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Abstract
We propose a novel approach for coping with alternating quantification as the main source of
nonelementary complexity of decidingWS1S formulae.Our approach is applicablewithin the
state-of-the-art automata-based WS1S decision procedure implemented e.g. in Mona. The
way in which the standard decision procedure processes quantifiers involves determinization,
with its worst case exponential complexity, for every quantifier alternation in the prefix of
a formula. Our algorithm avoids building the deterministic automata—instead, it constructs
only those of their states needed for (dis)proving validity of the formula. It uses a symbolic
representation of the states, which have a deeply nested structure stemming from the repeated
implicit subset construction, and prunes the search space by a nested subsumption relation,
a generalization of the one used by the so-called antichain algorithms for handling non-
deterministic automata. We have obtained encouraging experimental results, in some cases
outperformingMona, and some of the other recently proposed approaches, by several orders
of magnitude.

1 Introduction

Weakmonadic second-order logic of one successor (WS1S) is a powerful, concise, and decid-
able logic for describing regular properties of finite words. Despite its nonelementary worst
case complexity [2], it has been shown useful in numerous applications. Most of the success-
ful applicationswere due to the toolMona [3], which implements decision procedures for the

An extended abstract of this paper was first presented in [1]. The current paper extends [1] with a more
detailed presentation of the approach, the needed proofs, an illustrating example, and an extended
experimental evaluation of the approach.
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WS1S and WS2S (a generalization of WS1S to finite binary trees) based on finite automata.
The authors ofMona list amultitude of its diverse applications [4], ranging from software and
hardware verification through controller synthesis to computational linguistics, and further
on. Among more recent applications, verification of pointer programs and deciding related
logics [5–10] can be mentioned, as well as synthesis from regular specifications [11].

Despite many optimizations implemented in Mona and other tools, the worst case com-
plexity of the problem sometimes strikes back. Authors of methods using the translation of
their problem to WS1S/WS2S are then forced to either find workarounds to circumvent the
complexity blowup, such as in [6], or give up translating to WS1S/WS2S altogether [12]—
often for the price of restricting the input of their approach.

The decision procedure of Mona works with deterministic automata; it uses deter-
minization extensively and relies on minimization of deterministic automata to suppress the
complexity blow-up. Nevertheless, the worst case exponential complexity of determinization
often significantly harms the performance of the tool. Recent works on efficient methods for
handling nondeterministic automata—in particular, works on efficient testing of language
inclusion and universality of finite automata [13–15] and works on reducing the size of finite
automata using simulation relations [16,17]—suggest a way of alleviating this problem. Han-
dling nondeterministic automata using these methods, while avoiding determinization, has
been shown to provide great efficiency improvements in [18] (abstract regular model check-
ing) and also [19] (shape analysis). In this paper, we make a major step towards building the
entire decision procedure of WS1S on nondeterministic automata using similar techniques.
We propose a generalization of the antichain algorithms of [13] that addresses the main
bottleneck of the automata-based decision procedure for WS1S, which is the source of its
nonelementary complexity: elimination of alternating quantifiers on the automata level.

More concretely, the automata-based decision procedure translates the input WS1S for-
mula into a finite word automaton such that its language represents exactly all models
of the formula. The automaton is built in a bottom-up manner according to the structure
of the formula, starting with predefined atomic automata for literals and applying a cor-
responding automata operation for every logical connective and quantifier (∧,∨,¬, ∃).
The cause of the nonelementary complexity of the procedure can be explained on an
example formula of the form ϕ′ = ∃Xm∀Xm−1 . . . ∀X2∃X1 : ϕ0. The universal quan-
tifiers are first replaced by negation and existential quantification, which results in ϕ =
∃Xm¬∃Xm−1 . . . ¬∃X2¬∃X1 : ϕ0. The algorithm then builds a sequence of automata for
the sub-formulae ϕ0, ϕ

�
0, . . . , ϕm−1, ϕ

�
m−1 of ϕ where ϕ

�
i = ∃Xi+1 : ϕi and ϕi+1 = ¬ϕ

�
i for

0 ≤ i < m. Every automaton in the sequence is created from the previous one by applying
the automata operations corresponding to negation or elimination of the existential quantifier,
the latter of which may introduce nondeterminism. Negation applied on a nondeterministic
automaton may then yield an exponential blowup: given an automaton for ψ , the automaton
for ¬ψ is constructed by the classical automata-theoretic construction consisting of deter-
minization by the subset construction followed by swapping of the sets of final and non-final
states. The subset construction is exponential in the worst case. The worst case complexity of
the procedure run on ϕ is then a tower of exponentials with one level for every quantifier alter-
nation in ϕ; note that this high computational cost cannot be avoided completely—indeed,
the non-elementary complexity is an inherent property of the problem.

Overview of the proposed algorithm Our new algorithm for processing alternating quanti-
fiers in the prefix of a formula avoids the explicit determinization of automata in the classical
procedure and significantly reduces the state space explosion associated with it. It is based
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on a generalization of the antichain principle used for deciding universality and language
inclusion of finite automata [14,15]. It generalizes the antichain algorithms so that instead of
being used to process only one level of the chain of automata, it processes the whole chain of
quantifications with i alternations on-the-fly. This leads to working with automata states that
are sets of sets of sets … of states of the automaton representing ϕ0 with the nesting depth i
(this corresponds to i levels of subset construction being done on-the-fly). The algorithm uses
nested symbolic terms to represent sets of such automata states and a generalized version
of antichain pruning based on a notion of subsumption that descends recursively down the
structure of the terms while pruning on all their levels.

Experimental evaluation We have implemented the proposed approach in a prototype tool
called dWiNA and compared its performance with other publicly available WS1S solvers
on both generated formulae and formulae obtained from various verification tasks. From the
experiments, we have obtained encouraging results showing that there are cases in which
dWiNA outperformsMona as well as other recently proposed decision procedures.

Related work Mona is still the standard tool and the most common choice when it comes
to deciding WS1S/WS2S. Its efficiency stems from many optimizations, both higher-level
(such as automata minimization or the use of MTBDDs for encoding the transition relation
of the automata) as well as lower-level (e.g. optimizations of hash tables) [20]. There are
other related automata-based tools that are more recent—in particular, jMosel [21] for the
M2L(Str) logic and the procedure using symbolic finite automata implemented within the
Automata library of D’Antoni et al. [22]. They implement optimizations that allow them
to outperform Mona on some benchmarks, however, none of them provides an evidence of
being consistently more efficient.

Some other recent approaches are logic-based and completely avoid any explicit automata
construction. Ganzow and Kaizer [23] developed a new decision procedure for the weak
monadic second-order logic on inductive structures, a more general logic than WSkS. Their
method is based on the Shelah’s composition method, and it is implemented within the Toss
tool. It sometimes performs better than Mona, but it lacks support of syntactic features that
would allow one to perform a comparison on more benchmarks.

Traytel [24], on the other hand, uses the classical decision procedure recast in the frame-
work of coalgebras. Hiswork is based on testing equivalence of a pair of formulae by finding a
bisimulation between its derivatives. The implementation is, however, not optimized enough,
and it is easily outperformed by the rest of the recent tools.

Plan of the paper We define the WS1S logic in Sect. 2. In Sects. 3 and 4, we introduce
finite word automata and describe the classical decision procedure for WS1S based on finite
word automata. In Sect. 5, we introduce our method for dealing with alternating quantifiers.
Finally, we give an experimental evaluation and conclude the paper in Sects. 6 and 7.

2 WS1S

In this section, we introduce theweak monadic second-order logic of one successor (WS1S).
We introduce only its minimal syntax here, for the full standard syntax and a more thorough
introduction, see Section 3.3 in [25].
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WS1S is a monadic second-order logic over the set of non-negative integers N0. This
means that the logic allows second-order variables, usually denoted using upper-case letters
X , Y , . . . , that range over finite subsets of N0, e.g. X = {0, 3, 42}. Atomic formulae are of
the form (i) X ⊆ Y and (ii) X = Y +1, where X and Y are variables. The atomic formulae are
interpreted in turn as (i) standard set inclusion, and (ii) X = {x} and Y = {y} are singletons
and x is the successor of y, i.e. x = y+1. Formulae are built from the atomic formulae using
the logical connectives ∧,∨,¬, and the quantifier ∃X (for a second-order variable X ).

Given a WS1S formula ϕ(X1, . . . , Xn) with free variables X1, . . . , Xn , the assignment
ρ = {X1 	→ S1, . . . , Xn 	→ Sn}, where S1, . . . , Sn are finite subsets ofN0, satisfiesϕ, written
as ρ |� ϕ, if the formula holds when every variable Xi is replaced with its corresponding
value Si = ρ(Xi ). We say that ϕ is valid, denoted as |� ϕ, if it is satisfied by all assignments
of its free variables to finite subsets of N0. Observe the limitation to finite subsets of N0

(related to the adjective weak in the name of the logic); a WS1S formula can indeed only
have finite models (although there may be infinitely many of them).

3 Preliminaries

We now provide some preliminaries on downward and upward closed sets and on finite
automata.

Downward and upward closed sets For a set D and a set S ⊆ 2D we use ↓S to denote the
downward closure of S, i.e. the set ↓S = {R ⊆ D | ∃S ∈ S : R ⊆ S}, and ↑S to denote
the upward closure of S, i.e. the set ↑S = {R ⊆ D | ∃S ∈ S : R ⊇ S}. The set S is in both
cases called the set of generators of ↑S or ↓S respectively. A set S is downward closed if
it equals its downward closure, S = ↓S, and upward closed if it equals its upward closure,
S = ↑S. The choice operator

∐
(sometimes also called the unordered Cartesian product) is

an operator that, given a set of setsD = {D1, . . . , Dn}, returns the set of all sets {d1, . . . , dn}
obtained by taking one element di from every set Di . Formally,

∐
D =

{

{d1, . . . , dn} | (d1, . . . , dn) ∈
n∏

i=1

Di

}

(1)

where
∏

denotes the Cartesian product. We use the
∐

operator to represent the complement
of a downward-closed set represented using its generators: ↑∐D = ↓D. Note that for a set
D,

∐{D} is the set of all singleton subsets of D, i.e.
∐{D} = {{d} | d ∈ D}. Further note

that if any Di is the empty set ∅, the result is∐D = ∅. The following lemmas show important
properties of

∐
that are used later.

Lemma 1 Let X and Y be sets of sets. Then it holds that

↑∐X ∩ ↑∐Y = ↑∐ (X ∪ Y). (2)

Proof From the definition of the
∐

operator, it holds that

↑∐X = ↑{{x1, . . . , xn}
∣
∣ (x1, . . . , xn) ∈

∏
X
}

and

↑∐Y = ↑{{y1, . . . , ym} ∣∣ (y1, . . . , ym) ∈
∏

Y
}
.

(3)

Notice that the intersection of a pair of upward closed sets given by their generators can be
constructed by taking all pairs of generators (X , Y ), s.t. X is from

∐
X and Y is from

∐
Y,
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and constructing the sets X ∪ Y . It is easy to see that X ∪ Y is a generator of ↑∐X ∩ ↑∐Y

and that ↑∐X ∩ ↑∐Y is generated by all such pairs, i.e. that ↑∐X ∩ ↑∐Y is equal to

↑{{x1, . . . , xn} ∪ {y1, . . . , ym} ∣∣ (x1, . . . , xn) ∈
∏

X ∧ (y1, . . . , ym) ∈
∏

Y
}
. (4)

We observe that this set can be also expressed as

↑{{x1, . . . , xn, y1, . . . , ym} ∣∣ (x1, . . . , xn, y1, . . . ym) ∈
∏

(X ∪ Y )
}

(5)

or, to conclude the proof, as ↑∐ (X ∪ Y). ��
Lemma 2 Let R be a set of sets. Then, it holds that

↑∐R =
⋂

R j∈R
↑∐{R j }. (6)

Proof Because intersection and union are both associative operations andR = {R1, . . . , Rn},
this lemma is a simple consequence of Lemma 1. ��

Let X be a set of variables. A symbol τ over X is a mapping of all variables in X to either
0 or 1, e.g. τ = {X1 	→ 0, X2 	→ 1} for X = {X1, X2}. An alphabet over X is the set of
all symbols over X, denoted as ΣX. For any X (even empty), we use 0 to denote the symbol
which maps all variables from X to 0, 0 ∈ ΣX.

Finite automata A (nondeterministic) finite (word) automaton (abbreviated as FA in the
following) over a set of variables X is a quadruple A = (Q,Δ, I , F) where Q is a finite set
of states, I ⊆ Q is a set of initial states, F ⊆ Q is a set of final states, and Δ is a set of
transitions of the form (p, τ, q) where p, q ∈ Q and τ ∈ ΣX. We use p

τ−→ q ∈ Δ to denote
that (p, τ, q) ∈ Δ. Note that for an FA A over X = ∅, A is a unary FA with the alphabet
ΣX = {0}.

A run r of A over a word w = τ1τ2 . . . τn ∈ Σ∗
X
from the state p ∈ Q to the state s ∈ Q

is a sequence of states r = q0q1 . . . qn ∈ Q+ such that q0 = p, qn = s and for all 1 ≤ i ≤ n

there is a transition qi−1
τi−→ qi in Δ. If s ∈ F, we say that r is an accepting run. We write

p
w�⇒ s to denote that there exists a run from the state p to the state s over the word w.

The language accepted by a state q is defined by LA(q) = {w | q w�⇒ q f , q f ∈ F}, while
the language of a set of states S ⊆ Q is defined as LA(S) = ⋃

q∈S LA(q). When it is
clear which FA A we refer to, we only write L(q) or L(S). The language of A is defined as
L(A) = LA(I ). We say that the state q accepts w and that the automaton A accepts w to
express w ∈ LA(q) and w ∈ L(A) respectively. We call a language L ⊆ Σ∗

X
universal iff

L = Σ∗
X
.

For a set of states S ⊆ Q, we define

post[Δ,τ ](S) =
⋃

s∈S
{t | s τ−→ t ∈ Δ},

pre[Δ,τ ](S) =
⋃

s∈S
{t | t τ−→ s ∈ Δ}, and

cpre[Δ,τ ] (S) = {t | post[Δ,τ ]({t}) ⊆ S}.
The complement of A is the automaton AC = (2Q,ΔC, {I },↓{Q\F}) where ΔC ={
P

τ−→ post[Δ,τ ](P)

∣
∣
∣ P ⊆ Q

}
; this corresponds to the standard procedure that first deter-

minizesA by the subset construction and then swaps its sets of final and non-final states, and
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↓{Q\F} is the set of all subsets of Q that do not contain a final state of A. The language of
AC is the complement of the language of A, i.e., L(AC) = L(A).

For a set of variablesX and a variable X , the projection of X fromX, denoted as π[X ](X),
is the set X\{X}. For a symbol τ , the projection of X from τ , denoted π[X ](τ ), is obtained
from τ by restricting τ to the domain π[X ](X). For a transition relation Δ, the projection of

X from Δ, denoted as π[X ](Δ), is the transition relation
{
p

π[X ](τ )−−−−→ q | p τ−→ q ∈ Δ
}
.

4 DecidingWS1S with finite automata

The classical decision procedure for WS1S [26] (as described in Section 3.3 of [25]) is
based on a logic-automata connection and decides validity (satisfiability) of aWS1S formula
ϕ(X1, . . . , Xn) by constructing the FA Aϕ over {X1, . . . , Xn} which recognizes encodings
of exactly the models of ϕ. The automaton is built in a bottom-up manner, according to
the structure of ϕ, starting with predefined atomic automata for literals and applying a corre-
sponding automata operation for every logical connective and quantifier (∧,∨,¬, ∃). Hence,
for every sub-formulaψ ofϕ, the procedurewill compute the automatonAψ such thatL(Aψ)

represents exactly all models of ψ , terminating with the result Aϕ .
The alphabet ofAϕ consists of all symbols over the setX = {X1, . . . , Xn} of free variables

ofϕ (fora, b ∈ {0, 1} andX = {X1, X2},we use X1 : a
X2 : b

to denote the symbol {X1 	→ a, X2 	→
b}). A word w from the language of Aϕ is a sequence of these symbols, e.g. X1 : ε

X2 : ε
, X1 : 011
X2 : 101

,

or X1 : 01100
X2 : 10100

. We denote the i th symbol ofw asw[i], for i ∈ N0. An assignment ρ : X → 2N0

mapping free variables X of ϕ to subsets of N0 is encoded into a word wρ of symbols over
X in the following way: wρ contains 1 in the j th position of the row for Xi iff j ∈ Xi in
ρ. Formally, for every i ∈ N0 and X j ∈ X, if i ∈ ρ(X j ), then wρ[i] maps X j 	→ 1. On
the other hand, if i /∈ ρ(X j ), then either wρ[i] maps X j 	→ 0, or the length of w is smaller
than or equal to i . Notice that there exist an infinite number of encodings of ρ. The shortest
one is ws

ρ of the length n + 1, where n is the largest number appearing in any of the sets
that is assigned to a variable of X in ρ, or − 1 when all these sets are empty. The rest of the
encodings are all those corresponding to ws

ρ extended with an arbitrary number of 0 symbols
appended to its end.

For example, X1 : 0
X2 : 1

, X1 : 00
X2 : 10

, X1 : 000
X2 : 100

, X1 : 000 . . . 0
X2 : 100 . . . 0

are all encodings of the assignment

ρ = {X1 	→ ∅, X2 	→ {0}}. For the soundness of the decision procedure, it is important that
Aϕ always accepts either all encodings of ρ or none of them.

The automata Aϕ∧ψ and Aϕ∨ψ are constructed from Aϕ and Aψ by standard automata-
theoretic union and intersection operations, preceded by the so-called cylindrification which
unifies the alphabets of Aϕ and Aψ . Since these operations, as well as the automata for the
atomic formulae, are not the subject of the contribution proposed in this paper, we refer the
interested reader to [25] for details.

The part of the procedure which is central for this paper is processing negation and
existential quantification; we will therefore describe it in detail. The FA A¬ϕ is constructed
as the complement of Aϕ . Then, all encodings of the assignments that were accepted by Aϕ

are rejected byA¬ϕ and vice versa. The FAA∃X :ϕ is obtained from the FAAϕ = (Q,Δ, I , F)

by first projecting X from the transition relationΔ, yielding the FAA′
ϕ = (Q, π[X ](Δ), I , F).

However,A′
ϕ cannot be directly used asA∃X :ϕ . The reason is thatA′

ϕ may nowbe inconsistent
in accepting some encodings of an assignment ρ while rejecting other encodings of ρ. For
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example, suppose that Aϕ accepts exactly all words starting with X1 : 010
X2 : 001

, i.e., L(Aϕ) =
{

X1 : 010
X2 : 001 ,

X1 : 0100
X2 : 0010 , . . . ,

X1 : 0100 . . . 0
X2 : 0010 . . . 0

}
. When computing the FA for ∃X2 : ϕ, we remove

the X2 row from all symbols of all words in L(Aϕ) and obtain the FA A′
ϕ that accepts

the language L(A′
ϕ) = { X1 : 010 , X1 : 0100 , . . . , X1 : 0100 . . . 0 }, but does not accept the word

X1 : 01 that encodes the same assignment (because X1 : 01
X2 : ??

/∈ L(Aϕ) for any values in the

place of ‘?’s). As a remedy for this situation, we further need to modify A′
ϕ to also accept

the rest of the encodings of ρ. This is done by enlarging the set of final states of A′
ϕ to also

contain all states that can reach a final state of A′
ϕ by a sequence of 0 symbols.

Formally, the automaton A∃X :ϕ = (Q, π[X ](Δ), I , F�) is obtained from A′
ϕ =

(Q, π[X ](Δ), I , F) by computing F� from F using the fixpoint computation F� = μZ . F∪
pre[π[X ](Δ),0](Z). Intuitively, the least fixpoint denotes the set of states backward-reachable
from F following transitions of π[X ](Δ) labelled by 0.

The procedure returns an automaton Aϕ that accepts exactly all encodings of the models
of ϕ. This means that the language ofAϕ is (i) universal iff ϕ is valid, (ii) non-universal iff ϕ

is invalid, (iii) empty iff ϕ is unsatisfiable, and (iv) non-empty iff ϕ is satisfiable. Notice that
in the particular case of ground formulae (i.e. formulae without free variables), the language
of Aϕ is either L(Aϕ) = {0}∗ in the case ϕ is valid, or L(Aϕ) = ∅ in the case ϕ is invalid.

5 Nested antichain-based approach for alternating quantifiers

We now present our approach for dealing with alternating quantifiers in WS1S formulae. We
consider a ground formula ϕ of the form

ϕ = ¬∃Xm ¬. . . ¬∃X2 ¬∃X1 : ϕ0(X)
︸ ︷︷ ︸

ϕ1

. .
.

︸ ︷︷ ︸
ϕm

(7)

where each Xi is a set of variables {Xa, . . . , Xb}, ∃Xi is an abbreviation for a non-empty
sequence ∃Xa . . . ∃Xb of consecutive existential quantifications, and ϕ0 is an arbitrary for-
mula called the matrix of ϕ. Note that the problem of checking validity or satisfiability of a
formula with free variables can be easily reduced to this form.

The classical procedure presented in Sect. 4 computes a sequence of automata
Aϕ0 ,Aϕ

�
0
, . . . ,A

ϕ
�
m−1

,Aϕm where for all 0 ≤ i ≤ m − 1, ϕ�
i = ∃Xi+1 : ϕi and ϕi+1 = ¬ϕ

�
i .

The ϕi ’s are the subformulae of ϕ shown in (7). Since eliminating existential quantification
on the automata level introduces nondeterminism (due to the projection on the transition rela-
tion), every A

ϕ
�
i
may be nondeterministic. The computation of Aϕi+1 then involves subset

construction and becomes exponential. The worst case complexity of eliminating the prefix
is therefore the tower of exponentials of the height m. Even though the construction may be
optimized, e.g. by minimizing every Aϕi (which is implemented by Mona), the size of the
generated automata can quickly become intractable.

The main idea of our algorithm is inspired by the antichain algorithms [13] for testing
language universality of an automaton A. In a nutshell, testing universality of A is testing
whether in the complementA ofA (which is created by determinization via subset construc-
tion, followed by swapping final and non-final states), an initial state can reach a final state.
The crucial idea of the antichain algorithms is based on the following: (i) the search can be
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done on the fly while constructing A. (ii) The sets of states that arise during the search are
closed (upward or downward, depending on the variant of the algorithm). (iii) The compu-
tation can be done symbolically on the generators of these closed sets. It is enough to keep
only the extreme generators of the closed sets (maximal for downward closed, minimal for
upward closed). The generators that are not extreme (we say that they are subsumed) can be
pruned away, which vastly reduces the search space.

We notice that individual steps of the algorithm for constructing Aϕ are very similar
to testing universality. Automaton Aϕi arises by subset construction from A

ϕ
�
i−1

, and to

computeA
ϕ

�
i
, it is necessary to compute the set of final states F�

i . Those are states backward

reachable from the final states of Aϕi via a subset of transitions of Δi (those labelled by

symbols projected to 0 by πi+1). To compute F�
i , the antichain algorithms could be actually

taken off-the-shelf and runwithA
ϕ

�
i−1

in the role of the inputA; then,A
ϕ

�
i
would be in the role

of A. This approach, however, has the following two problems. First, antichain algorithms
do not produce the automaton A (here A

ϕ
�
i
), but only a symbolic representation of a set of

(backward) reachable states (here of F�
i ). SinceAϕ

�
i
is the input of the construction ofAϕi+1 ,

the construction ofAϕ could not continue. The other problem is that the size of the inputA
ϕ

�
i−1

of the antichain algorithm is only limited by the tower of exponentials of the height i − 1,
and this might be already far out of reach.

The main contribution of our paper is an algorithm that alleviates the two problems men-
tioned above. It is based on a novel way of performing not only one, but all the 2m steps of
the construction of Aϕ on the fly. It uses a nested symbolic representation of sets of states
and a form of nested subsumption pruning on all levels of their structure. This is achieved
by a substantial refinement of the basic ideas of antichain algorithms.

5.1 Structure of the algorithm

Let us now start explaining the architecture of our on-the-fly algorithm for handling quantifier
alternation. Following the construction of automata described in Sect. 4, the structure of
the automata from the previous section, Aϕ0 ,Aϕ

�
0
, . . . ,A

ϕ
�
m−1

,Aϕm , can be described using

the following recursive definition. We use πi (C) for any mathematical object C to denote
projection of all variables in X1 ∪ · · · ∪ Xi from C .

LetAϕ0 = (Q0,Δ0, I0, F0) be an FA overX. Then, for each 0 ≤ i < m, the FAsA
ϕ

�
i
and

Aϕi+1 are over the alphabet πi+1(X) and have from the construction the following structure:

A
ϕ

�
i

= (Qi ,Δ
�
i , Ii , F

�
i ) where Aϕi+1 = (Qi+1,Δi+1, Ii+1, Fi+1) where

Δ
�
i = πi+1(Δi ) and Δi+1 =

{
R

τ−→post[Δ�
i ,τ ](R)

∣
∣
∣R∈Qi+1

}
,

F�
i = μZ . Fi∪pre[Δ�

i ,0](Z). Qi+1 = 2Qi , Ii+1={Ii }, and Fi+1= ↓{Qi\F�
i }.

We recall thatA
ϕ

�
i
directly corresponds to existential quantification of all variables in Xi (cf.

Sect. 4), and Aϕi+1 directly corresponds to the complement of A
ϕ

�
i
(cf. Sect. 3).

A crucial observation behind our approach is that, because ϕ is ground,Aϕ is an FA over
an empty set of variables, and, therefore, L(Aϕ) is either the empty set ∅ or the set {0}∗ (as
described in Sect. 4). Therefore, we need to distinguish between these two cases only. To
determine which of them holds, we do not need to explicitly construct the automaton Aϕ .
Instead, it suffices to check whether Aϕ accepts the empty string ε. This is equivalent to
checking existence of a state that is at the same time final and initial, that is

123



Nested antichains for WS1S

|� ϕ iff Im ∩ Fm �= ∅. (8)

To compute Im from I0 is straightforward (it equals {{. . . {{I0}} . . .}} nested m-times). In
the rest of the section, we will describe how to compute Fm (in the form of its symbolic
representation), and how to test whether it intersects with Im .

The algorithm takes advantage of the fact that to represent final states, one can use their
complement, the set of non-final states. For 0 ≤ i ≤ m, we write Ni and N �

i to denote

the sets of non-final states Qi\Fi of Ai and Qi\F�
i of A�

i respectively. The algorithm will
then instead of computing the sequence of automata Aϕ0 , Aϕ

�
0
, …, A

ϕ
�
m−1

, Aϕm compute

the sequence F0, F
�
0 , N1, N

�
1 , . . . up to either Fm (if m is even) or Nm (if m is odd), which

suffices for testing the validity of ϕ. The algorithm starts with F0 and uses the following
recursive equations:

(i) Fi+1 = ↓{N �
i }, (ii) F�

i = μZ . Fi ∪ pre[Δ�
i ,0](Z),

(iii) Ni+1 = ↑∐{F�
i }, (iv) N �

i = νZ . Ni ∩ cpre[Δ�
i ,0] (Z) .

(9)

Intuitively, (i) and (ii) are directly from the definition ofAi andA�
i . (iii) is a dual of (i): Ni+1

contains all subsets of Qi that contain at least one state from F�
i (cf. the definition of the

∐

operator). Finally, (iv) is a dual of (ii): in the kth iteration of the greatest fixpoint computation,
the current set of states Z will contain all states that cannot reach an Fi state over 0 within
k steps. In the next iteration, only those states of Z are kept such that all their 0-successors
are in Z . Hence, the new value of Z is the set of states that cannot reach Fi over 0 in k + 1
steps, and the computation stabilises with the set of states that cannot reach Fi over 0 in any
number of steps.

In the next two sections, we will show that both of the above fixpoint computations
can be carried out symbolically on representatives of upward and downward closed sets.
Particularly, inSects. 5.2 and5.3,we showhow thefixpoints from (ii) and (iv) canbe computed
symbolically, using subsets of Qi−1 as representatives (generators) of upward/downward
closed subsets of Qi . Section 5.4 explains how the above symbolic fixpoint computations can
be carried out using nested terms of depth i as a symbolic representation of computed states of
Qi . Section 5.5 shows how to test emptiness of Im ∩ Fm on the symbolic terms, and Sect. 5.6
describes the subsumption relation used to minimize the symbolic term representation used
within computations of (ii) and (iv).

5.2 Computing N�
i on representatives of ↑

∐R-sets

Computing N �
i at each odd level of the hierarchy of automata is done by computing the

greatest fixpoint of the function from Eq. 9(iv):

f
N �
i
(Z) = Ni ∩ cpre[Δ�

i ,0] (Z) . (10)

We will show that the whole fixpoint computation from Eq. 9(iv) can be carried out symbol-
ically on the representatives of Z due to the following two properties: (a) all intermediate
values of Z have the form ↑∐R, where R ⊆ Qi , so the sets R can be used as their sym-
bolic representatives, and (b) cpre and ∩ can be computed on such a symbolic representation
efficiently.

Let us start with the computation of cpre[Δ�
i ,τ ] (Z) where τ ∈ πi+1(0), assuming that Z

is of the form Z = ↑∐R, represented by R = {R1, . . . , Rn}. From Lemma 2, we have that
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a set of symbolic representatives R stands for the intersection of denotations of individual
representatives, that is

↑∐R =
⋂

R j∈R
↑∐{R j }. (11)

The set cpre[Δ�
i ,τ ] (Z) can thus be written as the cpre-image cpre[Δ�

i ,τ ]
(⋂S) of the intersec-

tion of the elements of a set S = {↑∐{R1}, . . . ,↑∐{Rn}
}
. Further, because cpre distributes

over ∩, we can compute the cpre-image of an intersection by computing intersection of the
cpre-images, i.e.

cpre[Δ�
i ,τ ]

(⋂
S
)

=
⋂

S∈S
cpre[Δ�

i ,τ ] (S) . (12)

By the definition ofΔ�
i (whereΔ

�
i = πi+1(Δi )), the set cpre[Δ�

i ,τ ] (S) can be computed using
the transition relation Δi for the price of further refining the intersection. In particular,

cpre[Δ�
i ,τ ] (S) =

⋂

ω∈π−1
i+1(τ )

cpre[Δi ,ω] (S) . (13)

Intuitively, cpre[Δ�
i ,τ ] (S) contains states from which every transition labelled by any symbol

that is projected to τ by πi+1 has its target in S.
Using (12), (13), and the fact that Z = ⋂{↑∐{R j } | R j ∈ R}, we obtain

cpre[Δ�
i ,τ ] (Z) =

⋂

R j∈R
ω∈π−1

i+1(τ )

cpre[Δi ,ω]
(↑∐{R j }

)
. (14)

To compute the individual conjuncts cpre[Δi ,ω]
(↑∐{R j }

)
, we take advantage of the spe-

cial form of the operand ↑∐{R j } and the fact that Δi is, by its definition (obtained from

determinization via subset construction), monotone w.r.t. ⊇. That is, if P
ω−→ P ′ ∈ Δi for

some P, P ′ ∈ Qi , then for every R ⊇ P , there is R′ ⊇ P ′ s.t. R ω−→ R′ ∈ Δi . Due to
monotonicity, the cpre[Δi ,ω]-image of an upward closed set is also upward closed (proved
below). Moreover, we observe that it can be computed symbolically using pre on elements
of its generators. Particularly, for a set ↑∐{R j }, we get the following lemma:

Lemma 3 Let R j ⊆ Qi−1 and ω be a symbol over πi (X) for i > 0. Then

cpre[Δi ,ω]
(↑∐{R j }

) = ↑∐{
pre[Δ�

i−1,ω](R j )
}
. (15)

Proof First,we show that the set cpre[Δi ,ω]
(↑∐{R j }

)
is upward closed. Second,we show that

all elements of the set
∐{

pre[Δ�
i−1,ω](R j )

}
are contained in cpre[Δi ,ω]

(↑∐{R j }
)
. Finally,

we show that for every element T in the set cpre[Δi ,ω]
(↑∐{R j }

)
, the set

∐{
pre[Δ�

i−1,ω](R j )
}

contains a smaller or equal element S.

1. Proving that cpre[Δi ,ω]
(↑∐{R j }

)
is upward closed: Consider a state S ∈ Qi s.t. S ∈

cpre[Δi ,ω]
(↑∐{R j }

)
. From the definition of cpre, it holds that

post[Δi ,ω]({S}) ⊆ ↑∐{R j }, (16)

and from the definition of Δi , it holds that

post[Δi ,ω]({S}) = {post[Δ�
i−1,ω](S)}. (17)
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For T ⊇ S, it clearly holds that

post[Δ�
i−1,ω](T ) ⊇ post[Δ�

i−1,ω](S) (18)

and, therefore, it also holds that

post[Δi ,ω]({T }) = {post[Δ�
i−1,ω](T )} ⊆ ↑∐{R j }. (19)

Therefore, T ∈ cpre[Δi ,ω]
(↑∐{R j }

)
and the set cpre[Δi ,ω]

(↑∐{R j }
)
is upward closed.

2. Proving that for all elements S ∈ ∐{
pre[Δ�

i−1,ω](R j )
}

it holds that S ∈
cpre[Δi ,ω]

(↑∐{R j }
)
: From the properties of

∐
, it holds that S = {s} is a singleton.

Because s ∈ pre[Δ�
i−1,ω](R j ), there is a transition s

ω−→ r ∈ Δ
�
i−1 for some r ∈ R j . Since

post[Δ�
i−1,ω](S) ⊇ {r}, it follows from the definition of Δi that post[Δi ,ω]({S}) = {T }

where T ⊇ {r}, and so T ∈ ↑∐{R j } and post[Δi ,ω]({S}) ⊆ ↑∐{R j }. We use the
definition of cpre to conclude that S ∈ cpre[Δi ,ω]

(↑∐{R j }
)
.

3. Proving that for every T ∈ cpre[Δi ,ω]
(↑∐{R j }

)
there exists some element S ∈∐{

pre[Δ�
i−1,ω](R j )

}
such that S ⊆ T : From T ∈ cpre[Δi ,ω]

(↑∐{R j }
)
and the defi-

nition of Δi , we have that

post[Δi ,ω]({T }) = {P} ⊆ ↑∐{R j } (20)

for P s.t. post[Δ�
i−1,ω](T ) = P . Since P ∈ ↑∐{R j }, there exist r ∈ R j ∩ P and t ∈ T

s.t. t
ω−→ r ∈ Δ

�
i−1. Because t ∈ pre[Δ�

i−1,ω]({r}), we choose S = {t} and we are done.
��

Intuitively, the sets with post-images above a singleton {p} ∈ {{p} | p ∈ R j
} = ↑∐{R j }

in the ordering ⊆ are those that contain at least one state q ∈ Qi−1 s.t. q
ω−→ p ∈ Δ

�
i−1.

Combining (14) and Lemma 3 yields

cpre[Δ�
i ,τ ] (Z) =

⋂

R j∈R
ω∈π−1

i+1(τ )

↑∐{
pre[Δ�

i−1,ω](R j )
}
. (21)

By applying Lemma 2, we get the final formula for cpre[Δ�
i ,τ ](Z):

cpre[Δ�
i ,τ ]

(
Z = ↑∐R) = ↑∐

{
pre[Δ�

i−1,ω](R j ) | ω ∈ π−1
i+1(τ ), R j ∈ R

}
. (22)

In order to compute f
N �
i
(Z), it remains to intersect cpre[Δ�

i ,0] (Z), computed using (22), with

Ni . By Eq. 9(iii), Ni equals ↑∐{F�
i−1}, and, by Lemma 2, the intersection can be done

symbolically as

f
N �
i
(Z) = ↑∐

(
{F�

i−1} ∪
{
pre[Δ�

i−1,ω](R j ) | ω ∈ π−1
i+1(0), R j ∈ R

})
. (23)

Finally, note that a symbolic application of f
N �
i
to Z = ↑∐R represented as the set R

reduces to computing pre-images of the elements ofR, which are then put next to each other,
together with F�

i−1. The computation starts from Ni = ↑∐{F�
i−1}, represented by {F�

i−1},
and each of its steps, implemented by (23), preserves the form of sets ↑∐R, represented by
R.
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5.3 Computing F�
i on representatives of ↓R-sets

Similarly as in the previous section, computation of F�
i at each even level of the automata

hierarchy is done by computing the least fixpoint of the function

f
F�
i
(Z) = Fi ∪ pre[Δ�

i ,0](Z). (24)

We will show that the whole fixpoint computation from Eq. 9(ii) can be again carried out
symbolically due to the following two properties: (a) all intermediate values of Z are of the
form↓R,R ⊆ Qi , meaning that the setsR can be used as their symbolic representatives, and
(b) pre and∪ can be computed efficiently on such a symbolic representation. The computation
is a simpler analogy of the one in Sect. 5.2.

We start with the computation of pre[Δ�
i ,τ ](Z) where τ ∈ πi+1(X), assuming that Z is

of the form ↓R, represented by R = {R1, . . . , Rn}. A simple analogy to (11) and (12) of
Sect. 5.2 is that the union of downward closed sets is a downward closed set generated by
the union of their generators, i.e.

↓R =
⋃

R j∈R
↓{R j } (25)

and that pre distributes over union, i.e.

pre[Δ�
i ,τ ](↓R) =

⋃

R j∈R
pre[Δ�

i ,τ ](↓{R j }). (26)

An analogy of (13) holds too:

pre[Δ�
i ,τ ](S) =

⋃

ω∈π−1
i+1(τ )

pre[Δi ,ω](S). (27)

Intuitively, pre[Δ�
i ,τ ](S) contains states from which at least one transition labelled by any

symbol that is projected to τ by πi+1 leaves with the target in S. Using (26), (27), and the
fact that Z = ⋃{↓{R j } | R j ∈ R}, we obtain

pre[Δ�
i ,τ ](Z) =

⋃

R j∈R
ω∈π−1

i+1(τ )

pre[Δi ,ω](↓{R j }). (28)

To compute the individual disjuncts pre[Δi ,ω](↓{R j }), we take advantage of the fact that
every ↓{R j } is downward closed, and that Δi is, by its definition (determinization by subset

construction), monotone w.r.t. ⊆. That is, if P
ω−→ P ′ ∈ Δi for some P, P ′ ∈ Qi , then for

every R ⊆ P , there is R′ ⊆ P ′ s.t. R ω−→ R′ ∈ Δi . Due to monotonicity, the pre[Δi ,ω]-image
of a downward closed set is downward closed (proved below). Moreover, we observe that
it can be computed symbolically using cpre on elements of its generators. In particular, for
a set ↓{R j }, we get the following lemma, which is a dual of Lemma 3:

Lemma 4 Let R j ⊆ Qi−1 and ω be a symbol over πi (X) for i > 0. Then

pre[Δi ,ω](↓{R j }) = ↓{cpre[Δ�
i−1,ω]

(
R j
)}. (29)

Proof First, we show that pre[Δi ,ω](↓{R j }) is downward closed. Second, we show that
S = cpre[Δ�

i−1,ω]
(
R j
)
is in pre[Δi ,ω](↓{R j }). Finally, we show that every element T in

pre[Δi ,ω](↓{R j }) is smaller than or equal to S.
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1. Proving that pre[Δi ,ω](↓{R j }) is downward closed: Consider a state S′ ∈ Qi s.t. S′ ∈
pre[Δi ,ω](↓{R j }). From the definitions of pre and Δi , it holds that

post[Δi ,ω]({S′}) = {post[Δ�
i−1,ω](S′)} ⊆ ↓{R j }, (30)

(note that Δi is deterministic) and, therefore, post[Δ�
i−1,ω](S′) ∈ ↓{R j }. For T ⊆ S′, it

clearly holds that
post[Δ�

i−1,ω](T ) ⊆ post[Δ�
i−1,ω](S′) (31)

and so it also holds that

post[Δi ,ω]({T }) = {post[Δ�
i−1,ω](T )} ⊆ ↓{R j }. (32)

Therefore, T ∈ pre[Δi ,ω](↓{R j }) and pre[Δi ,ω](↓{R j }) is downward closed.
2. Proving that S = cpre[Δ�

i−1,ω]
(
R j
) ∈ pre[Δi ,ω](↓{R j }): From the definition of cpre, it

holds that
post[Δ�

i−1,ω](S) = S′ ⊆ R j . (33)

Further, from the definition of Δi , it holds that S
ω−→ S′ ∈ Δi and, therefore, S ∈

pre[Δi ,ω](↓{R j }).
3. Proving that for every T ∈ pre[Δi ,ω](↓{R j }) it holds that T ⊆ S: From T ∈

pre[Δi ,ω](↓{R j }), we have that T
ω−→ P ∈ Δi for P ⊆ R j , and, from the definition

of Δi , we have that P = post[Δ�
i−1,ω](T ). From P = post[Δ�

i−1,ω](T ) and the definition
of cpre, it is easy to see that T ⊆ cpre[Δ�

i−1,ω] (P), and, moreover,

P ⊆ R j �⇒ cpre[Δ�
i−1,ω] (P) ⊆ cpre[Δ�

i−1,ω]
(
R j
)
. (34)

Therefore, we can conclude that T ⊆ cpre[Δ�
i−1,ω]

(
R j
) = S. ��

Intuitively, the sets with the post-images below R j in the ordering ⊆ are those that do not
have an outgoing transition leading outside R j . The largest such a set is cpre[Δ�

i−1,ω]
(
R j
)
.

Combining (28) with Lemma 4 yields

pre[Δ�
i ,τ ](Z) =

⋃

R j∈R
ω∈π−1

i+1(τ )

↓{cpre[Δ�
i−1,ω]

(
R j
)}. (35)

Using (25), we get the final formula for pre[Δ�
i ,τ ](Z):

pre[Δ�
i ,τ ](Z = ↓R) = ↓{cpre[Δ�

i−1,ω]
(
R j
) | ω ∈ π−1

i+1(τ ), R j ∈ R}. (36)

To compute f
F�
i
(Z), it remains to unite pre[Δ�

i ,0](Z), computed using (36), with Fi . From

Eq. 9(i), Fi equals ↓{N �
i−1}, so the union can be done symbolically as

f
F�
i
(Z) = ↓

(
{N �

i−1} ∪
{
cpre[Δ�

i−1,ω]
(
R j
) | ω ∈ π−1

i+1(0), R j ∈ R
})

. (37)

Therefore, a symbolic application of f
F�
i
to Z = ↓R represented by the set R reduces to

computing cpre-images of elements of R, which are put next to each other, together with
N �
i−1. The computation starts from Fi = ↓{N �

i−1}, represented by {N �
i−1}, and each of its

steps, implemented by (37), preserves the form of sets ↓R, which are represented by R.
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5.4 Computation of F�
i and N

�
i on symbolic terms

Sections 5.2 and 5.3 show how sets of states arising within the fixpoint computations from
Eqs. 9(ii) and 9(iv) can be represented symbolically using representatives that are sets of states
of the lower level. The sets of states of the lower level will be again represented symbolically.
When computing the fixpoint of level i , we will work with a nested symbolic representation
of states of depth i . Particularly, sets of states of Qk , for 0 ≤ k ≤ i , are represented by terms
of level k where a term of level 0 is a subset of Q0, a term of level 2 j + 1, for j ≥ 0, is of
the form ↑∐{t1, . . . , tn} where t1, . . . , tn are terms of level 2 j , and a term of level 2 j , for
j > 0, is of the form ↓{t1, . . . , tn} where t1, . . . , tn are terms of level 2 j − 1.

The computation of cpre and f
N �
2 j+1

on a term of level 2 j + 1 and computation of pre and

f
F�
2 j
on a term of level 2 j then becomes a recursive procedure that descends via the structure

of the terms and produces again a term of level 2 j + 1 or 2 j respectively. In the case of cpre
and f

N �
2 j+1

called on a term of level 2 j+1, Eq. (22) reduces the computation to a computation

of pre on its sub-terms of level 2 j , which is again reduced by (36) to a computation of cpre
on terms of level 2 j − 1, and so on until the bottom level where the algorithm computes pre
on the terms of level 0 (subsets of Q0). The case of pre and f

F�
2 j
called on a term of level 2 j

is symmetrical.

Example 1 We will demonstrate the run of our algorithm on the following example formula:

ϕ ≡ ¬∃X¬∃Y¬∃Z : X < Y ∧ Y < Z︸ ︷︷ ︸
ϕ0

︸ ︷︷ ︸

ϕ
�
0

︸ ︷︷ ︸
ϕ1

. .
.

︸ ︷︷ ︸
ϕ3

Note that we extend the minimal syntax introduced in Sect. 2 with two additional atomic
predicates and one additional logical connective (added to easily obtain automata suitable for
the demonstration of our algorithm). The semantics of the atomic formula X < Y is defined
as

X < Y ≡
(
∃x ∈ X : ∀y ∈ Y : ∃W :
(∃u ∈ W : y = u + 1) ∧
(∀w ∈ W : (∃w′ ∈ W : w = w′ + 1) ∨ w = x

))

∧ ∃y′ ∈ Y : true,

(38)

where we use first-order variable quantification in the standard meaning. Informally, X < Y
denotes that both X and Y are non-empty and that the least element of X is strictly smaller
than every element of Y .

We build the base automatonAϕ0 corresponding to the base formula ϕ0 ≡ X < Y ∧ Y <

Z by (i) cylindrification of the atomic automata AX<Y and AY<Z depicted in Fig. 1a, b,
respectively, and by (ii) constructing the intersection automaton A0 = AX<Y ∩ AY<Z . The
minimal non-deterministic automaton A0 is depicted in Fig. 2. The symbol ? denotes that
the value on the given track can contain both 0 or 1.
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p q r

X : 0
Y : 0

X : ?
Y : 0

X : ?
Y : ?

X : 1
Y : 0

X : ?
Y : 1

(a) AX<Y

s t u

Y : 0
Z : 0

Y : ?
Z : 0

Y : ?
Z : ?

Y : 1
Z : 0

Y : ?
Z : 1

(b) AY <Z

Fig. 1 Atomic automata AX<Y andAY<Z

1 2 3 4

X : 0
Y : 0
Z : 0

X : ?
Y : 0
Z : 0

X : ?
Y : ?
Z : 0

X : ?
Y : ?
Z : ?

X : 1
Y : 0
Z : 0

X : ?
Y : 1
Z : 0

X : ?
Y : ?
Z : 1

Fig. 2 Automaton A0 for the formula ϕ0 ≡ X < Y ∧ Y < Z

Recall that our method decides validity of ϕ by computing symbolically the sequence of
sets F�

0 , N1, N
�
1 , F2, F

�
2 , N3, corresponding to the sequenceof automataA

ϕ
�
0
,Aϕ1 ,Aϕ

�
1
,Aϕ2 ,

A
ϕ

�
2
,Aϕ3 , with each of the sets represented using a symbolic term, and then finally checks

whether I3 ∩ N3 �= ∅.
Let us show how the sequence is computed. Oncewe have constructed the base automaton,

we first process the existential quantification of the variable Z , i.e. the subformula ϕ
�
0 ≡ ∃Z :

ϕ0. The first set in the sequence, F�
0 , is obtained using a fixpoint computation given by

Eq. 9(ii), that is,
F�
0 = μW . F0 ∪ pre[Δ�

0,0](W ).

This computation returns the set of states backward-reachable from F0 via 0 transitions of
Δ

�
0. Here, the zero symbol 0 corresponds to the mapping X : 0

Y : 0 of the free variables of the

subformula ϕ
�
0. The set F0 of states of the base automaton A0, from which the computation

starts, equals {4}. Since we are processing ∃Z in the formula, the transition relation Δ
�
0 can

be obtained by removing the track corresponding to the variable Z from Δ0. For instance,

from the transition 1

X : 1
Y : 0
Z : 0−−−→ 2, we obtain 1

X : 1
Y : 0−−−→ 2. However, according to (28), instead of

removing the track, our algorithm rather computes the predecessors on the original transition
relation Δ0 according to symbols where the value in the concerned Z -track is arbitrary. The
set of such symbols is obtained using the inverse operation of projection. In particular, the
inverse operation of projection π−1

[Z ](
X : 0
Y : 0 ), which is used in the fixpoint computation of F�

0 ,

equals the set
{

X : 0
Y : 0
Z : 0

,
X : 0
Y : 0
Z : 1

}
. The fixpoint computation is then carried out as follows:
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F�
0 = F0 ∪ pre

[
Δ

�
0,

X : 0
Y : 0

]
(F0) ∪ pre2

[
Δ

�
0,

X : 0
Y : 0

]
(F0) ∪ · · ·

= F0 ∪
( ⋃

q∈F0={4}
ω∈π−1

[Z ](
X : 0
Y : 0 )

pre[Δ0,ω](q)
)

∪ · · · [by (28)]

= F0 ∪
(

pre
[

Δ0,
X : 0
Y : 0
Z : 0

]

(4) ∪ pre
[

Δ0,
X : 0
Y : 0
Z : 1

]

(4)

)

∪ · · ·
= {4} ∪ ({3, 4} ∪ {4}) ∪ · · ·

After two iterations, the fixpoint is fully computed, yielding the term

t [F�
0 ] = F�

0 = {3, 4}.
Next, we have to process the negation in the subformula ϕ1 ≡ ¬∃Z : ϕ0, which leads to
computation of the term t [N1] using Eq. 9(iii), yielding the term

t [N1] = ↑∐{F�
0 } = ↑∐{{3, 4}}.

The algorithm continues by computing the term for the set of states N �
1 , corresponding

to the subformula ϕ
�
1 ≡ ∃Y : ϕ1, which implies a need to process another quantifier level

(namely, that of variable Y ). Similarly to the previous computation, the transition relationΔ
�
1

can be obtained by removing the track corresponding to the variable Y . This means that the
fixpoint computation needs to compute cpre with the symbol 0 that now corresponds to the
symbol X : 0 . Instead of that, however, a computation over Δ1 with symbols with arbitrary
values of Y will be used. In particular, the set of such symbols will be obtained by Eq. (14)
using the inverse projection of Y , which yields the set π−1

[Y ]( X : 0 ) = { X : 0
Y : 0 ,

X : 0
Y : 1 }. More

concretely, the computation of N �
1 is performed according to Eq. 9(iv) as follows:

N �
1 = νW . N1 ∩ cpre[Δ�

1,0] (W ) .

To compute the above, Eq. (23) is used to transform the problem of computing the cpre[Δ1,ω
′]-

image of a term into a computation of a series of pre[Δ�
0,ω]-images of its sub-terms in the same

way as Eq. (37) is usedwhen computing t [F�
0 ], resulting in the following fixpoint computation:

N �
1 = N1 ∩ cpre

[
Δ

�
1, X : 0

]
(N1) ∩ cpre2

[
Δ

�
1, X : 0

]
(N1) ∩ · · ·

= N1 ∩
( ⋂

Q∈N1

ω∈π−1
[Y ]( X : 0 )

cpre[Δ1,ω](Q)
)

∩ · · · [by (14)]

= N1 ∩
(
cpre

[
Δ1,

X : 0
Y : 0

]
(↑∐ {{3, 4}}) ∩ cpre

[
Δ1,

X : 0
Y : 1

]
(↑∐ {{3, 4}})

)
∩ · · ·

= N1 ∩
(
↑∐

{
pre

[
Δ

�
0,

X : 0
Y : 0

]
({3, 4})

}
∩ ↑∐

{
pre

[
Δ

�
0,

X : 0
Y : 1

]
({3, 4})

})
∩ · · · [by Lemma 3]

= N1 ∩
(
↑∐

{ ⋃

q∈{3,4}
ω∈π−1

[Z ](
X : 0
Y : 0 )

pre[Δ0,ω](q)
}

∩ ↑∐
{ ⋃

q∈{3,4}
ω∈π−1

[Z ](
X : 0
Y : 1 )

pre[Δ0,ω](q)
})

∩ · · · [by (28)]

= N1 ∩
(

↑∐
{
pre

[

Δ0,
X : 0
Y : 0
Z : 0

]

(3) ∪ pre
[

Δ0,
X : 0
Y : 0
Z : 1

]

(3) ∪
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pre
[

Δ0,
X : 0
Y : 0
Z : 0

]

(4) ∪ pre
[

Δ0,
X : 0
Y : 0
Z : 1

]

(4)
}

∩

↑∐
{
pre

[

Δ0,
X : 0
Y : 1
Z : 0

]

(3) ∪ pre
[

Δ0,
X : 0
Y : 1
Z : 1

]

(3) ∪

pre
[

Δ0,
X : 0
Y : 1
Z : 0

]

(4) ∪ pre
[

Δ0,
X : 0
Y : 1
Z : 1

]

(4)
})

∩ · · ·
= ↑∐{{3, 4}} ∩ (↑∐{{3, 4}} ∩ ↑∐{{2, 3, 4}}) ∩ · · ·
= ↑∐{{3, 4}} ∩ (↑∐{{3, 4} ∪ {2, 3, 4}}) ∩ · · · [by Lemma 1]

= ↑∐{{3, 4}} ∩ ↑∐{{2, 3, 4}} ∩ · · ·
Note that we do not have to compute explictly the term pre

[
Δ

�
0,

X : 0
Y : 0

]
({3, 4}) as it was com-

puted in the previous iteration of the algorithm, and thus we can use caching of intermediate
results to obtain an even more efficient decision procedure. We end up with the term

t [N �
1 ] = ↑∐{{3, 4}, {2, 3, 4}}.

We continue with processing of the second negation by computing the term corresponding
to the set F2 of automaton Aϕ2 for the subformula ϕ2 ≡ ¬∃Y : ϕ1 using Eq. 9(i) to obtain
the term

t [F2] = ↓{N �
1} = ↓

{
↑∐{{3, 4}, {2, 3, 4}}

}
.

Next, we process the last quantifier corresponding to the formula ϕ
�
2 ≡ ∃X : ϕ2. The

symbolic fixpoint computation of F�
2 from Eq. 9(ii) then starts from F2 and uses an iterative

application of pre[Δ�
2,0] according to the equation

F�
2 = μW . F2 ∪ pre[Δ�

2,0](W ).

Note that, since in ϕ
�
2, all of the variables are projected away, the zero symbol 0 now cor-

responds to the mapping ∅ of the empty set of free variables to the set {0, 1}. The inverse
projection of the symbol 0 is then the set π−1

[X ](∅) = { X : 0 , X : 1 }. The fixpoint computation
proceedes similarly to the computation of t [F�

0 ]. Using (36), we transform the computation of
the image of pre[Δ�

2,ω
′′] into the computation of a series of cpre[Δ�

1,ω
′]-images of the sub-terms

of t [N �
1 ]. These are in turn transformed by (22) into a computation of a series of pre[Δ�

0,ω]-
images of sub-sub-terms of t [F�

0 ], i.e. subsets of Q0. For our example, this yields a fixpoint
computation analogous to the previous computation of the t [F�

0 ], resulting in the term

t [F�
2 ] = ↓

{
↑∐{{3, 4}, {2, 3, 4}},↑∐{{3, 4}, {2, 3, 4}, {1, 2, 3, 4}}

}
.

Finally, using Eq. 9(iii), we process the last negation corresponding to the formula ϕ ≡ ϕ3 ≡
¬∃X : ϕ2, which yields the final term representing N3, namely,

t [N3] = ↑∐
{

↓
{
↑∐{{3, 4}, {2, 3, 4}},↑∐{{3, 4}, {2, 3, 4}, {1, 2, 3, 4}}

}}

.

Now, it remains to check whether I3 ∩ F3 �= ∅ using the computed term t [N3]. We will
show how to evaluate this intersection in the next section. ��

5.5 Testing Im ∩ Fm
?
�= ∅ on symbolic terms

Due to the special form of the set Im (every Ii , where 1 ≤ i ≤ m, is the singleton set
{Ii−1}, cf. Sect. 5.1), the test Im ∩ Fm �= ∅ can be done efficiently over the symbolic terms
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representing Fm . Since Im = {Im−1} is a singleton set, testing Im ∩ Fm �= ∅ is equivalent to
testing Im−1 ∈ Fm . If m is odd, our approach computes the symbolic representation of Nm

instead of Fm . Obviously, since Nm is the complement of Fm , it holds that Im−1 ∈ Fm ⇐⇒
Im−1 /∈ Nm . Our way of testing Im−1 ∈ ↓S on a symbolic representation of the set ↓S of
level m is based on the following equations:

{q} ∈ ↓S ⇐⇒ ∃S ∈ S : q ∈ S (44)

{q} ∈ ↑∐S ⇐⇒ ∀S ∈ S : q ∈ S (45)

and, for i = 0,

I0 ∈ ↑∐S ⇐⇒ ∀S ∈ S : I0 ∩ S �= ∅. (46)

Given a symbolic term t [R]m of levelm representing a set Rm ⊆ Qm , testing emptiness of
Im ∩ Rm or Im ⊆ Rm can be done over t [Rm ] by a recursive procedure that descends along the
structure of t [Rm ] using (44) and (45), essentially generating an AND-OR tree, terminating
the descent by an application of (46).

Example 2 To finish Example 1, we need to test whether I3 ∩ F3 = ∅. This is equivalent to
checking whether I3 ⊆ N3, i.e., whether {{{{1}}}} ⊆ N3, which holds iff I2 = {{{1}}} ∈ N3,
using t [N3] = ↑∐{F�

2 } to represent N3. From (45), we get that

I2 = {{{1}}} ∈ ↑∐{F�
2 } ⇐⇒ I1 = {{1}} ∈ F�

2

because F�
2 is the denotation of the only sub-term t [F�

2 ] of t [N3]. Equation (44) establishes
that

I1 = {{1}} ∈ F�
2 ⇐⇒

{1} ∈ ↑∐{{3, 4}, {2, 3, 4}} ∨ {1} ∈ ↑∐{{3, 4}, {2, 3, 4}, {1, 2, 3, 4}}.
Each of the disjuncts can then be further reduced by (45) into a conjunction of membership
queries on the base level, which is solved using (46) as follows:

I1 = {{1}} ∈ F�
2 ⇐⇒

(1 ∈ {3, 4} ∧ 1 ∈ {2, 3, 4}) ∨ (1 ∈ {3, 4} ∧ 1 ∈ {2, 3, 4} ∧ 1 ∈ {1, 2, 3, 4})
Since none of the disjuncts is satisfied, we have that I1 /∈ F�

2 , so I2 /∈ N3, implying that
I2 ∈ F3. We conclude that I3 ⊆ N3 and hence |� ϕ. ��

5.6 Subsumption of symbolic terms

Although the use of symbolic terms instead of an explicit enumeration of sets of states itself
considerably reduces the searched space, an even greater degree of reduction can be obtained
using subsumption inside the symbolic representatives to reduce their size, similarly as in
the antichain algorithms [14]. For any set of sets S containing a pair of distinct elements
R, T ∈ S s.t. R ⊆ T , the following holds:

↓S = ↓(S\{R}) and ↑∐S = ↑∐(S\{T }). (47)

Therefore, if S is used to represent the set ↓S, the element R is subsumed by T and can be
removed from S without changing its denotation. Likewise, if S is used to represent ↑∐S,
the element T is subsumed by R and can be removed from Swithout changing its denotation.
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We can thus simplify any symbolic term by pruning out its sub-terms that represent elements
subsumed by elements represented by other sub-terms, without changing the denotation of
the term.

Computing subsumption on terms can be done using the following two equations:

↓R ⊆ ↓S ⇐⇒ ∀R ∈ R : ∃S ∈ S : R ⊆ S (48)

↑∐R ⊆ ↑∐S ⇐⇒ ∀S ∈ S : ∃R ∈ R : R ⊆ S. (49)

Using (48) and (49), testing subsumption of terms of level i reduces to testing subsumption
of terms of level i − 1. The procedure for testing subsumption of two terms descends along
the structure of the term, using (48) and (49) on levels greater than 0, and on level 0, where
terms are subsets of Q0, it tests subsumption by set inclusion.

Example 3 In Example 1, we can use the inclusions of {3, 4} ⊆ {2, 3, 4} ⊆ {1, 2, 3, 4}
and (47) to reduce t [N �

1 ] = ↑∐{{3, 4}, {2, 3, 4}} and the intermediate term t =
↑∐{{3, 4}, {2, 3, 4}, {1, 2, 3, 4}} to the terms

t [N �
1 ]′ = ↑∐{{2, 3, 4}} and
t ′ = ↑∐{{1, 2, 3, 4}} respectively.

Moreover, Eq. (49) implies that the term t ′ = ↑∐{{1, 2, 3, 4}} is subsumed by
the term t [N �

1 ]′ = ↑∐{{2, 3, 4}}, and so we can reduce the term t [F�
2 ] =

↓
{
↑∐{{2, 3, 4}},↑∐{{1, 2, 3, 4}}

}
to the term

t [F�
2 ]′ = ↓

{
↑∐{{2, 3, 4}}

}
.

��

6 Experimental evaluation

We have implemented a prototype of the presented approach in the tool dWiNA [27]. It
uses the frontend of Mona to parse the input formula, and it handles FAs encoded using
the MTBDD-based representation from the libvata library [28]. It has two modes of
operation. In Mode I, we use Mona to generate the minimal deterministic automaton Aϕ0

corresponding to the matrix of the tested formula. Since the input formula may not be in
the prenex normal form (i.e., a prefix of quantifiers followed by a quantifier-free matrix), the
matrix here corresponds to the subformula under the topmost quantifier, or, if there is no single
top-most quantifier, to the entire formula. The automaton is then translated into thelibvata
format, and our algorithm is run on top of the libvata-represented automaton. In Mode II,
we first transform the input formula into the prenex normal form where the occurence of
negation in the matrix is limited to literals, and then construct a nondeterministic automaton
Aϕ0 for the matrix directly using libvata.

We evaluated dWiNA against two classes of benchmarks: formulae arising in verification
of pointer programs using the method based on the logic Strand [6], and several parametric
families of manually constructed formulae, from which some were originally designed as
show cases for other tools. The main focus of our experiment was on comparing dWiNA

with Mona, but we carried out some comparison with other available tools too. Namely,
we compared with an implementation of the coalgebraic decision procedure [24], which we
refer to as Coalg, a decision procedure based on symbolic automata [22], which we refer to
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Table 1 Results for formulae obtained from verification tasks of Strand [6]

Benchmark Time (s) Space (states)

Mona dWiNA Mona dWiNA

bubblesort-else 0.01 0.01 1285 19

bubblesort-if-else 0.02 0.23 4260 234

bubblesort-if-if 0.12 1.14 8390 28

sorted-list-insert-after-loop 0.01 0.01 167 36

sorted-list-insert-before-head 0.01 0.01 43 45

sorted-list-insert-before-loop 0.01 0.01 103 47

sorted-list-insert-error-error 0.01 0.01 103 47

sorted-list-insert-in-loop 0.01 0.01 463 59

sorted-list-reverse-after-loop 0.01 0.01 179 110

sorted-list-reverse-before-loop 0.01 0.01 179 110

sorted-list-reverse-in-loop 0.02 0.02 1311 271

sorted-list-search-after-loop 0.01 0.01 90 274

sorted-list-search-before-loop 0.01 0.01 90 274

sorted-list-search-in-loop 0.01 0.02 1311 84

as SFA, and the tool Toss implementing a procedure based on the Shelah’s decomposition
[23].

A comparison of dWiNA with Mona on the Strand formulae Table 1 shows the com-
parison of dWiNA and Mona against formulae arising in the shape analysis based on the
logic Strand [6]. dWiNA was used in Mode I. We measured the time the tools took for
processing the quantifier prefix of the formulae. Overall, dWiNAwas comparable and some-
times slightly slower than Mona. We then compared the sum of the numbers of states of
all automata generated by Mona when processing the quantifier prefix with the number of
symbolic terms generated by dWiNA. The state spaces generated by dWiNA are about one
or two orders of magnitude smaller than those generated by Mona. This makes us believe
that with enough optimization, dWiNA could become better even time-wise.

An attempt to rundWiNA on this benchmark inMode IIwas unsuccessful sincelibvata
was not able to construct the matrix automaton in a reasonable time. This is because the con-
struction implementedwithin libvata, which is based on nondeterministic automata, is not
optimized. In particular, it uses no automata reduction (whereas deterministic minimization
is one of the key features of Mona).

A comparison of dWiNA with Mona on synthetic benchmarks To demonstrate that our
approach can scale significantly better than the explicit automata construction, we created
several parameterized families of WS1S formulae. Their basic formulae express relations
among subsets of N0, such as the existence of certain transitive relations, singleton sets, or
intervals (their definitions can be found in [27]). From these, we algorithmically generate
families of formulae with a larger quantifier depth, regardless of the meaning of the generated
formulae (though their semantics is still nontrivial).
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Table 2 Results from
experiments with the HornSub
formulae

k Time (s) Space (states)

Mona dWiNA Mona dWiNA

2 0.20 0.01 25,517 44

3 0.57 0.01 60,924 50

4 1.79 0.02 145,765 58

5 4.98 0.02 349,314 70

6 ∞ 0.47 ∞ 90

In Table 2, we give results that we obtained from experimenting with one of the families,
called HornSub, where the basic formula expresses existence of an ascending chain of n
sets ordered w.r.t. ⊂ 1:

∃Y : ¬∃X1¬ . . . ¬∃Xk, . . . , Xn :
∧

1≤i<n

(
Xi ⊆ Y ∧ Xi ⊂ Xi+1

) ⇒ Xi+1 ⊆ Y .

The parameter k stands for the number of alternations in the prefix of the formula. We see
that dWiNA clearly outperforms Mona. We use ∞ in the case the time exceeded 2 min or
when the tool ran out of memory. We carried out these experiments in Mode II of dWiNA

(the experiment in Mode I was not successful due to a too costly conversion of a large matrix
automaton from Mona to libvata).
All of the experiments above, targeted to compare the performance of dWiNA and Mona

only, were carried out on an Intel Core i7-4770@3.4GHz processor with 32GiB RAM.
A comparison of dWiNA with other tools. Our last set of experiments aims at a comparison
with other available implementations of WS1S decision procedures, namely Toss [23], SFA
[22], andCoalg [24]. Since the tools support a limited set of syntactic features, we could only
use a subset of the available benchmark formulae. Namely, we took the parametric families
of formulae HornLeq from [22] and HornIn from [23], originally proposed to evaluate
the performance of SFA and Toss, respectively, and our parametric family of formulae
SetClosed.2 The basic formula of the SetClosed family expresses the non-existence
of an interval set. The parameter n stands for the number of existential quantifications in the
prefix of the formula:

∃X1, . . . , Xn : ∀x : ¬∀y, z :
∧

1≤i≤n

(
(x ∈ Xi ∧ x ≤ y ∧ y ≤ z ∧ z ∈ Xi ) ⇒ y ∈ Xi

)

This experiment had to be evaluated on a different machine with a system that meets the
requirements of all the tools, with an Intel Core i7-4770@3.4GHz processor and 16GiB
RAM, running Debian GNU/Linux. Table 3 gives the run times of the tools. We use ∞ in
case the time exceeded 2 min and oom to denote that the tool ran out of memory. While Toss
performs best on their own benchmarks, dWiNA outperforms the other tools on the rest of
the formulae.

1 Results for the other families are very similar and hence skipped here. An interested reader is referred to
[27].
2 Note that the HornSub family is not supported by Toss and Coalg, and thus we chose a comparably
complex family of SetClosed to present the overall comparison.
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Table 3 Experiments with
parametric families of formulae
(times are given in seconds)

Benchmark Mona Toss Coalg SFA dWiNA

HornLeq [22]

horn-leq06 0.01 0.02 1.10 0.01 0.01

horn-leq07 0.01 0.02 11.09 0.01 0.01

horn-leq08 0.01 0.02 101.48 0.01 0.01

horn-leq09 0.01 0.02 ∞ 0.01 0.01

horn-leq10 0.01 0.03 ∞ 0.02 0.01

horn-leq11 0.05 0.03 ∞ 0.02 0.01

horn-leq12 0.09 0.04 ∞ 0.02 0.01

horn-leq13 0.19 0.04 ∞ 0.02 0.01

horn-leq14 0.45 0.04 ∞ 0.02 0.01

horn-leq15 1.19 0.05 ∞ 0.03 0.02

horn-leq16 3.35 0.05 ∞ 0.03 0.02

horn-leq17 9.07 0.05 ∞ 0.03 0.02

horn-leq18 22.89 0.06 ∞ 0.03 0.02

horn-leq19 oom 0.06 ∞ 0.03 0.03

HornIn [23]

horn-in04 0.01 0.01 0.02 0.27 0.01

horn-in05 0.01 0.01 0.14 0.76 0.03

horn-in06 0.01 0.02 1.07 2.65 0.13

horn-in07 0.01 0.02 8.50 8.31 0.29

horn-in08 0.01 0.02 68.05 32.44 1.16

horn-in09 0.03 0.03 ∞ ∞ 3.42

horn-in10 0.09 0.04 ∞ ∞ 18.40

horn-in11 0.20 0.04 ∞ ∞ 54.74

horn-in12 0.48 0.04 ∞ ∞ ∞
horn-in13 1.20 0.04 ∞ ∞ ∞
horn-in14 2.95 0.05 ∞ ∞ ∞
horn-in15 7.26 0.05 ∞ ∞ ∞
horn-in16 oom 0.06 ∞ ∞ ∞

SetClosed

set-closed01 0.01 0.02 0.04 0.01 0.01

set-closed02 0.01 0.02 ∞ 0.13 0.01

set-closed03 0.01 0.18 ∞ 0.14 0.01

set-closed04 0.34 ∞ ∞ 13.96 0.01

set-closed05 ∞ ∞ ∞ ∞ 0.01

set-closed06 ∞ ∞ ∞ ∞ 0.01

set-closed07 ∞ ∞ ∞ ∞ 0.01

set-closed08 ∞ ∞ ∞ ∞ 0.03

set-closed09 ∞ ∞ ∞ ∞ 0.10

set-closed10 ∞ ∞ ∞ ∞ 0.27

set-closed11 ∞ ∞ ∞ ∞ 0.95
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Table 3 continued Benchmark Mona Toss Coalg SFA dWiNA

set-closed12 ∞ ∞ ∞ ∞ 3.61

set-closed13 ∞ ∞ ∞ ∞ 14.30

set-closed14 ∞ ∞ ∞ ∞ 69.08

set-closed15 ∞ ∞ ∞ ∞ ∞

7 Conclusion and future work

Wepresented a newapproach for dealingwith alternating quantificationswithin the automata-
based decision procedure for WS1S. Our approach is based on a generalization of the idea
of the so-called antichain algorithm for testing universality or language inclusion of finite
automata. Our approach processes a prefix of the formula with an arbitrary number of quan-
tifier alternations on-the-fly using an efficient symbolic representation of the state space,
enhancedwith subsumption pruning. Our experimental results are encouraging and show that
the direction started in this paper—using modern techniques for nondeterministic automata
in the context of deciding WS1S formulae—is promising.

An interesting direction of further development seems to be lifting the symbolic pre/cpre
operators to a more general notion of terms that allow working with general sub-formulae
(that may include logical connectives and nested quantifiers). The algorithm could then be
run over arbitrary formulae, without the need of the transformation into the prenex form.
This would open a way of adopting optimizations used in other tools as well as syntactical
optimizations of the input formula such as anti-prenexing. Another way of improvement
would be to use simulation-based techniques to reduce the generated automata as well as to
weaken the term-subsumption relation (an efficient algorithm for computing simulation over
BDD-represented automata is needed). We also plan to extend the algorithms to WSkS and
tree-automata, and perhaps even further to more general inductive structures.
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