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Abstract 
 

The paper presents the approach to universal 

stimuli generation for an arithmetic-logic unit (ALU). 

It is not focused only on input data generation, but it is 

possible to generate also expected output in one 

stimulus. The process of generation is based on a 

probabilistic constrained grammar which is designed 

to universally describe stimuli for various circuits. This 

grammar is processed by our framework. The 

experiment in functional verification, which shows the 

quality of generated stimuli, is also presented. 

 

 

1. Introduction 
 

Random stimuli generation is currently a very 

important process of checking the correct behavior of 

various circuits [1]. Complex or also simple circuits 

must be properly tested or verified before real 

deployment to exclude design or implementation 

errors. It is also necessary to verify the correct output 

for expected and unexpected input combinations 

(stimuli). Stimuli are typically randomly constructed 

and may take many forms from binary values on simple 

circuit pins to a complex program in the data memory 

of a processor. 

Each system is unique, and therefore, it requires 

specific input stimuli for its operation. In order to 

verify the correct behavior, it is necessary to create a 

set of test cases (input stimuli and expected outputs) to 

detect any possible mismatches in the circuit. 

Depending on the complexity of the circuit, this 

activity may be quite challenging, and therefore, tools 

that allow to generate random inputs automatically are 

created. These tools are targeted to a specific circuit 

and their use is considerably limited for different 

devices. Also, these tools do not allow the expected 

output to be generated, and further efforts must be 

made to create a reference system [2]. 

For the reasons outlined above, we have focused 

on developing a framework for universal stimuli 

generation that can be used for various circuits. 

The paper is organized as follows. In section 2 our 

previous research is described. In section 3 the related 

work is summarized. Section 4 deals with our 

definition of probabilistic constrained grammar that we 

use for the generation process while section 5 devotes 

to the grammar definition for the arithmetic-logic unit. 

Experimental results are mentioned in section 6 and 

finally in section 7 the paper is concluded. 

 

2. Previous Research 
 

In our previous research, we designed and 

developed a framework for universal stimuli generation 

based on a probabilistic (stochastic) context-free 

grammar [3]. It is a common context-free grammar that 

defines probabilities for its production rules with which 

they are applied. We have extended this grammar by 

restrictive conditions (constraints) and defined the new 

grammar system - Probabilistic Constrained Grammar 

(PCG) [4] that we use in our research. Constraints are 

used to dynamically change the probabilities of 

production rules during the generation. 

We have also defined the architecture of universal 

stimuli generation [5] that is shown in Fig. 1. This 

architecture consists of two input structures 

(Production Rules, Constraints) which are based on 

PCG. The first structure defines the production rules of 

a grammar, while the second structure includes 

constraints for the application of production rules. 

Together these two structures form the resultant 

grammar. Grammar defined in this way is processed by 
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the Generator Core of the framework that assembles 

the resultant stimulus on its output. 

We applied this framework to more complex 

circuits (e.g., RISC (Reduced Instruction Set 

Computer) [6] processors, control unit) to verify the 

possibility of generating stimuli using PCG. We 

verified the quality of obtained stimuli from the point 

of view of the generation speed and the achieved 

coverage [7] in functional verification. 
 

 

Probabilistic Constrained Grammar

Production Rules Constraints

Generator Core

Stimulus

Selection Application Modification

 

Fig. 1: The architecture of universal stimuli generation. 

 
3. Related Work 

 

The current trend in stimulus generation focuses 

primarily on more complex circuits (e.g. processors), 

because it is not trivial to construct a valid stimulus 

(working program). Simpler stimuli, including test 

vectors, can be generated directly in the simulation 

environment where verification takes place (e.g. 

Modelsim tool from Mentor Graphics [8]) or an 

external tool. 

A number of specific stimuli generators exists for 

application-specific processors (ASICs) [9], digital 

signal processors (DSPs) [10], protocol interfaces, field 

programmable gate array (FPGA) converters [11], and 

more. These tools and their approaches are complex 

and their use is limited to the particular system. 

As a universal stimuli generator, MicroGP tool [12] 

can be mentioned which does not only generate stimuli 

but it also finds the most optimal solution of hard 

problems. 

In this paper, we use test stimuli which can be 

obtained directly from the verification environment 

from Modelsim tool for comparison with our approach. 

4. Probabilistic Constrained Grammar 
 

A probabilistic constrained grammar is a pair G: 

G = (H,C); where: 

H is a probabilistic context-free grammar. 

C is an ordered list of constraints for the grammar H. 

A probabilistic context-free grammar is a 5-tuple H: 

H = (N,T,R,S,P); where: 

N is a finite set of non-terminal symbols. 

T is a finite set of terminal symbols, N∩T = 0. 

R is a finite set of production rules with form A→α, 

where AϵN and α ϵ (NυT)*. 

S is the starting non-terminal. 

P is a finite set of probabilities for production rules. 

Constraints restrict the grammar in the application 

of production rules. The constraint is a 5-tuple C: 

C = (RS,RD,P,[RE],[O]); where: 

RS is the activation rule the application of which sets 

this constraint. 

RD is the target rule which probability is modified. 

P is the new probability value. 

RE (optional) is the stop rule which application cancels 

this constraint. 

O (optional) is the count of application of the rule RE 

before canceling this constraint. 

The constraints limit the application of production 

rules for a given non-terminal through probabilities 

which can be modified throughout the generation 

process, and therefore, we are able to control the 

resultant stimulus. 

 

5. Arithmetic-Logic Unit 
 

In general, this paper focuses on the principles of 

random stimuli generation which can be used for many 

simple circuits. It is not just generating input values for 

these circuits, as in our previous work, but we would 

like to show the expressive power of PCG and the 

ability to simultaneously generate as input values as 

output values that will be part of the resultant stimulus. 

Thanks to this, it is possible to check quickly the 

correctness of the output in case of circuit testing or 

functional verification. 

The arithmetic-logic unit (ALU) [13] is our test case 

for which we show the random generation of input 

stimuli and their result for the selected operation. An 

arithmetic logic unit performs arithmetic and bitwise 

operations on integer binary numbers. The symbolic 

representation of ALU is shown in Fig. 2. 
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Fig. 2: The symbolic representation of ALU. 

 

ALU has typically two input operands A and B 

which are N bits long. Its operation is selected by OP 

input bits. The R output represents the result of the 

operation over the operands. ALU can be variously 

complex, therefore, it can contain more input and 

output bits (e.g. status and control bits), and its 

supported operations can be also different in various 

versions.  

In this paper, we limit only to inputs and outputs as 

shown in the figure. Among the operations under 

consideration, we include two arithmetic operations – 

addition with carry (ADD) and subtraction (SUB), and 

four bitwise operations - AND, OR, XOR and NOT. 

However, the principles that we use for the generation 

are applicable to other operations. 

 

5.1.1. Arithmetic operations. In this paper, we show 

the generating of stimuli for the arithmetic addition 

with carry operation. We can divide the process of 

creating production rules into several sections - Input 

values, Logic, and Result. Each section includes 

specific rules that are applied during the generation. 

The most complex section is Logic the production rules 

of which must ensure the correct procedure for 

calculating the result of this operation. The schematic 

representation of these sections is shown in Fig. 3 

which shows also the parts of resultant stimulus. 

 

Stimulus

Input values

OPERATION

OPERAND A

LOGIC

CONSTRAINTS

OPERAND B

RESULT R

 

Fig. 3: The schematic representation of arithmetic 

operation in our framework. 

 

As can be seen in the figure, stimulus is composed 

of four lines which are represented by integer binary 

numbers. The lines are generated sequentially as 

outlined, therefore, it is important to keep the context 

in which the rules were applied. The first line is the 

operation code followed by two operands (the numbers 

which are summed up) and the last line is a final result. 

The bit widths of inputs can be entered arbitrarily 

based on used ALU, e.g. for our ALU 1 bit can be long 

operation, 8 bits long operands, and 8 bits long result. 

The constraints are also shown in the figure, 

because they are involved in the selection of production 

rules. Based on the random generation of input 

operands, certain constraints are set, and therefore, the 

logic is modified – the probabilities of production rules 

are deterministically set to produce an unambiguous 

result. 

In the definition of production rules, each operand is 

divided into N non-terminals (N is equal to operand bit 

width). In our case, the operand A is divided into eight 

bit non-terminals A7-A0, where A7 is the most 

significant bit (MSB) and A0 is the least significant bit 

(LSB). The same applies for the operand B. The rules 

are as follows: 

A -> A7 A6 A5 A4 A3 A2 A1 A0 

B -> B7 B6 B5 B4 B3 B2 B1 B0 

 

Each bit non-terminal A7-A0 can be zero or one, 

therefore, it can take one of the following two terminals 

(comma represents OR, terminals are in quotes): 

A7 -> '0', '1' 

A6 -> '0', '1' 

… 

A0 -> '0', '1' 

 

Using these production rules, we have random value 

in the first operand. At the moment, we have not 

information about a carry bit propagation. The carry bit 

is determined during the generation of the operand B. 

For these purposes, it is necessary to keep the value of 

operand A. Therefore, each bit non-terminal B7-B0 can 

be replaced for non-terminal BiA0 (if Ai were zero), 

BiA1 (if Ai were one), BiA0C (if Ai were zero and a 

carry bit was set) or BiA1C (if Ai were one and a carry 

bit was set). These possibilities have to be reflected in 

production rules: 

B7 -> B7A0, B7A1, B7A0C, B7A1C 

B7A0, B7A1, B7A0C, B7A1C -> '0','1' 

… 
B0 -> B0A0, B0A1, B0A0C, B0A1C 

B0A0, B0A1, B0A0C, B0A1C -> '0','1' 
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It remains to add production rules that will generate 

the final result: 

R -> R7 R6 R5 R4 R3 R2 R1 R0 

R8, R7, …, R0 -> '0', '1' 

 

Now it is known which values the input operands 

have and whether the carry bits have been propagated. 

These rules without any control would generate random 

non-terminals and the result would not reflect the 

operation addition with carry. Therefore, constraints 

have to be utilized. The framework performs the right 

derivations (substitution of the rightmost non-

terminals) for the both operands and result, therefore, 

the substitution will start with the bit A0 to A7, then 

with B0 to B7, and then R0 to R7.  

The B0 does not have a carry bit, therefore, we 

change the probability to zero for two rules with carry 

on the start of generation (S is the default starting non-

terminal): 

cons(->S, B0->B0A0C, 0); 

cons(->S, B0->B0A1C, 0); 

 

The context of the application of the rules for 

operand A have to be stored in operand B, therefore, 

we keep the context by limiting the selection of rules 

for operand B and its corresponding bit: 

cons(A0->'0', B0->B0A1, 0); 

cons(A0->'0', B0->B0A1C, 0); 

cons(A0->'1', B0->B0A0, 0); 

cons(A0->'1', B0->B0A0C, 0); 
 

... 
 

cons(A7->'0', B7->B7A1, 0); 

cons(A7->'0', B7->B7A1C, 0); 

cons(A7->'1', B7->B7A0, 0); 

cons(A7->'1', B7->B7A0C, 0); 

 

After this limitation, we have two rules for each bit 

B7-B1 which can be used after the generation of the 

operand A. The bit B0 have only one deterministic rule 

without the carry bit. After the generation of operand A 

and the bit B0, we are able to determine the carry bit 

(rule) for the following bit B1 and the result for bit R0. 

The same applies for the other bits B2-B6: 

cons(B0A0->'0', R0->'0', 100); 

cons(B0A0->'0', B1->B1A0C, 0); 

cons(B0A0->'0', B1->B1A1C, 0); 

cons(B0A0->'1', R0->'1', 100); 

cons(B0A0->'1', B1->B1A0C, 0); 

cons(B0A0->'1', B1->B1A1C, 0); 

 

cons(B0A1->'0', R0->'1', 100); 

cons(B0A1->'0', B1->B1A0C, 0); 

cons(B0A1->'0', B1->B1A1C, 0); 

cons(B0A1->'1', R0->'0', 100); 

cons(B0A1->'1', B1->B1A0, 0); 

cons(B0A1->'1', B1->B1A1, 0); 
 

... 

 

In this logic, constraints for rules BiA0C and BiA1C 

can be easily completed to obtain the correct result. 

The selection of result bit after applying the rules is 

based on the following Tab. 1 which defines the 

classical addition with carry operation.  
 

Tab. 1: Grammar truth table of addition with carry C. 

Ai bit Bi bit Ri Ci+1  

Ai->'0' BiA0->'0' Ri->'0' 0 

Ai->'0' BiA0->'1' Ri->'1' 0 

Ai->'0' BiA0C->'0' Ri->'1' 0 

Ai->'0' BiA0C->'1' Ri->'0' 1 

Ai->'1' BiA1->'0' Ri->'1' 0 

Ai->'1' BiA1->'1' Ri->'0' 1 

Ai->'1' BiA1C->'0' Ri->'0' 1 

Ai->'1' BiA1C->'1' Ri->'1' 1 

 

The final real result can be seen as in the following 

example: 

0     #OP 

01101001    #A 

10001011    #B 

11110100    #R 

 

This process of creation is useful and usable for 

other arithmetic and bitwise operations. The main 

condition is to cover all possible cases (creation of 

corresponding production rules) which are then used or 

disabled by means of constraints during generation. 

The use of the constraints causes a fact that the defined 

grammar is more deterministic and the output is valid. 

 

5.1.2. Bitwise operations. The process of creation 

grammar for the bitwise operations is very similar as in 

the previous subsection in the case of arithmetic 

operations. The basis is again to maintain the context 

through several production rules and their non-

terminals. The difference is only in the generation of 

results, respectively the limitation of the rules for 

generating the partial bit of the result so that the output 

is correct for the given operation. 
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6. Experimental Results 
 

We performed an experiment in functional 

verification in which we examined the highest coverage 

of the key functions of the presented ALU. Functional 

verification is the process of checking the correctness 

of a system based on comparing its inputs and outputs 

with reference model which implements the same 

specification. We had implemented verification 

environment in which we investigate the valid result of 

the ALU and the code coverage. The code coverage 

measures the system source code through typical 

metrics like statements, branches, expressions, 

conditions, and states. Through this information, we are 

able to determine, when the ALU is sufficiently 

verified. It is a percentage value suitable for 

comparison or different generators. 

The result of our experiment can be seen in Fig. 4. 

From the experiment, it can be seen that there is a 

difference between our generator (USG) and the Build-

in generator of test stimuli in verification environment. 

The both of the generators work on random stimuli 

construction but in our approach we are able to drive 

the generation process to direct the convergence to the 

better results. Verification environment checks also 

corner cases for input data (e.g. all ones or zeros in 

operands and result) and through probability values, we 

are able to increase the ability to generate this 

combinations. Therefore, the USG can hit this coverage 

points faster than only with clean random generation. 

The coverage was 94.91% for USG and 91.63% for 

Built-in generator for 100 stimuli. For 200 stimuli, the 

coverage was balanced for both generators on 94.91%. 
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Fig. 4: The code coverage in functional verification. 

 

7. Conclusions and Future Research 
 

The aim of this paper was to show the possibility of 

generating as input as expected output. Automatic 

generation of random stimuli facilitates the work and 

time to test or verify a designed circuit. We showed on 

an arithmetic logic unit the generation of input and 

output together for which we defined our probabilistic 

constrained grammar. The output stimulus was 

composed of as randomly generated input operands as 

the expected result for this unit. The introduced 

mechanism has been shown on addition with carry 

operation, however, the defined principles are general 

and can be used for other arithmetic or bitwise 

operations, cyclic redundancy check generation, and so 

on. The experiment in functional verification showed 

that this principle is ductile to get better results than 

other ones. 

This work is one of the partial goals for checking 

fault tolerance in Field Programmable Gate Array 

(FPGA). The main goal is to verify the correctness of 

affected system under a fault and to determine the 

importance of each of the configuration memory bits in 

FPGA. The future research will address this topic. 
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