
A Scalable Architecture for Network Traffic Forensics

Viliam Letavay

Faculty of Information Technology
Brno University of Technology

Brno 61266, CZ
Email: iletavay@fit.vutbr.cz

Jan Pluskal

Faculty of Information Technology
Brno University of Technology

Brno 61266, CZ
Email: ipluskal@fit.vutbr.cz

Ondřej Ryšavý

Faculty of Information Technology
Brno University of Technology

Brno 61266, CZ
Email: rysavy@fit.vutbr.cz

Abstract—Availability of high-speed Internet enables new oppor-
tunities for various cybercrime activities. Security administrators
and LEA (Law Enforcement Agency) officers call for powerful
tools capable of providing network communication analysis of an
enormous amount of network traffic moreover, capable of analyz-
ing an incomplete network data. Big data technologies were con-
sidered to implement tools for capturing, processing and storing
packet traces representing network communication. Often, these
systems are resource intensive requiring a significant amount
of memory, computing power, and disk space. Presented paper
describes a novel approach to real-time network traffic processing
implemented in a distributed environment. The key difference
to most existing systems is that the system is based on a light-
weight actor model. The whole processing pipeline is represented
in terms of actor nodes that can run in parallel. Also, actor-model
offers a solution that is highly configurable and scalable. The
preliminary evaluation of a prototype implementation supports
these general statements.

Keywords–Network forensic analysis; Network traffic process-
ing; Actor model

I. INTRODUCTION

The expansion of computer networks and Internet avail-
ability opens new opportunities for cybercrime activities more-
over, security incidents associated with network applications.
The amount of connected devices grows, and traffic speed in-
creases. Security administrators and LEA officers call for pow-
erful tools that enable them to extract useful information from
network communication [1]. The network forensics that is re-
sponsible for capturing, collecting and network data analyzing
is getting more important [2].

In the forensic investigation, the network traffic is contin-
uously captured from multiple sources. The captured network
data has a form of packet traces that have to be processed
and analyzed up to the application layer. The network foren-
sic tool has to decode protocols at different network layers
of the TCP/IP model and various encapsulations. For LEA,
interesting information lies in application messages such as in-
stant messaging, emails, voice, RTP, localizable information,
documents, pictures, etc. The form and relevance of extracted
artifacts may differ from case to case. Often, communication
is encrypted. In this case, meta-data can be the only a piece
of information available. In all cases, the network forensic
processing system has to be able to extract artifacts from
the network traffic reliably, even if the packet capture is cor-
rupted, for instance, some connections are incomplete, packets
are malformed, or chunks of packets were not recorder because
of capturing device issues.

The amount of data that needs to be processed to extract
evidence from the network communication depends on the kind
of a case that is investigated but usually gets large. It is very
difficult to decode, extract and store the immense mass of in-
formation for further processing. We propose a distributed
network forensic framework based on the actor model that
is computation effective, and capable of linear scalability.
Scalable properties of actor model design for network forensics
are promising as shown by the VAST platform [3]. Similarly
to VAST, our solution provides real-time data ingestion and in-
teractive data analysis, but in addition to VAST, we consider
the full artifact extraction up to the application layer. Although
if it requires more computation resources, we demonstrate that
if can still be achieved in a more straightforward and less re-
source consuming environment comparing to Apache Hadoop
technology, which is the norm for big data processing.

In Section II, we describe tools used by network forensics
practitioners. Section III addresses issues faced by investiga-
tors and our proposed solution, which architecture is broadly
discussed in Section IV. Section V evaluates preliminary
performance results, and Section VI concludes the paper.

II. BACKGROUND & RELATED WORK

Network forensics is a process that identifies, captures
and analyzes network traffic. Network forensic techniques
are used by several network forensic frameworks [4], [5], [6],
[7], [8], [9] and tools intended for intrusion detection (Bro,
Vast, Moloch) [10], [11], [12] , network security monitoring
(Microsoft Network Monitor, TShark, Wireshark, tcpdump),
and network forensic investigation for LEAs (Netfox Detective,
PyFlag, NetworkMiner, EnCase, XPlico). Commonly available
forensics tools are implemented either as a classic desktop
or command line application or a traditional client-server.

To overcome the limitations of traditional tools, we pro-
pose to use distributed computing. The models for distributed
processing [13], [14] are more suitable for real-time network
forensic analysis from multiple sources, such as logs and cap-
tured communication. The models are based on an agent
system, where numerous agents perform the collection task.
The extracted information is sent to the forensic network server
and analyzed on this single node [15] only. The forensic
server is the bottleneck that has to process all the data.
To avoid this bottleneck, the GRR live forensic system [16]
utilizes a cluster of servers. The system deploys agents running
on users’ computers that provide access to forensic informa-
tion, e.g., remote raw disk and memory access. Processing



of forensic data is done as flows. Each flow is maintained
on the server. Server nodes run workers that process the active
flows. Adding more server nodes enable to run more workers
and thus if it is possible to handle more clients simultaneously.

Elimination of bottlenecks in the architecture offers scal-
ability and improved reliability. The actor model is one
of the attractive solutions that address the problem elegantly
and efficiently. It comes with a separate unit called an actor.
Actors execute independently and in parallel. They commu-
nicate asynchronously via message passing, and their state
is otherwise immutable. Actor’s behavior determines how
to process the incoming message. Actor system is the key
enabler for the VAST system [3]. In VAST, actors implement
importing, archiving, indexing and exporting processed data.
Actors live in nodes that map to system processes. The system
scales by creating more nodes either on the single machine
or a cluster of computers.

Moloch is another tool, worth to mention, that uses prin-
ciples of distributed computing for massive scale network
traffic monitoring, full packet capturing and indexing. Moloch
system consists of sensors that capture the communication
and Elasticsearch database that is a distributed search and ana-
lytics engine. The system scales by adding new nodes running
Elasticsearch instances.

III. PROBLEM STATEMENT AND SOLUTION

Our goal is to design and create a system capable of long-
term, high-speed, real-time network traffic filtering and pro-
cessing up to the application layer. The software solution
should be scalable and hardware independent. To achieve this,
we have to deal with the challenges elaborated in the rest of
this section.

A. Architectural Design
How to create a system for packet filtering and analysis

of communication that can identify application protocols, gets
forensics artifacts and searches through them?

Network forensics is a tedious work that strictly relies
on completeness and precision of all undertaken steps to gain
a piece of a puzzle that fits together as a shred of evidence.
Considering the current speeds of regular users’ home network
connection(s), a comprehensive classical analysis on a sin-
gle machine would require enormous computation resources.
Try to imagine, that each network packet would be analyzed
by many protocol dissectors with a goal to extract, for ex-
ample, an acknowledgment of email delivery. To achieve this
goal, with optimal computational resources, we must revisit
currently utilized methods and redesign them to work in a dis-
tributed environment which brings new challenges to architec-
ture design, application of algorithms, data synchronization,
and so on.

B. Scalability on Commodity Hardware
How can the solution be scalable and hardware indepen-

dent despite the hardware limitations?
Let us consider this imaginary demonstration. The math

is simple, one computer with 1Gbps NIC that has a relatively
simple task to capture traffic during full line load would
be required to write to a disk under the constant speed
of 1000Mbps ≈ 125MB/s. Our system has to guarantee that

no data loss occurs during the capture. A suspect can si-
multaneously download and upload data which means that
the monitoring device cannot have only one 1 ∗ 1Gbps NIC,
but if needs 2∗1Gbps cards, one for uplink, one for downlink.
Thus, the required speed of continuous disk writing would
be 2 ∗ 125MB/s ≈ 250MB/s. Now, if the requirement
is to store the communication for one day, the disk capacity
has to be 250MB/s ∗ 86 400 s ≈ 21.6TB. This is achievable
with commodity hardware, e.g., 2 ∗ 12TB drives with RAID
0 or 4 ∗ 12TB with RAID 1+0 — assuming higher write/read
speed than 250MB/s. However, what if only one day is not
enough? For a typical forensic case, capturing period spawns
through weeks or months.

From our previous experiments, we know that a single
computation node is limited and commodity hardware is hardly
sufficient to perform all required operations in real-time
and over long periods. Separation of frames into a conversation
which needs a dissection of the network protocols up to the ap-
plication layer, which speed is roughly 300Mbps [17, pp. 45-
51] is not sufficient. On the other hand, we are confident that
the application created and optimized for this singular purpose
can do the processing faster and breach the 1Gbps line
speed. Nevertheless, we do not believe that a single machine
solution with commodity hardware is capable of doing overall
analysis and extraction of information from the application
layer. We have to design our solution as a distributed system
across multiple machines.

C. Overall Performance
What scalability and acceleration of data processing

can be achieved?
The proposed solution is based on the actor model. Each

actor represents an independent processing unit. The communi-
cation between actors is managed by messaging. The actor has
no shared state; thus all actors can work in parallel. If actors
run on the same node, the message passing has a little overhead
compared to a function call or a loop. However, if actors
scale over multiple nodes, messages need to be serialized. This
process introduces latency and consumes part of processing
power. The scalability of the actor model is linear [3].

IV. ARCHITECTURAL DESIGN

Incomplete data provided by unreliable traffic interception
can lead to inaccurate results; some information may be lost,
some fabricated by reconstruction process [18]. Keeping
the above facts in mind, the processing cannot strictly follow
RFCs and behave like a kernel network stack implementation,
but it has to incorporate several heuristics. For example, to fill
missing gaps in data, and to consider these fillings during ap-
plication protocol processing, or never to join multiple frames
into a single conversation unless it passes more advanced
heuristic-based checks. Network forensic tools that we have
worked with do mostly respect RFCs and thus may produce
misleading results as shows by Matousek et al. [18].

We propose a distributed architecture composed of com-
modity hardware that will be capable of linear scalability,
and capable of efficient resource utilization. The overall ar-
chitecture is shown in Figure 1.

At the top level, we have divided the entire process into
the two main stages:



L4 Load Balancer

L4 Load Balancer

Reassembler 

Reassembler 

Distributed
db. node 

Distributed
db. node 

App. protocol 
dissector 

App. protocol 
dissector 

Packet source Packets to process Reconstructed L7 conversations L7 conversations to dissect

FIGURE 1. ARCHITECTURE DIAGRAM SHOWING THE PROPOSED SYSTEM NODES WITH INFORMATION FLOW BETWEEN THEM.

• Data preprocessing — The reconstruction of conver-
sations at the application layer (L7), i.e., consecutive
segregation of captured communication into internet
(L3), transport (L4) and finally application flows (L7),
combined into conversations on each of the layers of
the network protocol stack. Every conversation holds
information about the source and destination endpoints
(IP addresses, ports), timestamps and reassembled
payloads of exchanged application messages.

• Data analysis — The analysis of each application
conversation consists of identification of the appli-
cation protocol, and extraction of application events,
e.g., visited web pages, sent emails, DNS queries, etc.,
with proper application protocol dissector that yields
sets of forensic artifacts.

A. Data Prepossessing
The First stage is executed on a set of independent Re-

assembler nodes. These reconstruct L7 conversations from
the stream of captured packets which can originate from PCAP
files or can be captured from the live network interface.

In the most common use-case, there are multiple source
streams, i.e., a collection of PCAP files or direct network cap-
tures using PCAP-over-IP, which we want to analyze. There-
fore to utilize all of the Reassembler instances, we have to split
packets from each stream into a smaller sub-streams, which
will be distributed among Reassembler instances. For this
split, we cannot use a naive method such as Round Robin,
because Reassembler nodes operate independently of each
other and to fully reconstruct L7 conversation a particular
Reassembler have to obtain all the pieces of that particu-
lar L7 conversation. In case we would use Round Robin,
a situation could occur when a half the packets from one
L7 conversation would end up in one Reassembler node
and the second half in another; both nodes would have in-
complete data and none of them would be able to reconstruct
the conversation entirely.

Solution to this problem is another type of nodes called
L4 Load Balancer, which will be positioned in front of the Re-
assembler nodes. L4 Load Balancer will extract source
and destination IP addresses and ports and transport protocol
from each packet of the source stream, and use them to de-
cide to which instance of the Reassemblers should forward
the packet based on its context. This way, all packets of a par-
ticular L7 conversation will always be forwarded to only one
Reassembler instance. The reconstructed L7 conversation will
be then stored in a distributed database, ready to be retrieved
in the second stage of the execution.

B. Data Analysis
In the second stage, a subset of reconstructed L7 conver-

sations is retrieved from the distributed database and deliv-
ered to the Application protocol dissector nodes. For every

L7 conversation, Application protocol dissector nodes identify
used application protocol and use a proper dissector module
dedicated to the processing of a single application protocol
such as HTTP, SMTP or DNS, to extract application protocol
messages from this L7 conversation. Obtained data are stored
back into the distributed database. Processing of applica-
tion messages is under normal circumstances possible only
with unencrypted network communication. From SSL/TLS
communication which encapsulates application protocols such
as HTTP, we can extract only readable portions of this data
such as the server’s SSL certificate. Possible ways to de-
crypt and subsequently, parse an SSL/TLS communication
is to own a private key of a given SSL/TLS server or to deploy
an SSL/TLS intercepting proxy [19].

Each instance of a node acts as an individual actor, commu-
nicating with other actors by message passing. Thanks to this
design, we can distribute the computation across multiple
machines maintaining the linear scalability.

V. PRELIMINARY EVALUATION

Our prototype implementation is based on C# actor system
library Akka.NET. For testing and performance benchmarking,
we have implemented two modes of operation:

1) Offline — isolated execution which combines
the functionality of a single L4 Load Balancer, Re-
assembler and Application protocol dissector node
inside one system’s process. Therefore, no inter-actor
message serialization occurs because data reside only
inside a shared memory.

2) Online — distributed execution spanning across mul-
tiple cluster nodes. The inter-actor message serializa-
tion is required, because data leave shared memory
space, and are serialized in-order to be delivered
to a neighboring node.

Additionally, for proof-of-concept benchmarking, the func-
tionality of Application protocol dissector nodes was included
inside Reassembler nodes to eliminate distributed database
as a middleman between them. In the following measurements,
we focus on a raw network capture’s processing performance
of the so-far naive implementation. Currently, our prototype
implementation supports the dissection of two application
protocols (DNS and HTTP).

We have measured the preliminary performance, of the im-
plementation, on different hardware configurations:

• Workstation — Intel i7-5930K 4.3 GHz, 12 cores,
64 GB RAM, 512 GB SSD

• Mini-cluster — 4x servers with Intel Xeon E5520,
2.26 GHz, 8 cores, 48 GB RAM, 1 TB SSD, 1 Gbps
network

We used a public data set of M57-Patents Scenario [20],
that consists of real-world data captured over a month.



We merged all network traces into one PCAP file of roughly
4.8 GB and 5,707,845 frames. One large PCAP file simu-
lates our use-case of streamed-in communication that needs
to be load-balanced from a single node.

Workstation [Mbps] Mini-cluster [Mbps]

PCAP file read 5103 5719
Packet parsing 3853 1679
L7 Conversation tracking 942 380
HTTP & DNS extraction 880 358

TABLE I. PROCESSING SPEEDS OF OUR OFFLINE TEST SCENARIO

Reassemblers count One [Mbps] Two [Mbps] Three [Mbps]

HTTP & DNS extraction 233 407 453

TABLE II. PROCESSING SPEEDS OF OUR ONLINE TEST SCENARIO
MEASURED ON MINI-CLUSTER

Workstation Mini-cluster Netfox Wireshark NetworkMiner
[Mbps] [Mbps] [Mbps] [Mbps] [Mbps]

880 358 65.6 73.4 15.8

TABLE III. PROCESSING SPEEDS OF COMMONLY USED NETWORK
FORENSIC TOOLS MEASURED ON WORKSTATION

We started with measurements in an offline mode on a sin-
gle machine, firstly with a PCAP file parsing operation and
incrementally added consequent operations and measured pro-
cessing speeds, as Table I describes. Preliminary evaluation
suggests that the raw speed of roughly 3.8 Gbps, for file
reading and packet parsing is sufficient. The process of con-
versation tracking that segregates IP flows by packet source
and destination IP addresses, ports and transport protocol
type with additional heuristics [18], that also reassembles
TCP/UDP streams, is computationally heavier, reaching ”only”
942 Mbps, and is about 4x slower than only read and parsing.
With added HTTP & DNS dissection, performance slightly
decreased further down to 880 Mbps.

The CPU frequency plays a very important part, that can
be observed if we compare our Workstation with Mini-cluster
— 880 Mbps vs. 358 Mbps. All other components except CPUs
are otherwise roughly comparable as we can see by comparing
the speed of ”PCAP file reading.”

The scalability is described in Table II that show perfor-
mance in online mode. The solution was deployed on Mini-
cluster. The first node was reading the captured communi-
cation from a PCAP file and load-balancing it to the rest
that reassembled it and dissected HTTP and DNS artifacts.
In the measurements, we can see an increase in performance
with each added Reassembler. Nevertheless, further optimiza-
tion is required to achieve linear scalability.

We compare our solution running in the offline mode
with commonly used network forensic tools in Table III.
Our solution is an order of magnitude faster while delivering
a comparable amount of results.

VI. CONCLUSION

In this research, we proposed a system for distributed
real-time forensic network traffic analysis up to the applica-
tion layer capable of large-scale communication processing.
We intend to create a system based on the actor model

that scales linearly and is hardware independent. The im-
plementation environment of .NET Core framework and C#
language enables rapid development compared to C/C++ that
is used by VAST and Moloch. Also, our solution is multi-
platform and easily staged with Docker Swarm. Therefore,
the deployment of the entire computation cluster is reduced
to one command. The solution is distributed under MIT
License and hosted as an open-source project on GitHub —
https://github.com/nesfit/NTPAC.

Shortly, we plan to measure the performance of our so-
lution using data from real-world cases. Because of legal
reasons, deployment to public cloud infrastructure is out
of the question. Therefore, we need to build a private one
that consists of nodes with high CPU frequencies and 10 Gbps
network interfaces. Additionally, we need to profile and op-
timize processing mechanisms; expand the set of protocols
supported by application protocol dissectors and add support
for tunneling mechanisms.

VII. ACKNOWLEDGEMENT

This work was supported by BUT project ”ICT Tools,
Methods and Technologies for Smart Cities” (2017-2019),
no. FIT-S-17-3964.

REFERENCES

[1] N. Beebe, “Digital forensic research: The good, the bad and the
unaddressed,” in IFIP International Conference on Digital Forensics.
Springer, 2009, pp. 17–36.

[2] E. S. Pilli, R. C. Joshi, and R. Niyogi, “Network forensic frameworks:
Survey and research challenges,” digital investigation, vol. 7, no. 1-2,
2010, pp. 14–27.

[3] M. Vallentin, “Scalable network forensics,” Ph.D. dissertation, UC
Berkeley, 2016.

[4] S. Rekhis, J. Krichene, and N. Boudriga, “Digfornet: digital forensic
in networking,” in IFIP International Information Security Conference.
Springer, 2008, pp. 637–651.

[5] A. Almulhem and I. Traore, “Experience with engineering a network
forensics system,” in International Conference on Information Network-
ing. Springer, 2005, pp. 62–71.

[6] W. Wang and T. E. Daniels, “A graph based approach toward network
forensics analysis,” ACM Transactions on Information and System
Security (TISSEC), vol. 12, no. 1, 2008, p. 4.

[7] N. L. Beebe and J. G. Clark, “A hierarchical, objectives-based frame-
work for the digital investigations process,” Digital Investigation, vol. 2,
no. 2, 2005, pp. 147–167.

[8] S. Perumal, “Digital forensic model based on malaysian investigation
process,” International Journal of Computer Science and Network
Security, vol. 9, no. 8, 2009, pp. 38–44.

[9] W. Halboob, R. Mahmod, M. Abulaish, H. Abbas, and K. Saleem,
“Data warehousing based computer forensics investigation framework,”
in 2015 12th International Conference on Information Technology-New
Generations (ITNG). IEEE, 2015, pp. 163–168.

[10] Bro, cited February 2019. [Online]. Available: https://www.zeek.org/
[11] Vast, cited February 2019. [Online]. Available: http://vast.io/
[12] Moloch, cited February 2019. [Online]. Available: https://molo.ch/
[13] W. Ren and H. Jin, “Distributed agent-based real time network intru-

sion forensics system architecture design,” in Advanced Information
Networking and Applications, 2005. AINA 2005. 19th International
Conference on, vol. 1. IEEE, 2005, pp. 177–182.

[14] D. Wang, T. Li, S. Liu, J. Zhang, and C. Liu, “Dynamical network
forensics based on immune agent,” in Natural Computation, 2007. ICNC
2007. Third International Conference on, vol. 3. IEEE, 2007.

[15] S. Khan, A. Gani, A. W. A. Wahab, M. Shiraz, and I. Ahmad, “Network
forensics: Review, taxonomy, and open challenges,” Journal of Network
and Computer Applications, vol. 66, 2016, pp. 214–235.



[16] M. I. Cohen, D. Bilby, and G. Caronni, “Distributed forensics and
incident response in the enterprise,” in Digital Investigation, 2011.

[17] J. Pluskal, “Framework for captured network communication process-
ing,” Ph.D. dissertation, Diploma thesis, FIT VUT v Brne, 2014, 2014.

[18] P. Matoušek, J. Pluskal, O. Ryšavỳ, V. Veselỳ, M. Kmet’, F. Karpı́šek,
and M. Vymlátil, “Advanced techniques for reconstruction of incom-
plete network data,” in International Conference on Digital Forensics
and Cyber Crime. Springer, 2015, pp. 69–84.

[19] S. Davidoff and J. Ham, Network Forensics: Tracking Hackers through
Cyberspace. Prentice Hall, 2012.

[20] M57-Patents Scenario, cited February 2019. [Online]. Available:
https://digitalcorpora.org/corpora/scenarios/m57-patents-scenario


