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Abstract. Cartesian Genetic Programming is often used with mutation
as the sole genetic operator. Compared to the fundamental knowledge
about the effect and use of mutation in CGP, the use of crossover has
been less investigated and studied. In this paper, we present a compar-
ative study of previously proposed crossover techniques for Cartesian
Genetic Programming. This work also includes the proposal of a new
crossover technique which swaps block of the CGP phenotype between
two selected parents. The experiments of our study open a new perspec-
tive on comparative studies on crossover in CGP and its challenges. Our
results show that it is possible for a crossover operator to outperform the
standard (1 + λ) strategy on a limited number of tasks. The question of
finding a universal crossover operator in CGP remains open.
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1 Introduction

Genetic Programming (GP) as popularized by Koza [1–3] uses syntax trees as
program representation. Cartesian Genetic Programming (CGP) as introduced
by Miller et al. [4] offers a novel graph-based representation which in addition to
standard GP problem domains, makes it easy to be applied to many graph-based
applications such as electronic circuits, image processing, and neural networks.
CGP is mainly used with mutation as the only genetic operator. The reason for
this is that previous work on crossover in CGP has provided mixed results and
comparative results about the use of crossover are missing.

Tree-based GP was originally introduced with a sub-tree crossover technique
which swaps randomly chosen sub-branches of the parent trees to produce new
offsprings. Koza considered crossover as the dominant genetic operator as a
result of his experiments [2,3]. However, later research with more comprehensive
and detailed experiments found that the beneficial effects of crossover cannot be
generalized in GP [5–7].
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In contrast to fundamental knowledge about crossover in tree-based GP, the
state of knowledge in CGP appears to be comparatively weak. Furthermore,
the potential and understanding of crossover in CGP seem to be an open and
remaining question. In this paper, we present the results of a first comparative
study on crossover in CGP which includes the comparison of formerly proposed
crossover techniques. Furthermore, we introduce a new method of crossover for
CGP, called Block crossover, which is also investigated in our study.

Section 2 of this paper describes CGP briefly and surveys previous work on
crossover in CGP. This section also surveys former attempts of comparative
crossover studies in tree-based GP and reviews its contribution to the under-
standing of GP. In Sect. 3 we introduce our new form of crossover for CGP.
Section 4 is devoted to the experimental results of our study and the description
of our experiments. In Sect. 5 we discuss the results of our experiments. Finally,
Sect. 6 gives a conclusion and outlines future work.

2 Related Work

2.1 Cartesian Genetic Programming

In contrast to tree-based GP, CGP represents a genetic program via genotype-
phenotype mapping as an indexed, acyclic and directed graph. Originally the
structure of the graphs was a rectangular grid of Nr rows and Nc columns,
but later work also focused on a representation with just one row. The genes
in the genotype are grouped, and each group refers to a node of the graph,
except the last group which represents the outputs of the phenotype. Each node
is represented by two types of genes which index the function number in the
GP function set and the node inputs. These nodes are called function nodes
and execute functions on the input values. The number of input genes depends
on the maximum arity Na of the function set. The last group in the genotype
represents the indexes of the nodes which lead to the outputs.

A backward search is used to decode the corresponding phenotype. The back-
ward search starts from the outputs and processes the linked nodes in the geno-
type. In this way, only active nodes are processed during the evaluation. The
number of inputs Ni, outputs No and the length of the genotype is fixed. Every
candidate program is represented with Nr ∗ Nc ∗ (Na + 1) + No integers. Even
when the length of the genotype is fixed for every candidate program, the length
of the corresponding phenotype in CGP is variable which can be considered as
a significant advantage of the CGP representation.

CGP traditionally operateswith a (1+λ) evolutionary algorithm (EA) inwhich
λ is often chosen with a size of four. The new population in each generation consists
of the best individual of the previous population and the λ created offspring. The
breeding procedure is mostly done by a point mutation which creates offsprings
by changing a small number of randomly selected genes from the parent genotype
to a random value within the permissible range. One of the most important tech-
niques is a special rule for the selection of the new parent. In the case when two or
more individuals can serve as the parent, an individual which has not served as the
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parent in the previous generation will be selected as a new parent. This strategy is
important because it ensures the diversity of the population and has been found
highly beneficial for the search performance of CGP.

2.2 Previous Work on Crossover in CGP

Some of the first experiments on crossover in CGP included the investigation of
four variations of crossover which were tested on the simple regression problem
x2 + 2x + 1. Clegg et al. [8] reported that all tested variations of crossover
techniques influenced the convergence of CGP negatively. In comparison to the
mutation-only CGP algorithm, the addition of the crossover techniques hindered
the performance of CGP. The crossover techniques were applied to the standard
integer-based representation of CGP.

For instance, the genetic material was recombined by swapping parts of the
genotypes of the parent individuals or randomly exchanging selected nodes.
Clegg et al. [8] stressed that merely swapping the integers (in whatever manner)
on a genotypic level in CGP disrupts the performance.

This was the motivation for a new form of crossover which has been introduced
by Clegg et al. [8] and is based on a real-valued representation. This variation of
CGP represents the graph as a fixed length list of real-valued numbers in the inter-
val [0,1]. The genes are decoded to the integer-based representation with the help of
normalization values (e.g. the number of functions or maximum input range). The
recombination of two genotypes is performed with a standard Arithmetic crossover
operation which uses a random weighting factor and can also be found in the field
of real-valued Genetic Algorithms. The experiments of Clegg et al. showed that
the new representation in combination with crossover improves the convergence
behavior of CGP. However, for the convergence behavior in the later generations,
Clegg et al. showed that the use of crossover in real-valued CGP leads to disruptive
effects on one of the two tested problems. The improved convergence of the Arith-
metic crossover was evaluated in the domain of symbolic regression and has been
found useful in this problem domain [8].

Slaný et al. [9] analyzed the fitness landscapes of functional-level CGP on image
operator design problems. Slaný et al. analyzed single and multi-point crossover
operators. It was demonstrated that the mutation operator and the single-point
crossover operator generate the smoothest landscapes for the tested problems.

For a multi-chromosome approach to CGP, Walker et al. [10] investigated
a multi-chromosome crossover operator which joins the best chromosome parts
from all individuals. This crossover technique was found useful for problems with
multiple outputs and independent fitness assignment.

A beneficial effect of crossover in CGP was obtained by the use of an implicit
context representation for CGP in which recombination is useful for the Even
Parity-3 problem [11].

CGP has been extended for the automatic definition and reuse of functions by
Walker et al. [12] and Kaufmann et al. [13]. Kaufmann et al. adopted the module
creation mechanisms for a cone- and age-based CGP crossover [13]. Cone-based
crossover showed good results for functions with repetitive inner patterns, while
age-based crossover excels for randomized inner structures.
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Recently, a new form of crossover has been introduced by Kalkreuth et al. [14].
The subgraph crossover recombines random parts of the CGP phenotype of two
former selected individuals. This crossover technique has been found beneficial
for the performance of CGP on symbolic regression, Boolean functions, and
image operator design problems.

To the best of our knowledge, the most recent work on crossover in CGP has
been done by Kalkreuth et al. However, while some crossover operators for stan-
dard CGP have been introduced and investigated, comprehensive comparative
studies are still missing. This has been the motivation for our work.

3 The Block Crossover

The Block crossover is a new method of crossover for standard CGP. The method
is mainly inspired by the cone-based crossover of Kaufmann et al. [13] for Embed-
ded CGP, which integrates selected modules of a donor genotype into a recep-
tor genotype. Since Kaufmann et al. have been successful with this crossover
technique for specific boolean functions, our motivation for the proposal of
the Block crossover is to adapt this mechanism for standard CGP. The Block
crossover is also inspired by the subgraph crossover which has been introduced
by Kalkreuth [14]. Since CGP suffers from a lack of a diverse and effective set of
crossover techniques, the introduction and investigation of new crossover tech-
nique is significant.

The Block crossover technique focuses on the one-dimensional representation
of CGP where the number of rows is limited to one. Given a previously selected
genotypes of two individuals serving as parents, the Block crossover generates a
list of all blocks of nodes that meet the following criteria:

– The block contains a desired number of nodes.
– All nodes in the block are directly linked through their inputs or outputs.
– All nodes in the block are part of the genotype’s active path.

In our implementation, we have chosen to use blocks consisting of three
nodes. To fulfill the other criteria, we have constructed the blocks by evaluating
the genotype’s active path, and selecting active nodes who’s inputs were two
distinct nodes and not primary inputs of the genotype. The time complexity
of this simple method is linear, and it is performed along with the standard
evaluation of the genotype’s active path that precedes its evaluation.

The Block crossover then randomly selects one block from each list and swaps
them between the genotypes. The position of the nodes transferred as part of
the block may change inside the new genotype. However, their mutual links are
preserved and the function performed by the block stays the same. Therefore, the
created offsprings retain the same active path but performs a new operation. If
either parent contains no swap-able blocks, no crossover operation is performed
and the offsprings are simply cloned from their parents. The crossover operation
is then followed by the standard point mutation.
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Figure 1 illustrates the crossover procedure. First the active paths are deter-
mined, and the swap-able blocks are stored in the lists M1 and M2. Then, two
blocks N1 and N2 are chosen from their respective lists. In order to produce the
first offspring O1, the first parent P1 is cloned, and the function nodes inside
the selected block N1, are replaced by nodes from block N2. Nodes (2, 5, 6) have
been moved to position (2, 3, 4), but by maintaining them in the same order
within the one-row genotype, we can ensure their mutual connection, and their
logical function stay the same. The second offspring O2 is produced in the same
way but the roles of the parents P1 and P2 are reversed.

4 Experiments

4.1 Experimental Setup

We have performed experiments on problems from the symbolic regression and
Boolean function domains. To evaluate the search performance, we measured
the best fitness value found after a predefined number of fitness function eval-
uations (best-fitness-of-run). For all problems, the fitness was to be minimized.
Our comparison has focused on four crossover operators. Standard One-point
crossover, Subgraph crossover, Arithmetic crossover and our newly proposed
Block crossover.

The evolution used a generational model. The initial population was ran-
domly generated. Parent genomes for the next generation are picked using two
separate tournaments, which allow for the same individual to be picked multiple
times. The parents and a crossover operator are used ot create two offsprings,
which are then mutated. This process is repeated until a sufficient number of
offsprings has been created. Next generation consists of offsprings and a certain
percentage of the best individuals (elites) from the previous generation.

In addition, two more evolutionary setups were added for comparison. The
None crossover uses the same evolutionary scheme, but the offsprings it creates
are identical clones of their parents, leaving mutation as the only active genetic
operator. The (1 + λ) setup forgoes the above described setup and implements
the traditional CGP algorithm.

Our experiments have focused on examining the following hypothesis.

Hypothesis 1. The (1 + λ) CGP algorithm performs better than the crossover
operators in all domains.

In order to test this hypothesis, we first performed two rounds of meta-
evolutionary experiments in order to determine which evolutionary parameters
were critical, so that the crossover operators can all use their optimal setting, and
be compared in a fair way. The two most important parameters were then subject
to a parameter sweep, and for every crossover operator the best performing
combination of parameters has been selected for comparison. To classify the
significance of our results, we have used the Mann-Whitney U Test, to compare
the standard (1 + λ)-CGP with all other crossover operators.
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Fig. 1. The block crossover technique.
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The implementation was done in Java, using the ECJ Evolutionary Computa-
tion Research System. All experiments were performed on a computing cluster
with the following hardware configuration: 2 x Intel Xeon E5-2680v3 proces-
sor, 2.5 GHz, 12 cores; 128 GB RAM, 5.3 GB cache per core, DDR4@2133 MHz;
InfiniBand FDR56 network connection.

4.2 Meta-evolution

For the meta-level, we used a basic canonical GA to tune five parameters we
considered most important to the evolutionary process. Meta-evolution is very
costly in terms of the computational effort necessary to find an optimal param-
eter setting. Furthermore, since GP benchmark problems can be very noisy in
terms of finding the ideal solution, the evaluation of the evolved individuals is
repeated multiple times, with fitness defined as the mean result.

During the first round of meta-evolution, all problems used the same setting,
and the evolved parameters have been limited to discrete values, as seen in Table 1.
During the second round, the granularity and range were modified to better fit each
individual problem. Because the (1+λ) scheme does not use tournament selection
nor elitism, the two parameters have been ignored during its meta-evolution.

Table 1. Configuration of the first round of the meta-evolutionary GA.

Property Setting Evolved parameter Possible values

Maximum generations 50 Mutation rate 0.01 – 0.20

Population size 10 Elitism rate 0, 0.05 – 0.50

Mutation probability 0.5 Population size 2 – 1024�

Mutation type Random walk Genotype length 2 – 1024�

Tournament size 2 Tournament size 2 – 1024�

Number of trials 5
�{2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024}.

Results of the first round of meta-evolution have revealed that the tourna-
ment size parameter behaves wildly and does not converge to any specific value
for any problem nor type of crossover. In some cases, it even significantly out-
grew the population size. This caused the tournaments to include the entire
population, resulting in a crossover of the best individual with itself, and wholly
defeated the purpose of the crossover operator. To prevent this from happening,
the tournament size has not been included in the second round of meta-evolution
and its value has been fixed to four.

Table 2 shows the results of the second round of meta-evolution which were
used to set up the ensuing parameter sweep. Because the computational effort
required to perform a parameter sweep grows exponentially with the number of
parameters, only the two most important parameters, mutation rate and popu-
lation size, were included in the sweep.
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Table 2. Results of the second round of the meta-evolutionary GA. The table shows
the best-performing combination of the four tuned parameters.

Problem Algorithm Mutation rate Elitism rate Population size Genotype length

Adder (1 + λ) 0.01 – 4 512

None 0.01 0.08 4 384

Block 0.01 0.10 4 1536

Subgraph 0.01 0.06 6 768

One-point 0.02 0.24 6 96

Arithmetic 0.025 0.26 6 96

Multiplier (1 + λ) 0.05 – 3 24

None 0.02 0.20 4 96

Block 0.035 0.22 4 128

Subgraph 0.04 0.04 4 64

One-point 0.035 0.02 4 64

Arithmetic 0.01 0.06 6 384

Bent (1 + λ) 0.14 – 24 128

None 0.09 0.20 24 512

Block 0.045 0.22 3 128

Subgraph 0.04 0.20 12 256

One-point 0.10 0.24 12 256

Arithmetic 0.05 0.20 6 256

Resilient (1 + λ) 0.07 – 2 64

None 0.07 0.20 32 2048

Block 0.12 0.26 3 96

Subgraph 0.09 0.26 3 96

One-point 0.035 0.20 192 512

Arithmetic 0.025 0.28 6 256

Koza-3 (1 + λ) 0.08 – 24 64

None 0.15 0.10 64 64

Block 0.19 0.22 96 32

Subgraph 0.07 0.20 14 16

One-point 0.09 0.08 16 24

Arithmetic 0.12 0.28 12 32

Nguyen-4 (1 + λ) 0.07 – 24 192

None 0.05 0.14 192 1024

Block 0.11 0.08 6 96

Subgraph 0.17 0.16 32 96

One-point 0.18 0.16 6 128

Arithmetic 0.05 0.10 16 128

Nguyen-7 (1 + λ) 0.13 – 64 32

None 0.11 0.18 12 96

Block 0.10 0.10 6 48

Subgraph 0.22 0.10 6 192

One-point 0.09 0.28 64 256

Arithmetic 0.16 0.12 4 48

Pagie-1 (1 + λ) 0.05 – 2 384

None 0.10 0.10 64 768

Block 0.10 0.20 4 1536

Subgraph 0.09 0.06 4 256

One-point 0.05 0.08 8 1024

Arithmetic 0.09 0.22 32 512
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The ideal elitism rate was similar across all problems and types of crossover.
For the sweep, it has been set to the overall average of 15%. Combined with the
fixed tournament size of four, this means that during the sweep, there would
be 52.2% chance none of the individuals in a tourney would be elites from the
previous generation. The ideal genotype length was highly variable and largely
depended on the problem, rather than the type of crossover used. For the sweep,
the genotype length was set up individually for each problem.

4.3 Boolean Functions

We have chosen to evolve both single and multiple output Boolean functions.
2-bit digital adder and multiplier were used as our multiple output problems.
Former work by White et al. [15] proposed these, as suitable alternatives to
the overused parity problems. Their fitness was defined as a hamming distance
between the resulting truth table, and the ideal solution. To increase the speed
of the evaluation, we have used compressed truth tables.

For single output problems, we used 8-bit bent and 1-resilient Boolean func-
tions. These functions find their use in cryptography, where they can provide an
LFSR based key-stream generator of a stream cipher with resistance to linear
and correlation attacks [16].

Bent Boolean functions possess the maximum possible degree of nonlinearity,
defined as the Hamming distance between the truth table of a given function,
and truth tables of all linear function and their negations. For an 8-bit function,
maximum degree of nonlinearity is 120 [17]. We defined their fitness, as the
difference between its actual degree of nonlinearity and the optimal value.

1-resilient functions are highly nonlinear functions that are balanced and have
correlation immunity of the first degree. Balancedness means that the function’s
truth table contains the same number of ones and zeros. Correlation immunity,
means that if the truth table was split in half based on the value of a specific
input, the two halves of the truth table would each remain balanced. To the
best of our knowledge, the maximum possible nonlinearity of an 8-bit 1-resilient

Table 3. Configuration of the Boolean function parameter sweep.

Property Adder Multiplier Bent Resileint

Input bits 5 4 8 8

Output bits 3 4 1 1

Genotype length 512 96 256 192

Mutation rate 0.002 – 0.02 0.005 – 0.05 0.01 – 0.1 0.01 – 0.1

Population size 2 – 48� 2 – 48� 2 – 48� 2 – 48�

Fitness evaluations 10000 5000 2000 5000

Tournament size 2 2 2 2

Percentage of elites 0.15 0.15 0.15 0.15
�{2, 3, 4, 6, 8, 12, 16, 24, 32, 48}.
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Table 4. Results of the parameter sweep for Boolean functions.

Problem Crossover type Mutation rate Pop. size Mean fitness SD Q1 Median Q3

Adder (1 + λ) 0.010 2 4.26 3.3923 1 4 6

None 0.008 3 6.61b 3.4638 4 6 9

Block 0.010 3 6.88b 3.2358 5 7 8

Subgraph 0.010 3 6.60b 3.9029 4 6 9

One-point 0.014 2 6.99b 3.5604 4.75 6.5 8.25

Arithmetic 0.010 3 6.96b 3.0975 5 7 9

Multiplier (1 + λ) 0.035 2 1.13 1.0016 0 1 2

None 0.020 4 2.09b 1.4777 1 2 3

Block 0.035 3 2.14b 1.5441 1 2 3

Subgraph 0.015 3 1.85b 1.4240 1 2 3

One-point 0.020 4 2.03b 1.4997 1 2 3

Arithmetic 0.025 2 2.23b 1.5166 1 2 3

Bent (1 + λ) 0.05 2 2.92 3.8604 0 0 8

None 0.06 24 4.10 4.3705 0 4 8

Block 0.04 8 3.89 4.0098 0 4 8

Subgraph 0.05 32 4.28 4.1974 0 4 8

One-point 0.05 16 4.04 3.9182 0 4 8

Arithmetic 0.05 3 4.88 4.0931 0 8 8

Resilient (1 + λ) 0.07 2 16.89 19.6612 4 4 20

None 0.07 4 5.84b 5.0667 4 4 4

Block 0.08 6 6.64b 5.6916 4 4 4

Subgraph 0.04 6 6.24b 5.4627 4 4 4

One-point 0.09 4 6.12b 5.2863 4 4 4

Arithmetic 0.04 3 8.48a 6.9464 4 4 14

a p-value is less than 0.05. b p-value is less than 0.01.

function is not known, but it can not be higher than 116 [18]. We defined the
fitness, as the difference between the actual degree of nonlinearity and the opti-
mal value, and if the evolved function was not resilient, its fitness was further
penalized by 58, half the known limit.

Table 3 shows the setting used for the parameter sweep of Boolean functions.
Each setting was run one hundred times, for every problem and type of crossover.
All problems used the following function set {AND, OR, XOR, AND with one
input inverted}. Because the best performing population size was usually very
small, we have reduced the tournament size to two, to avoid repeating the issue
from the first round of meta-evolution. For problems where the optimized setting
was routinely able to find the ideal solution, we have also reduced the number
of fitness function evaluations to get more telling results.

Table 4 shows the results of the parameter sweep. For each problem and
crossover operator, we have selected combination of mutation rate and popula-
tion size which provided the best mean fitness over the hundred runs. Operators
that performed significantly different from (1+λ) have their mean values marked.
The table also shows standard deviation (SD) and three quantiles.
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Figure 2 provides visual comparison using box plots. The Arithmetic
crossover, originally intended for use in symbolic regression, performs the worst
when used for Boolean function design. For adder and multiplier problems, the
(1 + λ) strategy has significantly surpassed all other approaches. However, for
the bent function, there was no statistically significant difference, and for the
1-resilient function, the (1+λ) has performed significantly worse than the other
options. Here, even with an optimal setting, some of the runs failed to produce
a resilient function, resulting in significant deterioration of the average fitness.

4.4 Symbolic Regression

For symbolic regression, we have chosen four problems from the work of Clegg
et al. [8] and McDermott et al. [19] for better GP benchmarks, and the Pagie-1
one problem which has been proposed by White et al. [15] as an alternative
to the heavily overused Koza-1 (“quartic”) problem. The analytic functions of
the problems are shown in Table 5. The training data set U[a, b, c] refers to c
uniform random samples drawn from a to b inclusive and E[a, b, c] refers to a
grid of points evenly spaced with an interval of c, from a to b inclusive.

The fitness of the individuals was represented by a cost function value, defined
as the sum of the absolute differences between the correct function values and

Fig. 2. Comparison of crossover operators for Boolean functions.
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Table 5. Symbolic regression problems used in the experiment.

Problem Objective function Vars Training set

Koza-3 x6 − 2x4 + x2 1 U[−1, 1, 20]

Nguyen-4 x6 + x5 + x4 + x3 + x2 + x 1 U[−1, 1, 20]

Nguyen-7 ln(x + 1) + ln(x2 + 1) 1 U[0, 2, 20]

Pagie-1 1/(1 + x−4) + 1/(1 + y−4) 2 E[−5, 5, 0.4]

Table 6. Configuration of the symbolic regression parameter sweep.

Property Koza-3 Nguyen-4 Nguyen-7 Pagie-1

Genotype length 48 128 128 512

Mutation rate 0.02 – 0.2 0.02 – 0.2 0.02 – 0.2 0.02 – 0.2

Population size 4 – 96� 4 – 96� 4 – 96� 4 – 96�

Fitness evaluations 10000 10000 10000 10000

Tournament size 4 4 4 4

Percentage of elites 0.15 0.15 0.15 0.15
� {4, 6, 8, 12, 16, 24, 32, 48, 64, 96}.

Table 7. Results of the parameter sweep for symbolic regression.

Problem Crossover type Mutation rate Pop. size Mean fitness SD Q1 Median Q3

Koza-3 (1 + λ) 0.16 24 0.0664 0.0774 0.0119 0.0504 0.0839

None 0.12 16 0.0642 0.0815 0.0092 0.0376 0.0849

Block 0.06 12 0.0636 0.0755 0.0200 0.0455 0.0784

Subgraph 0.16 64 0.0692 0.0819 0.0168 0.0483 0.0852

One-point 0.14 96 0.0617 0.0640 0.0154 0.0333 0.0878

Arithmetic 0.12 12 0.0435 0.0405 0.0146 0.0311 0.0764

Nguyen-4 (1 + λ) 0.12 6 0.3120 0.2658 0.1574 0.2478 0.3745

None 0.10 8 0.3307 0.2326 0.1672 0.2865 0.4130

Block 0.08 16 0.3485 0.2800 0.1800 0.2850 0.4125

Subgraph 0.10 6 0.3709a 0.2692 0.1940 0.3393 0.4652

One-point 0.10 12 0.3282 0.2351 0.1579 0.2864 0.4219

Arithmetic 0.08 8 0.3231 0.2305 0.1560 0.2558 0.4318

Nguyen-7 (1 + λ) 0.18 64 0.6722 0.4215 0.4364 0.5935 0.7682

None 0.10 6 0.6871 0.3736 0.4464 0.6055 0.8073

Block 0.12 24 0.7601a 0.3352 0.5522 0.7101 0.9163

Subgraph 0.12 32 0.7724a 0.4461 0.5090 0.7155 0.9613

One-point 0.16 16 0.7136 0.3741 0.4405 0.6984 0.8439

Arithmetic 0.14 6 0.8132a 0.4978 0.5502 0.7027 0.8288

Pagie-1 (1 + λ) 0.08 8 130.8812 48.2214 93.7397 122.7972 160.8945

None 0.06 96 134.5053 46.6960 96.3143 140.6268 170.5598

Block 0.04 96 126.1124 45.7809 87.4737 122.3703 161.1563

Subgraph 0.08 64 150.4739b 46.9169 115.0119 161.9589 181.6550

One-point 0.06 8 130.6106 48.9600 96.4414 122.4861 169.5678

Arithmetic 0.04 8 120.1536 45.7169 84.6019 114.4325 152.5632

a p-value is less than 0.05. b p-value is less than 0.01.
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the values of an evaluated individual. The configuration of the experiment is
shown in Table 6. All problems used the following set of mathematical functions
{+, −, ∗, /, sin, cos, ln(|n|), en}.

Table 7 shows the parameter sweep results. Same as before, the primary
selected criterion was the best average fitness over one hundred runs. Crossover
operators that performed significantly different from (1 + λ) have their mean
values marked. As can be seen in Fig. 3, the arithmetic crossover performs very
well, when used for symbolic regression, as originally designed.

5 Discussion

In our meta-evolutionary experiments, we dealt with significant problems in
order to make a fair comparison. We were able to determine optimal parameter
settings for the (1 + λ)-CGP as the tuning consists of only three parameters:
population size, mutation rate, and genotypic length. However, determining opti-
mal parameter settings for the canonical crossover algorithms is more complex.
There are three additional parameters to contend with: crossover rate, elitism
rate, and tournament size, which makes obtaining an optimal parameter setting
for the respective problems significantly more difficult.

Fig. 3. Comparison of crossover operators for symbolic regression.
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Furthermore, former studies on the traditional (1 + λ)-CGP algorithm have
shown that large genotypes are very effective for the performance of CGP for cer-
tain problems. Consequently, we have to deal with a big parameter space in CGP
in order to determine the optimal parameters and to make a fair comparison.

For this paper, we only used the meta-evolution framework of the Java Evo-
lutionary Computation Toolkit (ECJ)1. However, we think that including other
state-of-the-art methods for parameter tuning of evolutionary algorithms, like
Iterated Race for Automatic Algorithm Configuration (IRace)2 or Sequential-
parameter-optimization (SPOT)3, can provide more insight into well-performing
algorithm settings in CGP, and help to provide fair and profound comparisons.

Another point which should be discussed is the observation that each type
of crossover works best with different settings. Our findings indicate that there
exists no general parameterization pattern for CGP when the crossover is in use.
We think it should be investigated if there are similar behaviors like exploration
abilities which could be obtained by fitness and search space analyses.

The results of our study show that the parameter settings vary for different
problems in the respective problem domain, and indicate that there is no general
pattern to parametrize the (1+λ)-CGP in a well-performing way. These findings
also open up a new question, which conditions or types of problems have the
need for bigger or smaller population sizes. A preliminary assumption could be
that the fitness landscape of certain problems requires more exploration abilities
in order to overcome local optima.

Our results indicate that bigger populations perform well in the symbolic
regression domain. This finding is consistent with a recent study on mutation-
only CGP by Kaufmann et al. [20] which also indicates that bigger populations
perform best in the symbolic regression domain.

Since our experiments validate Kaufmann et al. results, this behavior should
be investigated through more detailed experiments. Furthermore, we think that
these findings offer a good opportunity to get more understanding of how CGP
works in detail and can significantly contribute to the overall knowledge of fitness
landscape analysis in CGP.

Specifically, Kaufmann et al. show that a mutational (μ + λ) evolutionary
algorithm with big population size can be very effective. Therefore, we think
it should be investigated whether the Block crossover can be used with a (μ +
λ) evolutionary algorithm, as a part of our attempts to proceed towards more
precise comparative studies in CGP.

5.1 Analysis of Hypothesis

The results of our comparative study show that the traditional (1+λ)-CGP algo-
rithm can not be stated as the universally predominant algorithm for CGP. While
it is often a good choice, the outcome of our study gives a significant evidence

1 https://cs.gmu.edu/∼eclab/projects/ecj/.
2 http://iridia.ulb.ac.be/irace/.
3 http://www.spotseven.de/category/sequential-parameter-optimization/.

https://cs.gmu.edu/~eclab/projects/ecj/
http://iridia.ulb.ac.be/irace/
http://www.spotseven.de/category/sequential-parameter-optimization/
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that the (1+λ)-CGP can not be considered as the most efficient CGP algorithm
in the boolean function domain. The experiments on 1-resilient Boolean function
proves that the (1 + λ)-CGP may indeed be significantly inferior to the other
CGP algorithms.

6 Conclusion and Future Work

The first comprehensive comparative study on crossover in CGP has been pro-
posed. We also proposed a new Block crossover technique, inspired by embedded
CGP, for use in standard CGP. We have performed a comparative study using
our new crossover technique, two evolutionary methods that only use mutation,
and three other crossover operators that have been suggested in the literature.
Simple One-point Crossover, Arithmetic crossover, used in the field of real-valued
Genetic Algorithms, and Subgraph Crossover that recombines parts of the parent
chromosome phenotypes.

We have formulated a hypothesis that the traditional (1 + λ)-CGP algo-
rithm would not perform significantly worse than the crossover operators. We
performed a comparison on eight selected tasks from the areas of Boolean func-
tion design and symbolic regression. We have used meta-evolution to determine
the most important evolutionary parameters and find common values for the
parameters of lower importance.

Next, we have performed a series of parameter sweeps, to determine the set-
tings most suitable for every type of crossover and every task, and performed
a comparison. Finally, we have performed a non-parametric statistical test to
prove our hypothesis false, and shown that the (1 + λ)-CGP is significantly out-
performed by all other approaches, when designing 1-resilient Boolean functions.

Our results show, that it is possible for crossover operators to outperform
the standard (1 + λ) strategy. However, if both methods have their parameters
fine-tuned, the (1 + λ) strategy often remains as the overall best strategy. The
question of finding a universal crossover operator is CGP therefore remains open.

Our study opens a new perspective on comparative studies on the use of
crossover in CGP and its challenges. The experiments with meta-evolution in
CGP have shown that it is difficult to obtain well-performing parameter settings
for crossover algorithms in CGP.

These results are the first step toward a fair comparison and a more clear
understanding of the function of crossover in CGP. Our future work will focus
on exploring ways to make comparisons between crossover techniques and algo-
rithms in CGP more fair, including the investigation of suitable parameter
optimization techniques for CGP, widening the spectrum of problem domains
on which comparison is made, and using crossover operators from other areas.
We will especially focus on investigating the possibility of combining the Block
crossover with the (μ + λ) evolutionary algorithm, and on exploring the domain
of cryptographically significant boolean functions, where the (1 + λ) algorithm
faces great difficulty.
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