and its electronic con-
troller implemented in FPGA. The robot controller is
not a very complex system, but it is split into var-
ious components (bus, finite state machines, memo-
ries, etc.) which allow us to evaluate a wide scale of
fault tolerance methodologies. We do not have a real
robot, and, thus, we simulate its behavior. We use the
Player/Stage simulation tool which is able to simulate
robot and its environment. In our case we simulate

the robot in a maze. The simulation tool is running
on a computer from which data must be transfered to
FPGA board. We use Ethernet interface which allows
us to transfer data between the robot in simulation
(computer) and its electronic controller (FPGA).

The main component of the Robot controller [10] is
central bus through which communication between var-
ious functional units is accomplished. Controller con-
sist of 16 functional units, the most important are Posi-
tion Evaluation Unit (PEU) together with the Barrier
Detection Unit (BDU). The main task of BDU is to cal-
culate actual position of robot and also to detect obsta-
cles in the neighborhood. The obtained informations
are stored in the Map Memory Unit (MMU) through
the Map Unit (MU). Path Finding Unit (PFU) imple-
ments the algorithm for seeking path in maze which is
based on informations stored in memory (MMU). The
Engine Control Unit (ECU) controls mechanical parts
of the robot in maze. A control finite state machine
(FSM) and bus wrapper are important accessories of
almost all functional units.

Figure 2 shows a combined FPGA-based verifica-
tion environment for the second and the third phases
of the proposed evaluation process. The verification
environment is composed of two parts: 1) the UVM-
based verification environment and 2) the experimental
electromechanical system (robot in a maze). The veri-
fication environment operates just as an observer which
checks communication of the robot in a maze with the
FPGA without direct intervention. The golden model
is used for the comparison of expected data and really
transfered data. Some discrepancy is indicated as an
error on the output of the electronic controller. On
the other hand, as the third phase, data from sensors
and the correct behavior of the mechanical robot are
monitored.

4. Experiments and Results

In our experiments, we decided to examine the im-
pact of faults on particular components of the robot
controller unit. The experiments comprise the compar-
ison of results obtained from selected unhardened com-
ponents of the controller unit with their hardened ver-
sions. As a method of redundancy insertion, the TMR
was selected. Three components of the robot controller
unit, the PEU, the BDU and the ECU, were selected
for comparison. The reason for this choice was that
the PEU and the BDU components compute the in-
put values for the path-searching algorithm. From this
point of view, these components are very important
and the complete controller unit is function-dependent
on them. The ECU component directly affects the

IEEE EWDTS, Kazan, Russia, September 14 - 17, 2018 65

uvm_environment

uvm_agent

uvm

driver

uvm

monitor u
vm

sc
o

re
b

o
a

rd

uvm

sequence

item

uvm

sequencer

robot
Robot in Maze

(Simulation

Environment)

Fault

Injector

O
u

tp
u

t

W
ra

p
p

e
r

In
p

u
t

W
ra

p
p

e
r

Data From Sensors

Figure 2. The FPGA-based verification envi-
ronment for the second and third phases of
the robot controller evaluation.

movement of the robot, thus failure of this component
would cause the complete controller unit to fail.

In this experimentation, we use our evaluation plat-
form, which is based on a permanent configuration bit-
stream bit-flip, and, thus, we use this type of error in
our evaluation. The experiments were performed with
the usage of two fault injection strategies. The first
strategy was to inject a single fault into an individual
component per verification run before the robot was
started and observe its ability to reach the target po-
sition. The second strategy comprised multiple faults
injections per verification run. In this case, a number
of faults were injected until the first failure propagated
to the controller outputs was observed.

4.1. Multiple Faults Injection

In the multiple faults injection experiment, perma-
nent bit-flips were injected into utilized Look-up Tables
(LUTs) contents with a constant period of 5s. This
period was experimentally chosen based on the system
failure manifestation time. This means that each 5s
only one SEU was injected into the particular compo-
nent of the robot controller unit LUT contents (only
utilized LUT bits are considered) until the robot failed
or reached the target position.

At first, the multiple faults were injected into the
unhardened version of the robot controller. The reason
for this was to find out the behavior of the whole sys-
tem without any fault tolerance method involved. In

this stage, one set of 1000 verification runs was done
for each of the selected components in which faults
were only injected into the particular controller unit
LUTs contents. The statistical results are shown by
the PEU noft, the BDU noft and the ECU noft bars
of the box plot in Figure 3. Box plot shows for each
component the minimum, the first quartile (25%), me-
dian, the second quartile (75%) and maximum of the
numbers of faults injected into FPGA that for each
particular run were enough to manifest a failure on the
controller outputs. As can be seen, each component
has its own level of susceptibility to SEUs.

Figure 3. Box plot shows statistical evaluation
of number of faults injected into FPGA which
led to the electronic failure.

Then, three other robot controller unit designs with
the TMR applied selectively to the PEU, the BDU and
the ECU components were created. Equivalent exper-
iments were repeated with the three new designs in
which only the faults were injected into the particular
hardened component. The bars PEU tmr, BDU tmr
and ECU tmr in the box plot in Figure 3 show the
susceptibility to faults with the TMR applied. As can
be seen, each of the bars representing the hardened ver-
sion is above the unhardened one, therefore, more fault
injections were required to cause a malfunction of the
complete controller unit.

We must note that when multiple faults were in-
jected, the hardened version failed in a smaller number
of cases than the unhardened version. The numbers
of cases in which the complete controller unit failed
while faults were injected into the selected components
are shown in Table 1. As can be seen, the application
of the TMR led up to 93.3% decrease of failure man-
ifestations. We can conclude that the TMR led to a
lower number of electronic failures and also led to the
increased number of faults injected into FPGA which
caused a failure.

Besides the influence of faults on the electronic part
of the system, we also observed its influence on the
mechanical part. The electronic failure usually stopped

66 IEEE EWDTS, Kazan, Russia, September 14 - 17, 2018

Table 1. The impact of multiple faults injected into the unhardened and hardened versions of robot
controller both on the electronic controller and mechanical part.

Monitored impact
PEU BDU ECU

noft tmr noft tmr noft tmr

Electronic OK [−] 656 977 361 917 226 622
Electronic failed [−] 344 23 639 83 774 378

Goal not reached [−] 344 23 639 83 774 378
Collision with wall [−] 0 0 0 0 15 3
Robot stop on place [−] 344 23 639 83 759 375

Reliability improvement [%] 93.3% 87.0% 51.2%

the robot on its position and in some cases the failure
led to a collision with a wall. It can be noted that the
stopping of the robot on its position is a less serious
failure consequence than the collision. Table 1 also
shows the numbers of cases in which the robot crashed
into the wall and the numbers of cases in which the
robot stopped at a place.

4.2. Single Faults Injection

In the case of the single faults injection experiment,
exactly one bit-flip of the utilized LUT contents of a
particular component was injected per verification run
and its impact on the behavior of the whole controller
unit was observed. At first, 1000 verification runs with
the unhardened design of our robot controller unit were
performed. Table 2 shows the numbers of runs that led
to an electronic failure. As can be seen, if the single
faults are injected, the number of failures is signifi-
cantly lower than in the case of multiple faults injec-
tion.

Then, the verification runs with single fault injec-
tions were repeated on the hardened design. Table 2
also shows the numbers of runs in which an injection
into the selected components with the TMR applied
led to a failure (the columns PEU tmr, BDU tmr and
ECU tmr). We believe that the fact the hardened
unit occasionally fails after the single fault injection
is caused by hitting the voter which is needed to in-
terface the particular component with the rest of the
system.

The Figure 4 shows the number of faults which lead
to the failure of the electronic controller. The figure
shows the graphical comparison of the hardened and
unhardened versions. One can see that the BDU com-
ponent is the most vulnerable to faults and this shows
that the BDU is a really important component of the
whole robot controller. One can see, for the hardened
version of the design, the number of failures is lower

for each of the selected components.

Figure 4. Number of faults injected into FPGA
which cause the electronic failure.

As in the previous case, we observed the impact of
faults both on the electronic and the mechanical parts
of the experimental system as well. Not all of the
faults injected into FPGA that caused the electronic
controller failure caused the robot to collide with the
wall. Table 2 also shows the numbers of wall collisions
and cases where the robot stopped during its journey.

5. Conclusions and Future Research

The use of functional verification as a tool for eval-
uation of impact of artificial faults injected into the
configuration of SRAM-based FPGAs was presented
in this paper. Our platform was demonstrated on the
evaluation of the impact of injected faults on the robot
controller which navigates the robot in a maze. The
paper shows experimental results with the hardened
(triplication) along with the unhardened robot con-
troller version. Both single and multiple faults injec-
tion strategies were used. Our experiments show the
benefit of triplication which in the case of the single
fault injections led to a lower number of electronic fail-
ures. We believe the susceptibility of the hardened unit
to the single fault injection is caused by hitting the

IEEE EWDTS, Kazan, Russia, September 14 - 17, 2018 67

Table 2. The impact of single faults injected on the unhardened and hardened versions of robot
controller both on the electronic controller and mechanical part.

Monitored impact
PEU BDU ECU

noft tmr noft tmr noft tmr

Electronic OK [−] 971 1000 813 996 952 990
Electronic failed [−] 29 0 187 4 48 10

Goal not reached [−] 29 0 187 4 48 10
Collision with wall [−] 0 0 5 0 1 0
Robot stop on place [−] 29 0 182 4 47 10

Reliability improvement [%] 100.0% 97.9% 79.2%

voter, which is needed to interface the particular com-
ponent with the rest of the system. In the case of the
multiple faults injection, it is clearly visible that the
triplication led to a lower number of electronic failures,
but experiments have also shown that the number of in-
jected faults which cause a failure is higher than in the
case of the unhardened robot controller. The number
of failures is significantly higher than in the case of the
single fault injections, as in this experiment, multiple
faults were injected during one verification run.

The results presented in this paper are integral part
of our future research in which we will integrate faulty
module recovery into our robot controller, which sig-
nificantly increases the resource utilization, and, thus,
we aim to harden only the most sensitive functional
units of the robot controller. The results obtained in
this research will help us to increase the efficiency of
the reliability method.

As for future research, our goal is to use the re-
configuration as a tool for faulty module recovery. We
expect that the benefit of recovery will be most obvious
in the case of multiple faults injection. This expecta-
tion will be confirmed or refuted by repeating similar
experiments as shown in this paper.

Acknowledgements

This work was supported by The Ministry of
Education, Youth and Sports from the National
Programme of Sustainability (NPU II), the project
IT4Innovations excellence in science – LQ1602, the
BUT project FIT-S-17-3994 and the JU ECSEL
Project SECREDAS (Product Security for Cross Do-
main Reliable Dependable Automated Systems), Grant
agreement No. 783119.

References

[1] M. Alderighi, F. Casini, S. d’Angelo, M. Mancini,
S. Pastore, and G. R. Sechi. Evaluation of Sin-
gle Event Upset Mitigation Schemes for SRAM-based
FPGAs Using the FLIPPER Fault Injection Plat-
form. In Defect and Fault-Tolerance in VLSI Systems,
2007. DFT’07. 22nd IEEE International Symposium
on, pages 105–113. IEEE, 2007.

[2] C. Bernardeschi, L. Cassano, A. Domenici, and
L. Sterpone. Accurate Simulation of SEUs in the Con-
figuration Memory of SRAM-based FPGAs. In Defect
and Fault Tolerance in VLSI and Nanotechnology Sys-
tems (DFT), 2012 IEEE International Symposium on,
pages 115–120. IEEE, 2012.

[3] V. R. Cooper. Getting Started with UVM: A Begin-
ner’s Guide. Austin, TX : Verilab, 2013.

[4] P. Gaillardon. Reconfigurable Logic: Architecture,
Tools, and Applications. Devices, Circuits, and Sys-
tems. CRC Press, 2015.

[5] J. Lojda, J. Podivinsky, and Z. Kotasek. Redundant
Data Types and Operations in HLS and Their use for
a Robot Controller Unit Fault Tolerance Evaluation.
In East-West Design & Test Symposium (EWDTS),
2017 IEEE, pages 273–278. IEEE, 2017.

[6] C. López-Ongil, M. Garcia-Valderas, M. Portela-
Garćıa, and L. Entrena. Autonomous fault emula-
tion: a new fpga-based acceleration system for hard-
ness evaluation. Nuclear Science, IEEE Transactions
on, 54(1):252–261, 2007.

[7] A. Meyer. Principles of Functional Verification. Else-
vier Science, 2003.

[8] J. Podivinsky, O. Cekan, J. Lojda, M. Zachariasova,
M. Krcma, and Z. Kotasek. Functional Verification
based Platform for Evaluating Fault Tolerance Prop-
erties. Microprocessors and Microsystems, 52:145–159,
2017.

[9] J. Podivinsky, J. Lojda, O. Cekan, R. Panek, and
Z. Kotasek. Evaluation Platform for Testing Fault
Tolerance Properties: Soft-core Processor-based Ex-
perimental Robot Controller. In Digital System Design
(DSD), 2018 Euromicro Conference on. IEEE, 2018.

68 IEEE EWDTS, Kazan, Russia, September 14 - 17, 2018

[10] J. Podivinsky, M. Simkova, and Z. Kotasek. Complex
Control System for Testing Fault-Tolerance Method-
ologies. In Proceedings of The Third Workshop ME-
DIAN 2014, pages 24–27. COST, 2014.

[11] S. Rudrakshi, V. Midasala, and S. Bhavanam. Imple-
mentation of fpga based fault injection tool (fito) for
testing fault tolerant designs. IACSIT International
Journal of Engineering and Technology, 4(5):522–526,
2012.

[12] F. Siegle, T. Vladimirova, J. Ilstad, and O. Emam.
Mitigation of Radiation Effects in SRAM-Based FP-
GAs for Space Applications. ACM Comput. Surv.,
47(2):37:1–37:34, Jan. 2015.

[13] M. Straka, J. Kastil, and Z. Kotasek. SEU Simulation

Framework for Xilinx FPGA: First Step Towards Test-
ing Fault Tolerant Systems. In 14th EUROMICRO
Conference on Digital System Design, pages 223–230.
IEEE Computer Society, 2011.

[14] S. Venkataraman, R. Santos, and A. Kumar. A Flex-
ible Inexact tmr Technique for SRAM-based FPGAs.
In Proceedings of the 2016 Conference on Design, Au-
tomation & Test in Europe, pages 810–813. EDA Con-
sortium, 2016.

[15] M. S. Zheng, Z. L. Wang, J. Tu, J. Y. Wang, and
L. J. Li. Reliability Oriented Selective Triple Modular
Redundancy for SRAM-Based FPGAs. In Applied Me-
chanics and Materials, volume 713, pages 1127–1131.
Trans Tech Publ, 2015.

IEEE EWDTS, Kazan, Russia, September 14 - 17, 2018 69

