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Abstract

A processor plays the main role in almost every elec-
tronic system. The use of a general purpose proces-
sor may not be suitable for a specific application, be-
cause the processor is designed for a wide set of applica-
tions. The Application-Specific Instruction-set Proces-
sors (ASIPs) are today applied in specific cases, where
a single application or a certain group of applications is
performed. This paper focuses on automatic optimiza-
tion of an ASIP for a given application through check-
ing the possible configurations of its key parameters
(such as the number of registers, cache sizes, instruc-
tion set modifications, etc.). The paper also presents a
designed framework which is able to optimize the given
application in terms of speed, area or power consump-
tion. The framework allows to use various optimization
methods. For the processor modeling and evaluation,
the Codasip Studio tool is used. It allows to generate
all the tools necessary for compilation, simulation, and
hardware mapping which are used in the process of the
ASIP design. The experiments are carried out on a
RISC-V (Reduced Instruction Set Computing) proces-
sor.

1. Introduction

In today’s world of the Internet of Things (IoT), the
vast majority of all systems is controlled by processors.
The processors differ from application to application.
General purpose processors (GPPs) are typically used
in multiple different applications due to their versatile
design. GPPs have an acceptable computation capac-
ity which is paid by larger chip area and power con-
sumption. A significant advantage is their price, which
is low due to the large scale production. For embedded

systems, on the other hand, small size and low power
consumption processors are required, which have suf-
ficient performance for the particular task. Such pro-
cessors are designed in a completely different way, and
their price is significantly higher due to their applica-
tion for a limited group of tasks.

Recently, the main attention has been paid to the
use of GPPs in embedded systems which are optimized
for a given application domain. These processors are
referred to as the Application Specific Instruction-set
Processors (ASIPs) [10]. Their advantage is primarily
in their price which is similar to GPPs and the possi-
bility of their optimization in terms of different metrics
(speed, area, power consumption) for the given applica-
tion. The optimization of a processor involves reducing
its key parameters and features such as the number of
registers, the number of slots for Very Long Instruc-
tion Word (VLIW) processors, functional units config-
uration, cache configuration, or instruction set modifi-
cation – removing unnecessary instructions to reduce
the chip area or adding special-purpose instructions to
accelerate computations. The complete settings of the
individual processor parameters for the given applica-
tion are referred to as the processor configuration.

The processor can be modeled using architecture de-
scription languages (ADLs) or by hardware description
languages (HDLs) [15]. ADLs provide a more abstract
way of the processor description (i.e. the designer does
not have to pay much attention to hardware details)
which is more suitable for fast processor prototyping.
There exist various tools for automatic processor gen-
eration based on its abstract description. As an ex-
ample, we can mention several of them. The Synopsys
ASIP Designer [20] is a set of tools for ASIP design
from a user-defined architecture to RTL description.
Synopsys also offers highly configurable processor cores
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called ARC and the Synopsys ARC Designer [21]. The
Cadence company provides a high-performance, config-
urable and extensible processor called Xtensa LX7 Pro-
cessor and its development tools [5]. In our experimen-
tal work, we use the Codasip Studio provided by the
Codasip company [6]. Codasip Studio is a development
tool for processor design; the designer is able to de-
scribe the architecture of a processor and its instruction
set and then, to generate a corresponding toolchain
(compiler, simulator, etc.) Codasip also offers prede-
fined configurable processor cores (eg. RISC-V based
Codix-Bk processor [7]). It is possible to generate vari-
ous processor configurations and test their usability for
a selected application.

The search for the most appropriate processor con-
figuration is currently mostly performed manually
based on designer’s knowledge and experience. This
activity is time-consuming and does not guarantee to
find the best configuration of the processor in a large
set of possible configurations. With the use of Codasip
Studio, our goal of research is automatic optimization
of processor parameters and finding its best configu-
ration for a given application which is optimized for
desired metrics – speed, area and power consumption.

The paper is organized as follows. Section 2 de-
scribes the state of the art in the processor optimiza-
tion area. The information about the Codasip Studio
and its features is provided in section 3. The archi-
tecture of our framework for finding the most optimal
processor configuration for a given application is pre-
sented in section 4. Our experiments with finding the
most optimal processor configuration for the given ap-
plication and their results are described in section 5.
Finally, section 6 concludes the paper.

2. Related Work

In current research in the field of processor optimiza-
tion, the vast majority of works are focused on design
space exploration using a simulation based approach.
The simulation based approach uses a simulation model
of an automatically generated processor architecture
and the target application is simulated on this model.
Performance statistics are the result of the simulation
which is used for the evaluation of the model quality.

Amir Hossein Ashouri et al [2] focus on searching an
optimal compiler configuration to maximize the appli-
cation performance. Compilers provide a set of trans-
formations of the source code which may favorably or
adversely affect the final performance of the applica-
tion. The authors use Bayesian Networks together
with the information about the application character-
istics and micro-architecture features to create a com-

plex distribution function for searching the optimal se-
quence of compiler transformations. The same author
[3] combines an optimization of compiler transforma-
tions together with a reconfigurable Roof-Line (VLIW)
processor architectural model. First, a set of promising
VLIW architectural candidates is generated based on
the application characteristics and subsequently, dif-
ferent compiler transformations are performed on the
set of customized VLIW architectures. Swarnalatha
Radhakrishnan et al [17] present an ASIP processor
with multiple heterogeneous pipelines for parallelism
at the instruction level. The authors have designed a
system able to generate a processor with the number
of pipelines suitable for the given application. Each
pipeline has a specialized instruction set that can be
executed in parallel.

Giuseppe Ascia et al [1] present the EPIC-Explorer
framework for the simulation of a parametrized VLIW-
based platform. The platform allows an embedded sys-
tem designer to optimize the system for a given appli-
cation in terms of performance, area, and power con-
sumption. The framework is able to evaluate the im-
pact of architectural and micro-architectural features
on these metrics. EPIC-Explorer operates on the Tri-
maran framework [23] which presents a parametrized
compiler and a library for VLIW architectures. Tri-
maran takes an input source code of the application to-
gether with the architecture description and performs
the compilation (static scheduling of the operations).
It also generates a simulator of the VLIW processor on
which the compiled application is executed as well as
the corresponding dynamic execution statistics. Based
on the statistics, the Estimator estimates the area,
power consumption, and performance for the actually
processed configuration of the architecture. A pareto
frontier containing the optimal configurations is pro-
duced at the end of the optimization process. Fig. 1
shows the communication of the EPIC-Explorer with
Trimaran. The authors provide a list of explorable pro-
cessor parameters that include the size of the register
file, number of functional units and caches.

In comparison with the approaches presented above,
our research differs in several key aspects. In our ap-
proach, we use the Codasip Studio and an architecture
description that allows us to modify arbitrary architec-
tural parameters in the processor specification. A com-
plete toolchain (including the simulation and synthesis
tools) may be generated based on this architecture de-
scription. Using the simulation and synthesis tools,
we are able to obtain the exact values of the result-
ing chip area, power consumption and execution time
(cycles) for the given application and processor con-
figuration. Our optimization platform described below

IEEE EWDTS, Kazan, Russia, September 14 - 17, 2018 565



EPIC-Explorer

Trimaran

Explorer

Application

Architecture

Simulation

Estimator

Figure 1. The architecture of EPIC-Explorer.

allows to choose the best optimization strategy for the
selected processor thereby minimizing the total opti-
mization time without losing the solution quality. Our
framework is not limited to VLIW processors; it can
optimize an arbitrary processor or a set of selected pro-
cessors for the given application.

3. Codasip R© Studio

The Codasip R© Studio offers fully automatic retar-
geting of the programming and simulation toolchain,
generation of a synthesizable RTL as well as a support
for functional verification as shown in Fig. 2. It offers
both the graphical user interface and the command line
interface which is used by our system.

The Codasip Architecture description Language
(CodAL) is a hierarchical and structured language that
allows to define and describe processor cores at two ab-
straction levels. The higher instruction-accurate level
of abstraction level is the key element for fast and ac-
curate prototyping of an architecture. In early design
stages, the processor core can be described at this ab-
straction level. The description is not limited to RISC
processor architectures (ARM, MIPS) only; for the
purpose of virtual prototyping, the CISC (e.g. x86)
architecture can be modeled as well. Once the mod-
eled instruction set is stable, the model of the microar-
chitecture can be created at the lower cycle-accurate
abstraction level.

The simulator works in two basic modes: The
instruction- or cycle-accurate simulation (more than
60 times faster when compared to the VHDL simu-

lator on a single core), whose selection is based on the
CodAL model. The debugging speed may be improved
by using a retargetable compiled or a translated sim-
ulation, which offer a substantially higher simulation
speed than the basic version of the interpreted simula-
tor.
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Figure 2. Codasip R© Studio.

The generated profiler tracks and logs important
information acquired during the simulation such as
the most used instructions, unused instructions, cache
misses, function call graph with instruction cycles, re-
sources usage, etc. Based on this information, the op-
timization system can choose the next steps of the op-
timization.

When the architecture design is stable enough, a
synthesizable RTL processor representation is gener-
ated. It is also possible to generate test benchmarks
for the architecture, to generate asserts into the RTL
description or optionally, to generate a support for the
JTAG debugging interface. Note that the generated
synthesizable RTL is well proven by third-party ASIC
and FPGA synthesizers. Additionally, the equivalence
between the simulation and the hardware has to be
ensured bearing in mind that the behavior of the simu-
lator should be the same as the behavior of the real
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hardware. In case of Codasip R©, this equivalence is
guaranteed by the fact that all the principles and algo-
rithms are based on formal models and are well proven.
Moreover, the simulator and the hardware generators
use the same algorithms for generation.

The Codasip R© Studio allows to generate a C/C++
complier fully automatically from the processor defini-
tion. This allows us to avoid splitting the optimization
process in two sequential steps, i.e. the compiler imple-
mentation as the first step and the optimization cycle
as the second one. In other words, we are able to in-
clude the C/C++ compiler generation in one optimiza-
tion cycle. This allows us to modify the instruction set
in the tuning cycle or possibly, to change the processor
completely.

4. Proposed Framework Architecture

We propose a solution of the processor optimiza-
tion process based on an input application (program).
We use processor models described in the CodAL lan-
guage that have been developed by Codasip company.
Any processor described in CodAL is configurable and
can be optimized by changing its important parameters
(number and size of registers, multipliers, caches, e.g.).
The processor is optimized based on the following four
metrics depending on the selected application:

• Number of cycles,

• Lines of assembler code generated by compiler,

• Area estimation,

• Power estimation (energy consumed during appli-
cation run).

The values of these metrics may be obtained from
the simulation using the generated toolchain or esti-
mated from other provided values as discussed below.

The whole architecture of the proposed framework
and the optimization process are shown in Fig. 3. We
can divide the framework into several parts: The input
part, the process part, and the output part.

4.1. The Input Part

The input part consists of three logical blocks which
represent the setting of the optimization process. The
Application is a C/C++ or assembly program for which
we optimize. The application is later compiled and
simulated by the Codasip Studio Toolchain generated
for the given processor. The Models of Processors with
Changeable Parameters represents the source models
of processors (in CodAL language) which will be used

Explorer
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Methods
Configuration

Codasip Studio 

Toolchain
Application
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Changeable 

Parameters

Pareto Frontier with 

Optimal Processors

INPUT PROCESS OUTPUT

Figure 3. The architecture of the proposed op-
timization framework.

in the optimization process. For every processor, there
is also a list of configurable parameters available with
their possible values. In our tool, the configurable pa-
rameters of each processor are provided as an XML file
with the following general structure:

<processor name="NAME" platform =" MODEL"

type=" parameters">

<parameter name=" PARAM1">

<value >VAL1 </value >

<value >VAL2 </value >

...

</parameter >

<parameter name=" PARAM2">

...

</parameter >

...

</processor >

The name and platform attributes of the processor
tag are used for further identification of the generated
toolchain. The type attribute defines the type of the
XML structure (input parameters in this case). The
same structure with a different type is used for storing
the final configuration of the processor. The difference
is only in the number of possible values; in the final
configuration, there is only a single value assigned to
each parameter. Each parameter of the processor is
represented by a parameter tag whose the name at-
tribute is an identification used in the model of the
processor. The parameter element contains a list of all
possible values of the given parameter. From the list
of parameters and their values, the individual configu-
rations of the processor are obtained and used in the
evaluation process.
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The architecture is designed to use an arbitrary op-
timization strategy. Therefore, the last input is a Con-
figuration that includes the specific parameters for the
framework and for each optimization strategy. The
specific parameters for the framework include the ap-
plication name, processor names, result file names,
maximal number of threads for parallel evaluation and
the Pareto frontier configuration.

4.2. The Process Part

The Explorer is the core of the process part and it
manages the entire optimization process. Based on the
possible values of the changeable parameters, the Ex-
plorer creates individual configurations of the selected
processor (in XML format) and sends them together
with the adequate processor model into the Codasip
Studio Toolchain. A selected Optimization Method de-
cides how the specific configurations of the given pro-
cessor will be created. The optimization method can be
any simple algorithm such as a traversal of all possible
solutions or sophisticated one such as a genetic algo-
rithm. The Codasip Studio Toolchain modifies the pro-
cessor model based on the given configuration. For the
modification of the processor model, we use a Python-
based templating system that allows custom modifi-
cations of the model source code according to the ac-
tual parameter values. After the final model has been
created, the Codasip Studio Toolchain generates the
corresponding toolchain containing the compiler and
simulator. The Application is then compiled and sim-
ulated using the toolchain. From this step, we obtain
the values of the lines of code and number of cycles
metrics while the area and power consumption are es-
timated from the model definition itself.

The Explorer stores the currently processed config-
uration together with the measured metrics values into
an XML result file and based on the used optimization
method, it chooses the next processor configuration to
be examined or finishes the optimization process. In
the last step, the Explorer generates the graphs with
the Pareto frontier for each metric based on the opti-
mal configurations of the processors. The freely avail-
able Google Charts [8] framework is used for the graph
rendering.

4.3. The Output Part

The output of the optimization process is a Pareto
Frontier with Optimal Processor Configurations. It
contains the XML files and graphs with the monitored
metrics and the corresponding optimal configurations
of the processors. The framework produces the Lo-
cal Pareto frontiers and a Global Pareto frontier. The

local Pareto frontiers compare the monitored metrics
by pairs – always two metrics per a single view. The
global Pareto frontier shows the optimal configurations
across all metrics. Based on the chosen importance of
the metrics, the designer is then able to select the best
processor configuration from the perspective of the re-
maining metrics. The general structure of the result
XML file follows:

<experiment >

<run id="1">

<processor name="NAME" platform ="

MODEL" type=" configuration">

<parameter name=" PARAM1">

<value >VALX </value >

</parameter >

<parameter name=" PARAM2">

<value >VALY </value >

</parameter >

</processor >

<result >

<cycles >... </ cycles >

<lines >... </lines >

<area >... </area >

<power >... </power >

</result >

</run >

<run id="2">

...

</run >

...

</experiment >

The result file is composed of runs which represent
the individual processors configurations and their mea-
sured values. Each run has two parts – processor and
result. The processor contains the actual processor
configuration that was used. The result part provides
the measured metrics values for the given configura-
tion. The Pareto frontier is then composed of the runs
which are optimal according to the given optimization
method.

4.4. Optimization Methods

Our architecture is designed to operate with differ-
ent optimization strategies which are incorporated into
the framework through plugins. This design allows to
create a set of plugins implementing a number of com-
pletely different optimization strategies. For example,
a simple method of Cartesian product (full state space
exploration) can be implemented as well as other more
advanced methods like a genetic algorithm (GA) [16] or
simulated annealing [19]. The activity of the optimiza-
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tion methods lies mainly in the selection of processor
parameters while the quality of the searched solution is
preserved. The full state space exploration is discussed
in the following subsection. The genetic algorithm or
simulated annealing are just examples of alternative
optimization strategies that can be used in case of a
large state space where the full space exploration is
not feasible.

Cartesian product is well known mathematical oper-
ation which returns the set of all ordered n-tuples from
the n input sets. In our case, the input sets are the pos-
sible values of the individual configurable parameters
of the given processor. An ordered n-tuple represents a
particular configuration of the processor. The number
N of all possible configurations can be easily calculated
with the following formula:

N =

numOfParameters∏
i=1

numOfV alues(i) (1)

The resulting value of N is helpful for deciding which
optimization method is suitable for the best perfor-
mance of the framework with respect to the run time
and the quality of the discovered solution. The full
state space exploration is optimal for the use with a
small number of possible configurations because it goes
through whole state space in a short time. On the con-
trary, for high number of configurations, this method is
very time consuming and therefore, some more sophis-
ticated method is necessary. In our experiments, we
use this method for number of configurations smaller
than 1000.

Evaluation of 

Results
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Processor

Cartesian Product

(Configuration 1)

Genetic Algorithm

(Configuration 1)

Number of 

Configurations

< Limit

Cartesian Product

(Configuration 2)

Cartesian Product
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(Configuration 2)

Genetic Algorithm

(Configuration X)
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Figure 4. Proper selection of the optimization
methods.

4.5. Implementation Details

The proposed optimization framework is imple-
mented in Python. Python is a high-level program-

ming language for general purpose programming. The
implementation uses the practices of object oriented
programming. Each block of the proposed framework
structure (Fig. 3) is implemented as a separate class
which groups the logical elements together. The Ex-
plorer (the controller of the whole optimization pro-
cess) is extended for each optimization method that
defines the specific optimization technique. Each op-
timization technique is obliged to implement the run
method which defines the entry point of the process.

The optimization process starts by the initialization
of the framework with a parameter defining optimiza-
tion method. The initialization loads and processes the
configuration file, where the target application and the
processor(s) are selected and the parameters of the op-
timization methods are set. Also, it loads the source
XML file(s) containing the configuration(s) of the pro-
cessor(s) and creates a class instance for them and for
saving the results. As the next step, the selected opti-
mization method is executed.

The optimization method selects the most appropri-
ate configuration and sends it to model pre-processor.
Its responsibility is to modify the processor CodAL
model according to the configuration. For this pur-
pose, we use the Jinja2 library [18] that allows to use
special macros in the source files. Subsequently, spe-
cial scripts are called to perform the model compilation
and simulator generation through the Codasip Studio.
The target application is simulated on the selected pro-
cessor. After the simulation, Codasip Studio provides
extensive statistics from which the monitored measured
metrics are acquired back to the optimization method,
which continues in its computation.

After the completion of the optimization method,
the results are stored in an XML file and the graphs
are plotted. An object, which controls the results gen-
erates a set of auxiliary results used for the graph
creation. The auxiliary results are forwarded to the
Google charts [8] framework for plotting the graphs.

5. Experimental Results

As the first test case, we used the Codix Berkelium
processor which is a RISC-V processor implementation
and its optimization is performed through Cartesian
product. The aim of the experiments is to present the
use of our framework to search the optimal configu-
ration of the processor and the optimal compiler flags
for the given application with respect to the monitored
metrics.

We have selected seven parameters of the Codix
Berkelium processor that may be changed. These pa-
rameters are governed by the user specification (User-
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Level ISA Specification) of the RISC-V processor [24].
The parameters represent a total of 252 hardware con-
figurations of the processor which have to be take into
account during the optimization process. The list of
the selected parameters together with their values can
be seen in Table 1.

Table 1. The list of the changeable parameters
for the Codix Berkelium processor.

EXTENSION E true, false
EXTENSION M true, false
EXTENSION C true, false
ENABLE ICACHE true, false
ICACHE LINE SIZE 16, 32, 64, 128
ICACHE SIZE 4, 8, 16, 32, 64
ENABLE PARALLEL MUL true, false

The EXTENSION E parameter sets the size of reg-
isters to 16-bits when set to true; 32-bit registers are
used otherwise. The EXTENSION M parameter (”M”
Standard Extension for Integer Multiplication and Di-
vision) enables or disables the use of instructions for
multiplying or dividing values held in two integer reg-
isters. The EXTENSION C parameter (”C” Standard
Extension for Compressed Instructions) enables or dis-
ables the use of compressed instructions for common
operations. The compression offers 16-bit versions of
32-bit instructions. ENABLE ICACHE enables or dis-
ables the instruction cache of the processor. If the in-
struction cache is enabled, the instruction cache line
size (ICACHE LINE SIZE) and instruction cache size
(ICACHE SIZE) can be also configured. The EN-
ABLE PARALLEL MUL enables or disables parallel
multiplication. Parallel multiplication is faster than
the sequential one but the chip area is larger.

The framework is able to work not only with the
processor parameters, but also with the compiler flags.
All the changeable parameters can be specified in the
input description as well. There are lot of standard
flags of the used LLVM compiler [13] that can be set.
By including all the compiler flags, we would get a
huge amount of configurations for evaluation and the
whole experiment would be very time consuming due
to performing the Cartesian product for all the possible
combinations. Therefore, we chose only a small subset
of compiler flags which are frequently used for compil-
ing applications. The list of the selected compiler flags
can be seen in Table 2.

The -o0 flag disables all optimizations. The -o1,
-o2 and -o3 flags perform level-1, level-2 and level-3
optimizations. The -os flag optimizes for size while
-ofast performs the level-3 optimizations and disre-

Table 2. The subset of flags for the LLVM com-
piler.

-o0, -o1, -o2, -o3,
-os, -ofast

optimization level

-ffast-math fastest math mode
-ffunction-sections functions in its own sec-

tions
-finline-functions declare functions as inline

gards strict standards compliance. The -ffast-math

flag sets several other flags for the fastest math mode
optimization. The -ffunction-sections flag places
functions into their own sections and in combina-
tion with linker options, it can remove all unused
code. The -finline-functions flag inlines suitable
functions for a fast access like macros. [22] The
-ffast-math can be combined with the -o2 flag, the
-ffunction-sections flag can be combined with -o3

flag and -finline-functions flax can be combined
with -ofast flag. There is 9 options for compiler. In
total, there is 2268 configurations (252 HW configura-
tions multiplied by 9 compiler options).

As the testing applications for which the processor
is optimized, we have selected several different imple-
mentations. The applications differ in the computa-
tional complexity, memory requirements, used instruc-
tions and functional units:

1. The Face detector [12] (FACES) is a C/C++
application. Its aim is to detect faces of people
in various images using a neural network. The
application uses the OpenCV library [4] for image
manipulation. The face detector can be used in
two ways – in training mode and detection mode.
In the training mode, the detector is trained on
a given set of images. There are 10 images in
the source files of the detector which were taken
from Face Detection Data Set and Benchmark
(FDDB) [11]. In the detection mode, the detector
is able to detect faces in an image based on the
information obtained in the training mode. In
our optimizations, the training mode is selected,
because the detection mode is data-dependent
on currently processed image, and therefore the
results will not be meaningful. Processing more
different images in the training mode is more
interesting in terms of uniform utilization.

2. The Audio codec G.722.1 (DECODE) is a
real broadband audio codec standardized by
ITU-T (International Telecommunication Union
– Telecommunication Standardization Sector)
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[9]. It is a voice encoding and decoding codec
for VoIP (Voice over Internet Protocol) and
similar applications. It offers good audio quality
with reasonable bitrate. The application has a
standard ITU-T implementation in C/C++ that
has been customized for our framework. Only
the decompression of the previously encoded data
which is stored in the memory of the application
memory is performed. The application uses the
data which the ITU-T has released with the codec
as the reference.

3. The Advanced Encrypt Standart [14] (AES) is a
benchmark based on a modern AES 128 cipher. It
encrypts the data field contained in the memory
and then re-encrypts it. Two rounds of encryption
and decryption are performed. Both rounds are
done in memory, the first one in the CBC (Cipher
Block Chaining) mode and the second one in the
ECB (Elektronic CodeBook) mode. The data field
can be easily extended and can easily call multiple
encryption consecutive cycles.

Two types of charts can be generated as the output
of our framework. The first chart is a Pareto fron-
tier which shows a single output metric (cycles, lines,
area, power) per axis. In case of four metrics, a 4D
would have to be created. Therefore, we generate par-
tial charts for every pair of metrics (lines vs. power,
lines vs. cycles, area vs. power etc.). A Pareto frontier
is generated for each of these pairs and the appropriate
solution can be found in these charts depending on the
user preferences and requirements.

The second type of charts shows the values of all pa-
rameters for the individual tested configurations. On
the x-axis, there are the configuration identifiers (se-
quential indexes) and on the y-axis, we may see the
values of all metrics (cycles, lines, area, power). The
configurations can be ordered according to a selected
metric. This allows to watch the trends of the remain-
ing metrics. This chart is just a supporting tool for the
user that complements the Pareto frontier.

The chart in Figure 5 shows the number of cycles
for the three benchmarks mentioned above – FACES,
DECODE and AES. The configurations are ordered by
the number of cycles for the Faces application. Only
the configurations with the -o2 optimization flag are
taken into account in this chart. The chart shows that
different configurations have different impact for the
individual applications.

The next two charts are related to the DECODE
application and show the impact of various compiler
parameters. The first one in Figure 6 shows the num-
ber of program lines. The order of configurations is the
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Figure 5. The number of cycles for the AES,
DECODE and FACES applications when using
the -o2 optimization only.

same as in the previous chart. The top line shows the
number of lines of code for configurations with the -o0

optimization flag (without optimizations) which leads
to the solution with high number of program lines. The
second and the third line in the chart represent the con-
figurations for the -o3 (same as -ofast) and -o2 op-
timization flags. These two lines are almost the same,
the optimizations have similar effects in case of the
DECODE application. The same situation occurs for
the -os and -o1 optimization flags. The best effect is
achieved by the -o3 flag with the -ffunction-section
optimization flag which indicates a large amount of un-
used code in the application.
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Figure 6. The number of lines for the DECODE
application with different compiler flags.

Figure 7 shows another view on the same application
(DECODE) – the number of cycles for each configura-
tion. The lines correspond to the same groups of opti-
mization flags but only three of them are clearly visi-
ble. No optimizations (-o0) leads to the worst solutions
similarly to the previous chart. Then, there is a big step
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to the -o1 optimization. The last line stands for the
overlapping lines for the -o2, -o3, -ofast, -os, -o2

with -ffast-math, -o3 with -ffunction-section,
and -ofast with -finline-functions optimization
flags. If we take both charts into account, it can be
deduced that -o3 with -ffunction-section optimiza-
tion is the most advantageous configuration for the se-
lected application from the point of view of the given
metrics.
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Figure 7. The number of cycles for the
DECODE application with different compiler
flags.

One of the most important outputs is the Pareto
frontier that shows the most interesting solutions for
further choice. Figure 8 shows a partial Pareto fron-
tier for the number of cycles vs. the chip area where
chip area is a dimensionless number computed by the
generated Codasip profiler tools. This number can be
used to compare the chip area among different config-
urations.
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Figure 8. The number of cycles and the chip
area for the DECODE application with the
Pareto frontier highlighted.

The designer may choose any of the configurations;
however, only the configurations on the Pareto frontier

are optimal. In the example in Fig. 8, we may see three
points on the Pareto frontier. The user can use the
configuration with number 1057 if speed is preferred
or, on other hand, the configuration number 1446 if
area is more important. The configuration number 998
is a compromise. Of course, there are more metrics
(lines, powers) which must be taken into account. The
detailed information about the given Pareto frontier
configurations is summarized in Table 4. The config-
urations number 1057 and 998 differ in the PARAL-
LEL MUL parameter which enables the parallel hard-
ware multiplication. It leads to higher speed but also to
higher chip area. The lines area and power are numbers
without units which are provided by Codasip Tools and
serve just for comparison between configurations.

Times needed for generating a toolchain for an one
configuration and for simulating the selected applica-
tion are shown in Table 3.

Table 3. Times needed for generation and sim-
ulation of an one processor configuration.

Codasip Tools generation [min:sec]
≈ 2:30

Application simulation [min:sec]
FACES DECODE AES
min max avg min max avg min max avg
4:30 17:35 7:08 0:28 3:18 0:51 0:02 0:48 0:06

6. Conclusion and Future Work

The framework for searching the most suitable con-
figurations of processor parameters and compiler flags
for a selected application was presented in this paper.
The framework is based on the simulation of processors
and evaluation of the obtained results. As a modeling
and simulation tool, the Codasip framework is used.
The presented framework is divided in three main
parts: The input part for the specification of the pro-
cessor configurations, the processing part for searching
and evaluating the possible solutions and the output
part that saves the results and transforms the obtained
results into charts. A Pareto frontier of the possible
solutions is the main output of proposed system. The
experiments with RISC-V-based Codix Berkelium pro-
cessor and the full state space exploration were also
presented. Three benchmarks were used as the sam-
ple applications on which the whole framework was
demonstrated. The main part of the experimental re-
sults are the obtained charts which demonstrate the
possible outputs of our system.

Our proposed system is able to use various types
of optimization algorithms; currently, only the Carte-
sian product is implemented. One of the goals of our
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Table 4. The Pareto frontier configurations.
configuration index 1057 998 1446

EXTENSION E 1 1 1
EXTENSION M 1 1 0
EXTENSION C 0 0 0
ENABLE ICACHE 1 1 1
ICACHE LINE SIZE 128 128 128
ICACHE SIZE 32 32 32
PARALLEL MUL 1 0 0
OPTIMIZATION -O3 -O3 -O3
OPTIMIZATION -ffunction-sec -ffunction-sec -ffunction-sec

cycles 1654286 2151840 3011164
lines 49284 49284 51120
area 50817 30243 22335
power 79444470468 59067459084 58843776132

further research is to use genetic algorithms or other
artificial intelligence and optimization methods to re-
duce the search time when using multiple compilation
flags. Since some similarities may be observed in the
output charts for various applications, we also plan to
automatically discover different classes of similar ap-
plications and to develop an automatic assignment to
these classes as our future work.
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