
Majority Type and Redundancy Level Influences
on Redundant Data Types Approach for HLS

Jakub Lojda, Jakub Podivinsky, Zdenek Kotasek, Martin Krcma
Faculty of Information Technology, Brno University of Technology, Centre of Excellence IT4Innovations

Bozetechova 2, 612 66 Brno, Czech Republic
Email: {ilojda, ipodivinsky, kotasek, ikrcma}@fit.vutbr.cz

Abstract—Due to the increasing demand for reliable com-
putation in environments that require electronic systems to
withstand an increased occurrence of faults (e.g. space, aerospace
and medicine), new techniques of the so-called Fault Tolerance
insertion arise. From another perspective, today’s systems have
become incredibly large and complex. Methodologies like High-
Level Synthesis are used to reduce time to market and simplify
the verification of the resulting system. In our research we focus
on an implementation of Fault Tolerance into complex systems
with the usage of High-Level Synthesis. In our approach, we are
using newly designed Data Types that introduce redundancy on
the functional level of an algorithm. In this student paper, our
previously presented technique is extended by another means of
redundancy and also by a new type of voting component. The
systems incorporating various levels of redundancies using our
approach are experimentally tested on the application of a robot
controller. The paper also briefly presents the evaluation process
and investigates its correct settings. The results show that the
bit-based majority function is more suitable for usage with our
Redundant Data Types.

Keywords—High-Level Synthesis, Redundant Data Type, Level
of Redundancy, Voter Component, CatapultC, Fault Tolerance.

I. INTRODUCTION

Some electronic systems require a very high level of relia-
bility. The reason may be because the repair of these systems
is very costly or in some cases even impracticable. Another
reason for high reliability demand are systems whose failure
would cause high economical losses or even could endanger
human health. Two main approaches to high reliable systems
construction exist. The first is the so-called Fault Avoidance
(FA) [1], which is based on a strict selection of reliable compo-
nents, thus increasing the overall system reliability. The second
approach is the so-called Fault Tolerance (FT) [2]. The FT
technique accepts that the system is composed of non-reliable
components while trying to hide this fact and propagate the
correct result in a prescribed time, even in the presence of
faults. FT is based on an incrementation of redundancy, which
can be spatial, temporal or information. Basically, a fault
can be distinguished as permanent or transient (i.e. occurring
only for a certain period of time). In our work, we focus on
simulation of permanent faults mainly, as these faults have the
potential to accumulate during the system operation.

As today’s systems are becoming incredibly large and
complex, methodologies such as High-Level Synthesis (HLS)
are becoming popular. The movement to the higher layer of
abstraction helps to reduce time to market and simplify the
verification of the resulting system. HLS in this paper is under-
stood as a collection of methods transforming a description in a
higher-level programming language into its equivalent Register
Transfer Level (RTL) representation. In this research, our goal

is to bring the advantages of using unmodified HLS in the
process of FT systems design. In this paper, the combination
of the spatial and temporal redundancy is used to increase
component reliability. The Catapult C [3] synthesis tool in
collaboration with the Xilinx ISE tool [4] is utilized in this
research. The Catapult C is set up with all optimizations off
(i.e. no loop pipelining or unrolling is active), as the influences
of those settings were, among others, studied in our paper [5].

Generally, two approaches incorporating FT into HLS can
be distinguished: 1) HLS methods modifications; and 2) de-
scription source modifications. The method in [6] focuses on
modified data-paths synthesis with concurrent error detection
ability. The authors of [7] show a method of detecting multi-
cycle transient faults. Another approach to error detection
is presented in [8]. The authors of [9] present a heuristic
algorithm for searching an optimal assignment of operations
to data-paths while considering transient faults. In opposition
to all the methods mentioned, the following approach moves
the problem of reliability to a higher abstraction level (i.e.
the function level). The authors of [10] developed a new
data type that introduces the so-called self-checking (i.e. the
error detection technique) into data-paths of HLS generated
systems. The authors also consider the suitability of moving
such problem to a higher level of abstraction in the context
of the complexity of today’s systems. In the paper [11], the
authors evaluated this method on an application of the FIR
filter. Generally, moving to a higher level of abstraction is
important, as the level of chip-integration rises. In our research,
we focus on developing a reliability insertion approach easily
usable with today’s modern HLS tools.

This paper is organized as follows. An overview of our
FT method based on Redundant Data Types is proposed in
Section II. Our experimental system setup and evaluation
platform are presented in Section III. The experimental results
are summarized in Section IV. Section V concludes the paper
and suggests our plans for future research.

II. REDUNDANT DATA TYPES METHOD

Our method is based on the modification of the input
source code before it is processed by HLS. Newly created
Data Types (DTs) are used as a means of redundancy insertion.
The redundancy is inserted to the source code by replacing the
original DT name with the name of newly created so-called
Redundant Data Type (RDT). RDT then incorporates redun-
dancy to all the operators and storage elements associated with
the corresponding variable instance. Each of RDTs represents
one method of redundancy insertion, for example, the RDT
triple represents the well known Triple Modular Redundancy
(TMR); the RDT quadruple represents Quadruple Modular
Redundancy (4MR); and the quintuple represents Quintuple
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Modular Redundancy (5MR). Each RDT is connected to its so-
called original data type, which implements the original data
operations. The original data type is usually (but not limited
to) one of the base types of the programming language used.
In our research, RDTs are implemented using C++ templates.

In our previous work [12], we also used RDTs to evaluate
importance of particular operation groups in a circuit. In our
paper [5], three general types of C++ modifications were iden-
tified: 1) variables (storage elements), 2) operators (arithmetic
and logic operations) and 3) flow control statements. In this
research, we focus on the first two types of modifications.
The storage element multiplication is achieved by instantiating
the variables of the original data type by the desired number
of times. Then for unary operators, one RDT operation is
performed on each instance of the original data type according
to its original implementation. In order to allow automatic
interconnections of subsystems using different reliability meth-
ods (i.e. binary operation of two non-equivalent RDTs, for ex-
ample, the TMR and duplex), three cases must be distinguished
for binary operations: a) intra-data type operations – RDT vs.
RDT of equivalent redundancy types (e.g. TMR vs. TMR);
b) inter-data type operations – RDT vs. RDT of different
redundancy types – (e.g. TMR vs. duplex); and c) original-
data type operations – RDT vs. its original (unhardened)
DT (e.g. TMR vs. unhardened subsystem). These cases are
schematically illustrated in Figure 1. For the ternary operator
(i.e. the conditional operator) compatibility, the RDT must
be able to cast its value to the Boolean data type. Each
operation then includes an additional method that ensures self-
synchronization (e.g. a majority function in the case of xMR).
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Figure 1: Three types of cases that can be distinguished
when considering binary operations, (a) intra-DT operation
between two TMR subsystems; (b) inter-DT operation between
system with TMR and duplex hardening; and (c) original-DT
operation between TMR and unhardened subsystems, [5].

As this approach works at the functional level, it allows
for better compatibility between different HLS tools. It also
benefits from the possibility of validation of implemented
redundancy techniques before the development moves to the
RTL. It is also easier to maintain the source code as the
redundancy techniques are separated from the original code.

III. EXPERIMENTAL PLATFORM

The evaluation platform for testing FT properties presented
in our previous work [13] is used for evaluation of the proposed
methodology. Lots of real electronic systems are working
together with some mechanical part. The mechanical part is
usually controlled by its electronic controller. This is the reason
why our evaluation platform monitors impact of faults not only
on the electronic part, but also on the mechanical part. Our
evaluation platform is based on the concept of the functional
verification in combination with the artificial fault injection.
A verified circuit (Design Under Test – DUT) is operating on
Field Programmable Gate Array (FPGA), which allows us to
inject faults directly into FPGA.

The architecture of the evaluation platform is shown in
Figure 2. An electronic controller running on FPGA com-
municates with the simulation of a mechanical part which
is running on a PC. The communication between FPGA and
PC is accomplished through the Ethernet interface which is
transformed to input signals for DUT. This transformation is
done on the second FPGA. The verification environment which
is also running on the computer monitors the communication
between DUT and the mechanical part. The communication is
compared with the reference model and a fault is reported in
the case of a difference detection.
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Figure 2: The architecture of our evaluation platform, [12].

The last tool working on PC is the fault injector. We use
our previously published fault injector [14] which is able to
inject permanent faults into a specified area of the FPGA.
A permanent fault is simulated by flipping a configuration
bit. Currently we are able to find a relation between bits of
bitstream and the functional unit implemented on a specified
place on the FPGA. For the experiments efficiency, it is very
important to just inject faults into the utilized area of FPGA.
Unfortunately, the current approach is only restricted on Look-
up Tables (LUTs), so we just inject faults into the occupied
LUTs. The fault injector is able to inject faults according to the
specified strategy. It is possible to inject single faults during
one run of the system or multiple faults within a various period.
In this paper we use multiple injection with a specified rate.

The robot is exploring the maze in the Player/Stage simu-
lation environment and its electronic controller is implemented
into FPGA. The same experimental system is used in this
paper, however, the robot controller is implemented with
respect to the proposed methodology.

IV. CASE STUDY AND EXPERIMENTAL RESULTS

For our experiments, the robot controller was fully imple-
mented in the C++ language. Three redundancy methods were
selected in combination with two majority function types: the
TMR, 4MR and 5MR. For the purpose of these experiments,
we decided to utilize the word-majority function (i.e selecting
the word with the largest representation) and the bit-majority
function (i.e for a particular bit position the value is selected
by the majority representation). Generally, six RDTs (i.e.
one RDT for each combination of redundancy and majority
function type) were implemented according to the method
previously mentioned in this paper. The overview of the RDTs
used in our experiments can be seen in Table I.

TABLE I: The overview of the RDTs we have implemented
as a part of our experimental work.

Redundancy Method
TMR 4MR 5MR

M
aj

o-
ri

ty

Word triple quadruple quintuple
Bit triple bit quadruple bit quintuple bit



For each RDT, one robot controller unit was synthesized.
Each robot controller unit was created by applying equivalent
RDT to each of 30 variables in the controller’s source code.
Moreover, one reference robot controller unit without our
approach applied (i.e. noft) was synthesized. The resource
consumptions for each synthesized robot controller unit can be
seen in Table II. As can be seen, the units with the bit majority
function in their voter consume significantly less resources than
the units with the word majority.

TABLE II: The overview of resource consumptions for each
synthesized robot controller unit.

RDT Applied to
the Robot Controller

Unit Algorithm

Resource Consumption
Occupied
Slices [-]

Slice
Regs [-]

Slice
LUTs [-]

Max.
f [MHz]

LUTs
bits [b]

noft (no RDT) 338 708 634 249.5 19392

W
or

d
M

aj
or

ity triple 611 999 1109 273.4 48704
quadruple 647 1093 1479 239.2 73216
quintuple 999 1560 2261 195.0 122880

B
it

M
aj

or
ity triple bit 535 982 730 274.7 24480

quadruple bit 530 1102 755 309.3 26784
quintuple bit 596 1357 925 284.6 37632

A. Fault Injection Intensity

Redundancy in a circuit does not necessarily improve its
resilience against faults. If we actually injected one permanent
fault into our DUT per verification run, the results obtained
would potentially be distorted by the occupied area of the
circuit tested. The same situation occurs if we injected a con-
stant number of faults per run. It is obvious that the injection
ratio should reflect the size of the DUT. This corresponds to
the fact that the failure manifestation probability is in direct
proportion with the circuit area occupied. For this reason we
suggest incorporating the size of circuit into the unit of fault
injection rate. For this purpose we chose the unit of bit of the
bitstream as the metrics for the circuit area occupancy. The
resulting fault injection unit is injection/s/bit.

Moreover, in our research it is important to have an ability
to compare results among various versions of experimental
design implementations. For this purpose, we made a series
of experiments to evaluate the impact of failure rate on the
resulting Mean Time To Failure (MTTF). As the experiments’
execution is very time consuming, we set the number of 500
verification runs for the quintuple RDT. The results for the
failure rates of 4.5e-6 to 0.5e-6 can be seen in Figure 3. With a
decreasing failure rate the number of failed runs also decreases
while the MTTF increases slightly.

Figure 3: The impact of various failure rates on the number of
failures and the resulting Mean Time To Failure (MTTF) for
the controller utilizing quintuple RDTs.

As one maze exploration lasts for 204s, we decided to
choose the failure rate of 2.0e-6 inj/s/bit. In this particular case,
the MTTF of 148s was achieved, which is rational considering

it is the 5MR implementation. As can be seen, while the
failure rate is reduced, the number of failed runs decreases thus
resulting in a less precise computation of the MTTF metrics
because each run of the robot was limited to 324s (i.e. 204s
+ 120s) in order to speed up the process of controller circuit
evaluation (e.g. in case the robot is looped). It is important
to note that the failure rate was selected only to make a fair
comparison (according to the resolution scale provided by our
evaluation platform) rather than to precisely simulate a real
failure rate of any environment (e.g. the space).

B. Effect of Redundancy Level and Voter Type

We decided to examine LUTs bitsunit × 0.1 number of
runs per one robot controller unit as we assume that the number
of verification runs should also be in direct proportion with
the size of the DUT. The injection strategy was to inject faults
into LUTs bits with the chosen fault rate of 2e-6 inj/bit/s. Each
fault injection bit was selected uniformly at random from all
the utilized LUTs content bits. The parameters of the testing
with the exact results obtained are shown in Table III.

TABLE III: The overview of the parameters of testing and the
results obtained.

RDT Applied to
the Robot Controller

Unit Algorithm

Parameters of Testing Results Obtained
LUTs

bits [b]
Num. of
Runs [-]

Fault Rate
[inj/s/bit]

Failed
Runs[%]

MTTF
[s]

noft (no RDT) 19392 1940 2e-6 21.24 131.05
W

or
d

M
aj

or
ity triple 48704 4871 2e-6 18.99 139.40

quadruple 73216 7322 2e-6 20.88 138.14
quintuple 122880 12288 2e-6 21.34 141.06

B
it

M
aj

or
ity triple bit 24480 2448 2e-6 18.91 128.68

quadruple bit 26784 2679 2e-6 20.87 132.88
quintuple bit 37632 3764 2e-6 25.05 130.08

For a better illustration, the results obtained are also shown
in the chart in Figure 4. First, it is important to note that, the
larger the circuit is, the more faults per second are injected,
because the fault rate is related to the number of bits of
bitstream, and, thus, the comparison is more fair. However,
the difference between the noft and reliable units looks smaller
from this perspective. As can be seen the results indicate that
for the triple, the number of failed runs is lower which is the
expected situation. For the quadruple, the percentage of failed
runs is lower than for the unhardened unit, but still higher than
for the triple unit. We assume this phenomenon is caused by
the fact the 4MR redundancy occupies more area while the
majority function still has to obtain three correct results (bits)
out of four to select the correct output. The MTTF confirms
this assumption as for the triple and quadruple, the MTTF
is nearly equivalent. For the quintuple robot controller unit,
the percentage of failed runs is slightly higher than for the
noft. The MTTF suggests this is caused by a higher scatter
of values and the fact the robot was tested exactly for the
time period of one maze traversal plus 120 seconds. As can
be seen the triple bit controller unit achieved the failed runs
ratio of 18.91%, which is the best result. In contrast, the
MTTF decreased which would also suggest the scatter of
values is higher in this case. For the quadruple bit, the same
phenomenon of increasing failed runs ratio can be observed.
For the quintuple bit, the percentage of failed runs increased
and the MTTF decreased. In this case the bit-based majority
function does not bring better results although the resulting
circuit is still much smaller than its word majority version.



Figure 4: The overview of the results obtained through exper-
imentation for each robot controller unit.

The conclusion of our experiments is that the bit majority
function is more suitable for the purpose of usage with RDTs
as it causes less overhead while keeping an almost equivalent
reliability. In general, each RDT satisfies different require-
ments in terms of mission time or failure rate percentage.

C. Number of Verification Runs

As the number of verification runs was chosen purely
empirically, we included a retrospective evaluation of the
achieved precision. As a basic method of evaluation, we
assume the higher the number of verification runs is, the more
precise the results are. Therefore, we set the original results
as a reference value and retrospectively calculated the results
we would obtain if we set the number of verification runs
lower. The reference value was then subtracted from each of
the retrospectively calculated failure rates. By examining the
deviation we are then able to get an idea of the achieved
accuracy of our results. The differences in the failure rate ratios
for each controller unit are shown in the chart in Figure 5. The
number of verification runs for each controller unit is related
to its number of LUTs bits (e.g. 0.1 in the chart represents
0.1× LUTs bitsunit verification runs).

Figure 5: The retrospectively calculated failure rate differences
for different numbers of verification runs.

As can be seen in Figure 5, starting from the ratio of 0.073
(i.e. 0.073×LUTs bitsunit runs) the difference from the result
obtained at 0.1 × LUTs bitsunit runs is kept under 0.01%.
The important feature is that the differences stay at the same
level after this point. Assuming the average converges to the
ideal value, this suggests that the number of verification runs
is sufficient considering the purpose of our evaluation.

V. CONCLUSION AND FUTURE RESEARCH

This paper briefly describes the approach of RDTs for
usage with HLS and classifies this method in the context
of other approaches. The main part of this paper evaluates
the effect of the majority function type (i.e. word- and bit-
based). The results show that the bit-based majority function

leads to smaller circuits while keeping reasonable reliability.
In addition, the paper also briefly explains the techniques
utilized behind the process of the evaluation and selection of
the evaluation parameters. The selected number of verification
runs was retrospectively reviewed to verify its suitability.

As a part of our future research, we would like to find a
key to select the proper redundancy method for a particular
subsystem (i.e. function, expression etc.) and automate the
process of this selection and source code modification.
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