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A B S T R A C T

This paper addresses the problem of a finite set of entities which are required to achieve a goal within a pre-
defined deadline. For example, a group of students is supposed to submit a homework by a specified cutoff.
Further, we are interested in predicting which entities will achieve the goal within the deadline. The predictive
models are built based only on the data from that population. The predictions are computed at various time
instants by taking into account updated data about the entities. The first contribution of the paper is a formal
description of the problem. The important characteristic of the proposed method for model building is the use of
the properties of entities that have already achieved the goal. We call such an approach “Self-Learning”. Since
typically only a few entities have achieved the goal at the beginning and their number gradually grows, the
problem is inherently imbalanced. To mitigate the curse of imbalance, we improved the Self-Learning method by
tackling information loss and by several sampling techniques. The original Self-Learning and the modifications
have been evaluated in a case study for predicting submission of the first assessment in distance higher education
courses. The results show that the proposed improvements outperform the specified two base-line models and
the original Self-Learner, and also that the best results are achieved if domain-driven techniques are utilised to
tackle the imbalance problem. We also showed that these improvements are statistically significant using
Wilcoxon signed rank test.

1. Introduction

Student retention has been recognised as a common problem both in
distance Higher Education institutions and in Massive Open Online
Courses (MOOCs) [1,2]. Learning Analytics (LA) and Educational Data
Mining (EDM) are research fields that are trying to tackle this issue by
examining available student data. They may include both static, e.g.
mainly demographic data, and fluid data, e.g. data generated by stu-
dents when interacting with a Virtual Learning Environment (VLE).
These data are available for developing methods for identification of
students who are at risk of failing courses. If such students are identified
early enough, cost-effective support can be provided. Machine learning
(ML) techniques are usually used to build models for predicting at-risk
students. Predictions can be either made available directly to students
[3] or mediated by tutors [4,5] who may offer additional knowledge
not captured by the data, and take into account wider context, such as a
student’s personal circumstances.

The standard way to train the predictive models is to take advantage

of the information from previous runs of the course. These models are
applied to data of the current run. This approach is based on the as-
sumption that the same or similar patterns of student behaviour prevail
across subsequent years. The existing approaches differ in (1) specifi-
cation of who are at-risk students; (2) available data for predictions;
and (3) the machine learning algorithms used. For example, the “at-risk
student” could be defined as one expected to achieve a final grade lower
than C in [4]; or less than 60% in [6]; not submitting the next due
assessment in [7], or one likely not to submit any other following as-
sessment [8]. In [7], Wolff et al. show that not submitting the first
assessment is a strong predictor of future failure.

For new courses, data from the previous courses (“legacy data”) are
not available and therefore cannot be used to build predictive models.
For such cases, we proposed the Self-Learning approach [9].

In this paper, we further develop the Self-Learning philosophy and
demonstrate how to predict students likely to fail based on failure to
submit the first assessment. In addition, we propose further general-
isations and improvements.
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1.1. Self-Learning in the educational domain

To overcome the lack of legacy data, Self-Learning utilises the be-
haviour of those students who submit assessments in advance. We as-
sume that the relevant patterns can be discovered in the VLE and de-
mographic data. It is expected that learners who are about to submit
will follow a similar pattern to those who have already submitted, and
that such a pattern will be missing in the VLE data of students who will
not submit.

1.1.1. Classification from imbalanced data
At the beginning, only a few students submit an assessment and the

problem is inherently imbalanced. Classification from imbalanced data is
a well-recognised problem in the ML field [10]. In many real-world su-
pervised learning scenarios, a class exists that has significantly lower
number of instances in the data than the other classes. The typical ex-
ample is the medical domain where many fewer ill individuals exist
compared to healthy ones. Another example includes enterprise credit
evaluation environment, where at-risk companies are much rarer than
normal ones [11,12]. It is not only the large disproportion between the
number of instances representing different classes which causes the
problem. Intuitively, if the concept that separates the data is not complex
and if, for example, one attribute discriminates between the two classes
perfectly, the classifier would still be able to provide predictions with
high accuracy. However, as the complexity of class characteristics grows,
the higher imbalance ratio causes greater errors [13]. In the last decade,
the impact of imbalanced data in ML attracted significant attention from
the research community and hundreds of papers have been published
that discuss the sources of imbalanced data or how to improve perfor-
mance under imbalanced data. As usual in ML, there is no guaranteed
approach to all the problems and datasets, and many of these solutions
are domain-dependent. The majority of the research is focused on binary
classification but some recent works take the multi-class problem into
consideration [14]. The most recent survey that covers many of the is-
sues and also provides a taxonomy of the solutions comes from Branco
et al. [15]. In the case of Self-Learner, the dataset evolves in time, more
students submit and the imbalance ratio decreases.

Our previous experiments in [9] focus on daily prediction analysis,
and compare various ML methods and their ability to deal with im-
balanced data. Area Under the Precision-Recall Curve (PR AUC) is se-
lected for evaluation because it is a convenient criterion when dealing
with imbalanced data [16].

The evaluation shows that the performance is lower the further the
prediction is to the deadline. The best performance is achieved by en-
semble-based classifiers, XGBoost [17] based on boosting followed by
Random Forest based on bagging. Some algorithms, e.g. Support Vector
Machines (SVM) or Logistic Regression, offer the ability to compensate
for the lower number of instances of the minority classes in the training
process. Such algorithms perform better than their original, un-
compensated versions.

1.2. Generalisation of the concept

The proposed Self-Learning method is primarily targeted on identi-
fying students at risk of not submitting the first assessment. As suggested
in [9, sec. Discussion], the same approach could predict the results of
other milestones in the course, i.e. submission of further assessments.
Given appropriate data, the application domain does not need to be
limited to education. However, two conditions need to be satisfied: (1)
the existence of the deadline within which the goal must be satisfied and
also (2) the existence of students/entities that achieve this goal before
the deadline. Motivated by this, we posed the first research question:

• RQ1: How can we formalise the problem of classification whether
individuals in a population will satisfy a goal within a specified
deadline?

1.3. Time in imbalanced data classification

Temporal changes of the class imbalance ratio have generated
considerable research interest. The survey from 2016 by Krawczyk et al.
[18] discusses open challenges in ML from imbalanced data, and
mentions learning from imbalanced data streams among them. The
usual problem of data streams is their dynamic nature: the distribution
of the data can change. For example, the imbalance ratio between
classes can change, and also a different class can dominate as time
progresses. In particular, a topic related to imbalanced data that still
needs to be researched further is the problem of new class emergence
[18], where the number of instances of the minority class is highly
under-represented in the beginning and then grows over time.

Wang et al. [19] investigate changes of imbalance ratio depending
on different speeds of change. The experiments compare over-sampling
and under-sampling bagging methods, with over-sampling bagging
being better. The performance, however, drops immediately after the
imbalance has changed. The results improve when combining both
methods with adaptive weights. Together with synthetic data, the re-
sults are examined on two real-world scenarios of fault detection. A
similar task is studied by Tan et al. in [20], where they focus on pre-
dicting defect introducing changes in the source code from the ver-
sioning system of open source projects. The goal is to detect changes of
the source code that are later fixed and marked as bugs. Changes of
code arrive permanently. The results show improved performance when
using sampling methods against baseline and against updatable classi-
fication methods. Although four types of sampling have been used, the
results presented in [20] do not provide sufficient details, e.g. which
sampling performs best.

The specificity of the problem with student assessment submissions,
or generally goal achievement as introduced above, lies in the presence
of the deadline. Although the tasks presented in [19,20] generate im-
balanced data by their nature, the absence of the deadline makes their
problem different. Compared to their scenario, in our case, we receive
new observations about a stable set of entities. Also, rather than an
abrupt change, we expect a gradual increase of submissions at the be-
ginning followed by a steep increase closer to the deadline. Conse-
quently, most of the submissions usually occur close to the deadline.
This is also confirmed by our previous results in [9] and by other stu-
dies [21–23]. This phenomenon can be attributed to the well-known
psychological problem of procrastination, i.e. postponing or avoiding of
starting, engaging in, or completing a task [24]. Since the models are
constructed from the data of the same course that is being predicted, in
the beginning, the methods suffer from the imbalanced data, i.e. the
lack of information.

A concept similar to the Self-Learning framework is Self-Training,
which is used in some semi-supervised learning problems [25]. This
technique utilises both labelled and unlabelled datasets to improve the
performance of the classification. First, the model is trained solely on
the labelled examples, and the unlabelled ones are then iteratively
added until the performance of the classifier stops improving. In [25],
Stanescu and Caragea use the original Self-Training method with sev-
eral modifications tailored to imbalanced data, achieving the best re-
sults when the training set is extended only with the examples predicted
as a minority class. The difference between Self-Learning approach and
the Self-Training in [25], and semi-supervised methods in general, is
the absence of annotated entities of the negative class, NotAchieve in our
case. In contrast, Self-Learning uses the temporal character of the data
to construct the negative class examples from the pool of available
entities, e.g. students in our case.

Our previous results [9] compared existing ML methods and
methods for dealing with imbalanced data (sampling and algorithm
based methods). In the beginning, the lack of information worsens the
performance. The improvement due to the use of methods developed to
tackle imbalanced data is negligible. This opens the potential for im-
provement, for instance, using domain knowledge. The dynamic nature
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of the imbalanced problem motivates the following research question.

• RQ2: How can we modify the existing Self-Learning approach to
improve classification performance when applied to problems with a
time-dependent imbalanced ratio?

Based on the stated research questions, the paper is further struc-
tured as follows. First, the problem of goal achievement is formalised in
Section 2. Then, the Self-Learning method is briefly described in Section
3 and followed by Section 4, which analyses the issues of the method
related to imbalanced data and proposes new extensions. The experi-
mental setup, the achieved results, and discussion are provided in
Section 5. Further implications are summarised in the Conclusions 6.

2. Problem description

Let us suppose we have a set of entities that are required to achieve
a goal within the deadline. Some of these entities may have already
done so. For all entities, we have information, which includes their
behaviour, and for those that have already achieved the goal, when it
happened. Based on such information, we would like to predict if they
will have submitted before due deadline. The task is to construct a
predictive model anytime after the first entity has achieved the goal.
Notice that we expect that no other legacy data that would guide the
training of the predictions are available.

2.1. Goal achievement prediction problem

Let D be a set of entities xi, = …D x x x{ , , , N1 2 }, where xi is an entity
represented by an m-dimensional feature vector = …x x x x( , , , ),i i i i

m1 2 i.e.
an entity described by values of m features (or attributes) …A A A, , , m1 2 .
These attributes can be either of a numerical or categorical type and
they are time dependent. Let g be a goal to be achieved and time be
discrete starting at point t0. The goal g can by achieved by the entities in
D in time t∈ [t0, td], where td is called the deadline. Let’s denote
achieving the goal g by the entity xi in time t by a predicate

Achieved x g t( , , ).i (1)

For example, a customer Mark who made a purchase on 24th
December 2010 would be denoted as Achieved(Mark, Purchase,
24Dec2010); a student John, who submitted the first assessment on the
10th day of the course as Achieved(John, SubmitA1, 10).1

To specify that the goal g was achieved by the entity x before or at
time t, let’s define the predicate AcBy (AchievedBy) as:

= ⎧
⎨⎩

∃ ≤ ≤AcBy x g t True t Achieved x g t t t t
False

( , , ) if : ( , , ),
otherwise

i i i0

(2)

Once an entity has achieved the goal, it will be true until the
deadline, i.e.:

⇒ ≤ ≤AcBy x g t AcBy x g t t t t( , , ) ( , , ),j j d (3)

The set of entities that have achieved the goal before or at time t is
defined as:

= ∈ =DA t x x D AcBy x g t True( ) { , ( , , ) }.D g, (4)

Analogously, the set of entities from D that have not achieved
(unachieved) the goal at the time t is defined as:

= ∈ =
= ∖

DU t x x D AcBy x g t False
D DA t

( ) { , ( , , ) }
( )

D g

D g

,

, (5)

Next, the number of entities that achieved or unachieved the goal g
up to time t is:

=
=

NrAcBy t DA t
NrUnacBy t DU t

( ) ( )
( ) ( ) .

D g D g

D g D g

, ,

, , (6)

Let us assume, that in the beginning, =t t ,0 none of the entities has
achieved the goal, i.e. =NrAcBy t( ) 0D g, 0 and =NrUnacBy t D( )D g, 0 . and
the time of the first achievement tfirst for set D and goal g with the
deadline td is defined as:

= ∈ ∧ >t t t t t NrAcBy tmin{ [ , ] ( ) 0}first d D g0 , (7)

Example 2.1. In the rest of the paper, we will use the running example
of students submitting their assessment in a course to support the
description of the problem definition (Fig. 1). Let us have a set of seven
students = …D s s s{ , , , }1 2 7 with the goal of submitting the assessment
denoted as g having the deadline in =t 10d . The time is measured since
time =t 00 . The student s1 submits the assessment in =t 3, s2 and s3 in

=t 7, the students s4, s5, s6 in the deadline =t 10. The student s7 does
not submit at all. Then =t 3,first and for t∈ {7, 8}

= =
= =

= =
= =

DA DA s s s
DU DU s s s s

NrAcBy NrAcBy
NrUnacBy NrUnacBy

(7) (8) { , , },
(7) (8) { , , , }

(7) (8) 3
(7) (8) 4

D g D g

D g D g

D g D g

D g D g

, , 1 2 3

, , 4 5 6 7

, ,

, ,

Let’s suppose that the entities achieve the goal independently on
each other. The number of entities that have achieved the goal before or
on time (i.e. NrAcBy(D, g, t) is a non-decreasing function of time with
the maximum reaching in the deadline td:

∀ ∈ ≤
≤ ≤
≤

t t t t t t NrAcBy t
NrAcBy t NrAcBy t
NrAcBy t

, [ , ], : ( )
( ) ( )
( )

i j d i j D g

D g i D g j

D g d

0 , 0

, ,

, (8)

Analogously, the NrUnacBy is a non-increasing function, as each
entity, after achieving the goal, is moved from DU to DA. The imbalance
ratio IR between two sets is defined as a ratio between the majority and
the minority set,

=IR D g t
NrAcBy t NrUnacBy t
NrAcBy t NrUnacBy t

( , , )
max[ ( ), ( )]
min[ ( ), ( )]

D g D g

D g D g

, ,

, , (9)

In the beginning, the majority set is the DUD, g(t) until the moment
where the number of achieved entities reaches half of the entities in D.
Let’s denote this time as teq. Let’s also expect that not all entities will
achieve the goal by the deadline. Then the IR function is defined in [tfirst,
td], where tfirst denotes the first achievement of the goal.2 For t< tfirst, the
function is undefined. The function is non-increasing in [tfirst, teq] and
non-decreasing in [teq, td]. Hence, DUD, g(t) and DAD, g(t) can exchange
their roles, i.e. DUD, g(t) becomes minority set and DAD, g(t) becomes

Fig. 1. Running example showing the submission time of students …s s s, , ,1 2 6

and the student s7.

1 This notation was used for simplifying the explanation. Formally, it would
be an entity xi, where one of the attributes in xi is the name.

2 If we expect all entities to achieve the goal before the deadline, the function
would be defined in [tfirst, tlast) with tlast being the last achievement time.
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majority set. However, depending on the domain, such a case might not
happen, especially if the majority of the entities achieve the goal at the
last minute before the deadline. The problem becomes more interesting
before the number of achievers and non-achievers is small, as less in-
formation about the reasons for achievement is available.

2.1.1. Partial goal achievement prediction problem
For the goal g, the set of entities D, start time t0, the deadline time td

and the prediction time tp∈ [t0, td), we define the task as a binary
classification problem of achieving the goal before or at the deadline,
Partial Goal Achievement Prediction Problem at time tp as:

=GP D g t t cpm( , , , , ),tp
nat

d 0 (10)

where nat denotes the natural order of time. Later, we will also use time
running backwards from the deadline.

The first four parts of the tuple have been defined earlier and cpm is
a classification performance measure that is optimised, defined as a
function:

cpm y y( , )pred true (11)

ypred denotes the vector of predictions for the entities and ytrue their true
class labels. The examples of cpm are Accuracy, ROC AUC3 The entities
that have not achieved the goal before or at time tp are subject to
predictions, defined by the function DUD, g(tp), see Eq. 5. Once the entity
achieves the goal, its prediction is not interesting anymore. For such
entities x∈DUD, g(tp) at time tp, the target classes are defined as:

= ⎧
⎨⎩ ¬

class x g t t
Achieve AcBy x g t
NotAchieve AcBy x g t

( , , , )
if ( , , )
if ( , , )p d

d

d (12)

In other words, the goal is to find the model approximating the class
function, i.e. predicting goal achievement within the deadline for the
entities that have not achieved the goal by the prediction time. Notice
that for tp, the available data are known and the first time for which we
predict achieving of the goal in tp is +t 1p . The true values of the classes
are known just after the deadline passes and at this time it is possible to
evaluate the problem.

Example 2.2. Following the running Example 2.1 with the start =t 00

and the deadline =t 10,d the performance measure we will use in is
ROC AUC (now shortened as AUC). The partial problem for =t 7p is
depicted in Fig. 2, i.e. =GP D g AUC( , , 10, 0, )nat

7 . The predictions are
computed for days 0 - 7, i.e. the last prediction day is =t 7p . The
number of days to the deadline for which the predictions are made is

− = − =t t 10 7 3d p .
Moreover, the last day for prediction can be = − =t t 1 9,d the

partial prediction problem is defined as =GP D g AUC( , , 10, 0, )nat
9 and

the predictions are computed for only one day, i.e. one day before the
deadline td.

2.1.2. Backward aligned problem

=GP D g t t cpm( , , , , ),τp
R

d 0 (13)

where τp is the prediction time relative to the deadline such as
< ≤ −τ t t0 p d 0 . τ will be used from here on to emphasise that the time

is counted relatively from the deadline. As from now on we will only
refer to the relative partial problem and we use the notation GPτp. The
other parts are the same as in the Definition 10. Also, = −τ t tfirst d first

denotes the first day with the goal achievement in a relative manner.
Similarly, =τ 0d will denote the deadline and = −τ t td0 0 the time t0 of
the partial problem. In the rest of the paper, we will use this relative
counting of time.

Example 2.3. Fig. 3 depicts the same problem as in Example 2.2 but
with relatively defined prediction time =τ 3p . Times relative to the
prediction day will be more intuitive for defining how to compute the
predictions. Such problem is defined as = =GP GP D g AUC( , , 10, 0, )R

3 3 .

2.1.3. Goal prediction problem formulation
The definition of prediction problem integrates all partial problems

for all of the available prediction times, for which relative counting is
< ≤ −τ t t0 p d 0 . Let us define the problem as Goal Prediction Problem

GP as:

=GP D g t t cpm( , , , , )d 0 (14)

From now on, when used in the same context, GPτp will refer to the
partial problem of the problem GP for the prediction time τp and with
the same D, g, td, t0, cpm.

Example 2.4. Following the running example, the problem is defined as
=GP D g AUC( , , 10, 0, ). The problem is defined in times

∈ −τ t t[1, ],p d 0 i.e. in [1,10]. The first prediction will be 10 days
before the deadline and the last one the day before.

The goal is to find a method which constructs a predictive model in
each time after the first goal achievement, i.e. for the Goal Prediction
Problem GP.

The key question is the selection of a performance measure for the
prediction problem. This issue is highly related to the presence of im-
balanced data and will be discussed later in Section 5. For a selected
classification performance measure cpm and a trained predictive model
m, the problem performance measure (ppm) for the partial problem GPτp
is computed by: (1) retrieving the predictions by applying the model to
the testing data and (2) calculating the classification performance
measure cpm using the predicted and true values (labels) of the classes.
This can be denoted as:

ppm GP m( , )τp (15)

Theoretically, it is possible to provide predictions at any time, but
the meaningful models can be computed only after the first entity has
achieved the goal in τfirst. In the running example, the first student
submitted on day =t 3, i.e. in = − =τ 10 3 7,first so it is makes sense to
evaluate the problem only in relative times =τ[1, ] [1, 7]first .

Thus, ppm for a problem GP we define as the mean over all the
prediction times τ∈ [1, τfirst] as:

Fig. 2. Time line for the partial problem GP7 in the 7th day, with the deadline
denoted as td (dark green), the day of prediction as tp (dark blue). Known past
(training) data are highlighted in blue, predicted future is in green. (For in-
terpretation of the references to colour in this figure legend, the reader is re-
ferred to the web version of this article.)

Fig. 3. Time line for the partial problem 3 days before the deadline, depicted in
both natural (top) and relative (bottom) time counting. The deadline td is in day
10 (dark green), prediction time is tp for absolute counting, τ for relative
counting. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

3 AUC = Area Under ROC Curve, ROC = Receiving Operating Characteristic,
PR AUC and others.
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∑=
=

mppm GP
τ

ppm GP m( , ) 1 ( , ),
first τ

τ

τ τ
1

first

(16)

where m denotes the vector of trained models. For each prediction time
τ∈ [1, τfirst], there is a model mτ. Recall that the time τ is measured
backwards from the deadline td. Usually, we are interested in the per-
formance of one learning algorithm type, e.g. logistic regression, which
calculates in each time τ a different instance of the same model type,
denoted mτ.

2.1.4. Multi-Goal problem
Let’s consider n prediction problems …GP GP, , ,n1 with their datasets

denoted as GPi.D, i∈ [1, n]. The problems have the same goal g, and we
want to evaluate the performance of models on all of the problems using
cpm. First, in order to align the problems, the minimum of τfirst time in-
stances over all the problems is selected. Let’s denote this as τminf. Then a
Multi-Goal Problem is defined as a matrix of partial problems

= ×MGP pgp: ( )d τ n τ, minf (17)

The rows index the partial problems by the datasets, and the col-
umns by the prediction times. Let’s suppose a matrix of trained models

= ×MO m: ( )d τ n τ, minf for these problems, where the model md, τ refers to
the model trained for the partial problem pgpd, τ, i.e. on the dataset
GPd.D in the relative prediction time τ. Then, the performance measure
is defined as:

∑ ∑=
= =

MGP MOppm
n τ

ppm pgp m( , ) 1
·

( , )
minf d

n

τ

τ

d τ d τ
1 1

, ,

minf

(18)

Example 2.5. In case of students submitting assessments, we might be
interested in the average performance measure for the first assessment
(denoted as a goal g) of three courses C1, C2, C3 described by datasets
D1, D2, D3. Each course is described by a dataset Di, i.e. =

=R D D D{ , , }1 2 3 . If the first submission occurs in times =τ 7 for the
course D1, =τ 5 for D2 and =τ 6 for D3, then =τ 5minf . Hence, the
performance measure would be mean of × =3 5 15 values, i.e. mean
over 15 models. As mentioned, these models will usually be trained
using one type of learning algorithm, such as logistic regression.

2.2. Comparison with gold standard

The mean absolute value, however, might be biased towards the
more accurate models closer to the deadline, for example 1 day before.
The bias can also be observed in case one dataset Di has significantly
different performance than the others. The resulting measure would
correctly order the models according to the performance, but the value
might be difficult to interpret.

In some cases, we might have available a performance of a gold
standard and compare the solution with that. In such cases, we define
the performance in terms of loss of performance to this gold standard.
We define it as the best model out of those trained on the testing data.
This approach captures the variability and prediction power of features
with respect to the predicted target. Let us define the loss of the model
m to the best model mbest for a partial goal achieving problem GPτp as:

= −ppmLoss GP m ppm GP m ppm GP m( , ) ( , ) ( , )τp τp best τp (19)

Then, the performance loss for the prediction problem is defined
analogously to Eq. (16) as the average across the partial problems as:

∑=
=

mppmLoss GP
τ

ppmLoss GP m( , ) 1 ( , )
first τ

τ

τp τ
1

first

(20)

Analogously, for the Multi-Goal Problem MGP, ppmLoss is defined in
the same way as in the Eq. (18). Only ppm for the inner partial problem
would be replaced by ppmLoss (Eq. 19).

2.3. Summary of the problem definition

This section first formally defined the partial problem of achieving
the goal by the deadline in prediction time t before the deadline
Eq. (10). Using the backward alignment from Eq. (13) allowed us to
define the Goal Prediction Problem GP in all available prediction times
(Eq. 14), which is the main problem we focus to optimise in this paper.
To achieve this, a problem performance metric was defined in (16)
using the average across the partial prediction problems. If we have a
performance of a gold standard to compare with, we propose to use the
performance loss measure instead (Eq. 20). Moreover, both metrics can
be used to compare across several datasets with the similar and com-
parable goal achievement problem, we refer to them as Multi-Goal
Problem.

3. Materials and methods: Self-Learner

This section briefly describes the generalised principle of the Self-
Learning presented in [9]. The goal of the method is to learn the pre-
dictive model in all the specified time instants τ. The key aspect is the
existence of behavioural features for the given population and using
only the features from this population, especially of the early goal
achievers. To allow this, we assume that the behaviour of entities which
achieve the goal closer to the deadline follows a similar pattern as those
who have already achieved the goal in advance; and also differs from
the entities that will not achieve the goal within the deadline.

3.1. Extending labelling window

Given the partial problem =GP D g t t( , , , ),τp d 0 to be able to create
the prediction model for n days to the deadline it is essential to have
labelled examples to be used as the training data. The true label in the
training data is known only for the entities that have already achieved
the goal. Because of that, a virtual labelling interval is created to
measure the goal satisfaction until the prediction time. Only features
from entities before the start of that interval are used. To simulate the
problem as occurring in the prediction time τp, the window of the same
size as the time remaining to the deadline was selected [9].

The method can be summarised as follows. In each instance of time
τp remaining to the deadline τd:

1. In the training phase, the behavioural features are moved backwards
by τp time units. This creates the virtual deadline (virt τ_ d) in the
current prediction time and also the virtual prediction time (virt τ_ p),
which is moved τp time units back. Recall that τd denotes the
deadline in a relative manner.

2. For training, keep only the entities that have not achieved the goal
by the virtual prediction time, i.e. this will exclude early achievers.

3. Create the labels, Achieved/NotAchieved, by looking if the entities
in the training set achieved the goal by the virtual deadline.

4. Optional step: Apply a sampling method to remove the imbalance in
the training data,

5. Use a selected ML algorithm to train the model,
6. Apply the model to all the entities in the testing set, i.e. the entities

that have not achieved the goal by the prediction time τp.
7. Evaluate the predictions, once the deadline is due.
Example 3.1. To better illustrate the principle, Fig. 4 shows an example
for predicting 3 days before the deadline. After training, the model is
capable to predict for the individuals that have not achieved the goal if
they will succeed in the following days 2,1 or 0. The day =τ 3p denotes
the current prediction day, the green area depicts the predicted interval
until the deadline, and the blue area the days from which are extracted
values of the features. This view shows the shift in the training and
testing data. For example, values of the features for day =τ 3p in the
training data relate to the day =τ 6p in the testing data, because the
data for training are aligned towards the virtual deadline =virt τ_ 3d .
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3.2. Case study in learning analytics

In [9], this method has been evaluated on 4 courses from The Open
University Learning Analytics Dataset (OULAD) [26]. The features used
for learning include both static information such as demographic data
or the date of the course registration; as well as fluid daily aggregated
data from the VLE. VLE data are grouped by the activity type such as
reading the course content, downloading the document resources or
participation in forums.

3.3. Machine learning models

The following ML algorithms were used to train the models: Logistic
Regression (LR), Weighted Logistic Regression (LR-W) - weighted by
the relative cardinality of classes; Support Vector Machines with the
radial basis (SVM), Weighted SVM (SVM-W), Random Forest (RF),
XGBoost (XGB), Naive Bayes (NB) and two baseline models B[NS] and B
[NA]. These are defined as:

• Base[NotSubmit] or B[NS] – this assigns all the students to
NotSubmit class. The model will have maximum =Recall 1, but it is
expected to have low Precision and =Specificity 0.

• Base[NotAccessed] or B[NA] – it reflects the simple belief that
students that have not logged into the system since its opening are
not showing effort to submit the assessment. The model classifies all
these students as NotSubmit and the others as Submit. The model
should be able to capture the most critical students, but it is not
expected to identify all of them.

The PR AUC measure was selected as a classification performance
measure. It is suitable for imbalanced data, it provides a probabilistic
view of the classifications and in contrast to ROC AUC, it is more fo-
cused towards the target class. In this case, they were the students at
risk of failing the course. The results reported daily performances
averaged across all the courses and they were compared with training
on the previous presentation (PrevPres). Also, these were compared
with the theoretically best scenario when training on the testing data.
The method was able to achieve accurate results close to the deadline
but the performance decreased significantly as moving back in time.

4. Improvements of the Self-Learner

Based on the analysis of the preliminary results, we identified sev-
eral issues of Self-Learning methods. In order to create the classification
model, the labelling window technique with extending size results in
three issues: the first two represent information loss while the third one
noise in the data.

1. Ignoring entities’ behaviour in the labelling window – the labelling
window enables creating a proxy for distinguishing which entities

will or will not achieve the goal within the deadline. To simulate the
problem, the size of the window was set to the same length as the
number of days remaining up to the deadline. However, the features
of the data in the labelling window are not used for training the
model but only for labelling entities as Achieve or NotAchieve,
leaving some of the features not utilised.

2. Ignoring early goal achievers – some entities are not part of the
training data because they achieved the goal before the start of the
labelling window (see the method description, point 2 in Section
3.1). More entities are excluded since we are closer to the deadline
and the window is getting narrower. On the other hand, more en-
tities achieve the goal closer to the deadline, potentially mitigating
the impact.

3. Imbalanced data and noise – the problem is inherently imbalanced,
the earlier the predictions are made, the higher the imbalance ratio.
This is due to the majority of entities not yet achieving the goal.
Some of the data are labelled as NotAchieve for the training purpose,
though they will achieve the goal in the end. Consequently, in the
prediction time, the data of these entities contribute to the con-
struction of the NotAchieve class though their patterns already in-
dicate that they will eventually belong to the Achieve class. The
behaviour of the NotAchieve students can be perceived as a kind of
noise in the data, which is one of the problems that accompanies
imbalanced data and it is hindering the performance of the classi-
fiers [27]. This domain knowledge may be useful in contributing to
an under-sampling method.

As a result, we designed three modifications: (1) Modifying the la-
belling window size, (2) Including the early goal achievers and (3)
Domain-driven sampling methods.

4.1. Modifying labelling window size

Originally, the size of the labelling window is the same as time to
the deadline. It will be denoted as wSame. Let’s relax this condition and
introduce an additional parameter specifying the size of the window.
This parameter will be denoted as SizeOfLabellingWindow. Therefore, in
the original Self-Learning strategy, = −SizeOfLabellingWindow t td p .
Shrinking the labelling window allows the algorithms to use more in-
formation about each entity, as the behaviour of the entities previously
used only for labelling is now available and used only for training. As a
result, the number of entities in the labelling window decreases.

Theoretically, it is possible to make the parameter
SizeOfLabellingWindow ∈ [1; τfirst]. The =SizeOfLabellingWindow 1 re-
presents the minimum measurement interval necessary to collect the
data, the maximal one represents the first time that any achievement
information is available. In this case, it is possible that the window is
enlarged with respect to the original strategy. Shrinking the window is
expected to exploit more information about individuals, yet too short
interval might deteriorate the performance by introducing a bias to-
wards high activity needed to recognise the individual to achieve the
goal in time. These assumptions, however, need to be confirmed by the
evaluation.

From this perspective, when comparing the results on more data-
sets, the reasonable choice is the selection of the maximum considered
window size as the minimum of the first relative achievement time
across all the datasets.

4.2. Including early goal achievers

The window shrinking will increase the imbalance ratio as fewer
entities are used for training, however with more information about
them. Instead of ignoring the entities that achieved the goal before the
start of the labelling window, these entities will extend the training
dataset. The time of their goal achievement will be set as a virtual
deadline and the behavioural features will be aligned with respect to

Fig. 4. Classification framework for Self-Learning and testing predictions of at-
risk students. The available features denote from which days the features can be
used for training or testing data.
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this time. This modification will become even more important with
changing the size of the labelling window. We expect that for small
window size further from the deadline, the performance will drop un-
less these early achievers are included because there is a low number of
achievers.

Including early achievers raises a question whether the character-
istics of such entities differ from the later achievers, which may nega-
tively influence the performance. In the educational context, one can
argue for students who were very active and submitted very early being
outliers because they are likely to have behaved differently. Thus, we
will examine if there is any performance decrease for the very early
achievers. To evaluate this, we define the parameter
IncludeBackWindow, which specifies the maximum number of days from
the start of the labelling window that can be used to add the students
back to the training data. The days are counted backwards in time. The
students that submitted in the interval

+virt τ IncludeBackWindow τ[ _ , ]d p

will be included in the training data. Recall, that virt τ_ d denotes the
virtual deadline or the start of the labelling window. The minimum
value of the parameter is =IncludeBackWindow 0, when no additional
achievers outside of the labelling window will be added. The original
Self-Learning approach counts with the size

=IncludeBackWindow virt τ_ d parameter.

4.3. Domain driven sampling methods

To decrease the imbalance ratio and eliminate the possible noise in
the data, we designed an informed under-sampling method with three
different strategies. On the input, we expect a ML algorithm able to
produce a scoring predictive model. First, the model is trained making
use of all data and applied to obtain a probability of achieving the goal
for all entity. Achievers are in the training data usually minority, i.e. it
is the confidence of a classifier of being a member of the minority class.
We denote the minority class as cmin and the majority class cmaj. Finally,
a function remMajData is used to obtain a sample without the entities
from the majority class, which are on the borderline with the minority
class. The schema of the approach is described in the Algorithm 1.

We propose three methods of the function remMajData for removing
the bottom majority class data:

4.3.1. Method 1: EqualClassNumber
The usual goal of the sampling algorithms for imbalanced data

achieves an equal number of entities in the minority and majority
classes. This method accomplishes this by using the function
remTopMajority in Algorithm 2. The function creates a sample with
removed n entities from the majority class with the highest probability
of being in the minority class. Let us denote the number of majority
class entities nmaj and the number of minority class entities nmin . The
sampling is performed using the function

−remTopMajority D y true y pred n n( , _ , _ , )maj min . −n nmaj min denotes the
number of entities being removed.

4.3.2. Method 2: ClassOverlapRemoval
Instead of removing the fixed number of majority class entities, this

method focuses on removing the majority entities that are overlapping
with the minority class. First, the lowest prediction probability of the
minority class is taken, and then it is used with the procedure
remMajorityByThr in Algorithm 3. The function removes all data from
majority class having the predicted probability to the class cmin higher
than the specified threshold.

For example, selecting a threshold with as the minimal value of the
minority class would remove all the overlap. Another possibility is to
select it as the percentile of the minority class allowing for some
overlap.
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4.3.3. Method 3: EstimateGoalAchievmentNumber
This method also utilises the remTopMajority D y true y pred n( , _ , _ , )

function in Algorithm 2. Instead of balancing the classes equally, it
estimates this number based on the domain information. In our case, we
have the anonymised OULAD dataset coming from the educational
area. If we plot the relative number of students that had this assessment
submitted on different days before the deadline, we obtain the graph in
Fig. 5. This suggests that in this case, the number of goal-achievers
follows the exponential function, that is, the number of submitted as-
sessments grows exponentially as the deadline approaches.

Using this data it is possible to estimate the parameters of the ex-
ponential function, that would be created by the average of all the
functions. The function λ(τ) is defined for relatively specified time
τ∈ [0, τfirst], where 0 denotes the deadline and τfirst the first goal
achievement. Following this,

=λ τ λ e( ) ,βτ
0 (21)

where λ0 is the estimated number (ratio) of entities achieved the goal in
=τ 0, i.e. in the deadline and β is the coefficient for time τ. We took the

daily submission data from all the courses in the 2013 presentations
and applied the nonlinear regression using least-squares to approximate
the parameters of the exponential function. Taking the average of the
courses, we get the function with the following parameters:

= −λ τ e( ) 0.7818 τ0.4167 (22)

To perform the under-sampling, we need only an estimate of the
function for =τ 0, i.e. = =−λ e(0) 0.7818 0.78180.4167·0 . If n denotes the
number of all the predicted students, the estimated number for removal
is −n n0.7818· )min . Consequently, the sampled training data are ob-
tained using the function:

−remTopMajority D y true y pred n n( , _ , _ , 0.7818· )).min

On one hand, the domain informs us about the presence of a noise
and the need for under-sampling. Nevertheless, the domain is fully
utilised only in the Method 3, where the algorithm using the informa-
tion about the underlying process and expected distribution of goal
achievement in time.

5. Evaluation and results

The evaluation data have been taken from the educational domain,
in particular from a distance based higher educational institution. The
Self-Learning approach with the proposed modifications has been ap-
plied to identify students at risk of failing the course by focusing on
those that are unlikely to submit the first assessment.

5.1. Experimental setup

We utilised The Open University Learning Analytics Dataset
(OULAD) [26] for the evaluation. This anonymised dataset contains 7
courses denoted as AAA to GGG with 4 presentations of the courses in
years 2013 and 2014. Presentations starting in February are denoted as
B and presentations in October as J. The dataset contains the pre-
sentations 2013B, 2013J, 2014B and 2014J. The courses cover a broad
range of fields such as science, technology, engineering, maths (STEM)
and social sciences. AAA is a level three course, GGG is a preparatory
course, and the rest are level one courses.

We excluded from the experiments the level-3 course AAA. At this
level, students are already advanced and identification of at-risk stu-
dents is replaced by focusing on improving the knowledge gain of such
students. To compare the Self-Learning approach with training on the
previous presentation, we selected only those courses from the 2014J
and 2014B presentations, for which 2013J or 2014J presentation exists.
For this reason, the course CCC is missing in the experiments.

The courses have between 750 and 2500 students with the pass-rate
ranging from 37 to 60%. The goal was to predict the submission of the
first assessment by students registered in the course within the dead-
line. The number of students, pass rate, submission rate and the dead-
line day for all the courses under analysis is described in Table 1.

The earliest deadline is the 12th day (BBB-2014B) but the evalua-
tion was performed for days 1–19. This was selected as the common
minimal day for all the courses when the models were able to be
trained, i.e. at least one student submitted the assessment. The courses
have a start day (day 0) but the VLE opens even before so students are
able to study in advance. Some students submit even before the official
start of the course, which states also for BBB-2014B and that’s why
these models were able to be trained even before the course start.

Fig. 5. Ratio of submitted students in the data in all the courses of OULAD.
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5.2. Difference in setup with published results

Here, the experimental setup slightly differs from the published
results in the paper in [9]. In that article, only one presentation (the
most recent one) was used, while here the focus was extended to both of
2014 presentations. Further, we decided to include a previously dis-
carded preparatory course GGG, since there is interest at The Open
University to widen analysis of at-risk students at an early level.

The ROC AUC was added as a supplemental metric for the evalua-
tion, as it shows a different view on the performance, counting also the
correctly identified submitted students. Most importantly, the values
for the PR AUC slightly differ from the article. We discovered that the
area under PR curve in the used Sci-Kit library [28] was computed by
linear interpolation. In this case, it might give overly optimistic results
for poorly performing models, particularly the baseline models.4

5.3. Evaluation strategy

The evaluation of the models from the case study in [9] was based
on comparing the performance measures in each day separately.

In this paper, we decided to use the strategy, which provides a
performance measure for the Multi-Goal Problem, i.e. for all the times
and also for more datasets. This also enables easier comparison of the
proposed modifications. We used the performance of the gold standard
defined as the model that is trained using all the data that are available
during the testing, i.e. with the correct labels. As such we utilised the
performance loss for the Problem from the Eq. (20), and for Multi-Goal
Problem (18).

Moreover, to evaluate the statistical significance of the modifica-
tions’ performance, we performed the Wilcoxon sign rank test for paired
samples. The pairs in the test represent ROC AUC and PR AUC for the
given dataset and day. With 8 courses and 19 days, there are

× =19 8 152 pairs entering the test. The Wilcoxon sign rank test was
chosen because the results do not follow the normal distribution, si-
milarly as in [12]. The null hypothesis assumes that there is no statis-
tically significant difference between the performance of the models
based on the PR AUC and ROC AUC measures. Our particular interest is
in the difference between the proposed modifications and our previous
findings as well as the best performing existing sampling methods, in-
troduced in the following paragraph.

We used the same ML algorithms as in our previous results in [9]
and listed previously in Section 3.2. Also we used the following sam-
pling methods from the imbalanced-learn library [29]. Namely we used
Random under-sampling (Rand-Under), Tomek-Links, Extended
Nearest Neighbours (ENN), Neighbour Cleaning Rule (NCR), Random
over-sampling (Rand-Over), SMOTE [30], SMOTE-ENN [31], SMOTE-
Tomek [32], and more recent ADASYN [33] and sampling based on
Instance Hardness Threshold [34]. They include both uninformed and
informed methods based on under-sampling and over-sampling. They

are the algorithms used in many papers for tackling the imbalanced
data.

5.4. Results

The evaluation is split into two parts, first replicating the results
from Hlosta et al. [9] using the new evaluation setup. Only one measure
was applied to describe the performance of the whole system. Selected
ML algorithms were used together with several sampling methods to
improve the performance in the imbalanced data. Both ROC AUC and
PR AUC were used to evaluate the results. The second part presents the
results and analysis of the improvements.

5.4.1. Replicated original Self-Learning results
The results are depicted in Table 2 for PR AUC and in Table 3 for

ROC AUC. The tables indicate that the lowest overall loss was achieved
by Random Forest. For PR AUC, SMOTE-ENN performed best, followed
by random over-sampling. The solution without any sampling was
worse by 0.0074. For ROC AUC the lowest loss was achieved by IHT,
but again, with only small improvement 0.0030 over Random Forest
without any sampling method.

For PR AUC, SMOTE-ENN was the technique that improved the
performance best for four of the models and random under-sampling for
the other three. The results are the same for ROC AUC, with the only
exception being Random Forest with NCR. The highest impact of
sampling methods was achieved for LR decreasing the loss of PR AUC
by 0.1958 and for SVM by 0.1351. A similar result had been achieved
for ROC AUC, but the gap between LR and SVM has widened.

5.5. Modification 1 and 2: Window size and including early goal achievers

Changing the size of the labelling window enables us to compare
whether it is more important to have additional information about an
individual student or more students who submitted (i.e. the minority
class) in the training data. For each prediction day, the size of the la-
belling window has been changed from 1 to 19. The performance losses
have been averaged across all prediction days and across all the
courses. The results for various sizes of the window were compared to
the original solution wSame when the size changed with respect to the
number of days remaining up to the deadline.

The models were built both with and without including the sub-
mitted students before the beginning of the labelling window
(Modification 2). We present both modifications together to highlight
their relationship. As the results will show, it is more important to in-
clude the entities when the window gets smaller.

Fig. 6 and Table 4 demonstrate the results for both ROC and PR AUC
losses. INC denotes the solution with including students, NOTINC is the
original solution, i.e. without including these students.

The predictions have been computed for days 1 to 19, and the
performance losses have been averaged across all prediction days and
across all the courses. With the wSame strategy, the performance
measure was also computed across days and courses. This value is in-
dependent of the parameter for the fixed window size
SizeOfLabellingWindow; the value is constant, and it is represented as a
horizontal line. Therefore, two different window sizes, both with INC
and NOTINC strategies, will result in four possible strategies and
models. Afterwards, we computed their performance loss according to
the Eq. (20). Two window sizes 1 and 2 result in strategies created by
(1, INC), (1, NOTINC), (2, INC), (2, NOTINC).

Fig. 6 shows that the loss of PR AUC is higher than that for ROC
AUC. For both measures, the loss slowly decreases for INC and NOTINC
from size 19 to size 7. For the sizes 19 to 10, the difference between the
INC and NOTINC are only 0.001. Moving from the window 9 to 1, the
differences start increasing, mainly because the loss of NOTINC starts
increasing exponentially until the window size 1. This is caused by
increasing the imbalance in the training data due to narrowing the

Table 1
Information about the courses under analysis - 2014 presentation.

Course Pres No. of students Pass Rate
[%]

A1 S/NS
[%]

Deadline [Day]

BBB 2014B 1613 54.93 73.65 12
BBB 2014J 2292 49.74 77.31 19
DDD 2014B 1228 60.99 75.65 25
DDD 2014J 1803 56.07 78.48 20
EEE 2014J 1188 42.42 78.20 33
FFF 2014B 1500 56.40 79.40 24
FFF 2014J 2365 52.77 77.12 24
GGG 2014J 749 40.72 77.97 61

4 This issue has been fixed in the new release in August 2017 in https://
github.com/scikit-learn/scikit-learn/issues/5379.
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labelling window and consequently the number of students submitting
in this interval. However, close to the deadline, this problem is not
observed, because enough students submit during the interval. It con-
firms the results from the original solution [9], where the highest
performance is achieved in the last days despite a small window size.
However, the performance decreases for days further away from the
deadline td.

Adding the early submitting students also helps to mitigate the
impact of the narrow window. For PR AUC the loss is the lowest for size
4. For ROC AUC, the loss is decreasing until the end of window size 1.

For comparison, the dotted lines in Fig. 6 denote the wSame solu-
tions. For both metrics, the values for NOTINC and NOTINC of wSame
are almost equal, note the last row in Table 4. This means, that

including the students for wSame itself does not significantly improve
the performance. For NOTINC, there is an interval with loss lower than
for the wSame. For PR AUC it is [5,9] and for ROC AUC [5,11]. Due to
narrowing window, the performance degrades from the window size 7
to 1.

The results showed the best performance improvement for
SizeOfLabellingWindow≤ 7 and the case when the early submitting
students were included. Window sizes [1,7] were selected for further
evaluation and analysis for improvement of the model. Window size 1 is
the global minimum of the ROC AUC loss and 4 and 6 are the global
minimums for the PR AUC loss. ROC AUC has a local minimum for the
size 7.

Table 2
PR AUC loss on the selected courses using all the ML models and the sampling methods.

ADASYN ENN IHT NCR None Rand Rand SMOTE SMOTE SMOTE Tomek
Over Under Tomek ENN Links

B[NS] 0.4366 0.4366 0.4366 0.4366 0.4366 0.4366 0.4366 0.4366 0.4366 0.4366 0.4366
B[NA] 0.3285 0.3285 0.3285 0.3285 0.3285 0.3285 0.3285 0.3285 0.3285 0.3285 0.3285
LR 0.2800 0.3788 0.3195 0.3849 0.4006 0.2911 0.2048 0.3370 0.3373 0.2266 0.4005
LR-W 0.2800 0.2570 0.2177 0.2605 0.2694 0.2911 0.2048 0.3337 0.3340 0.2290 0.2688
NB 0.3999 0.4055 0.3807 0.4081 0.4143 0.4154 0.3594 0.4405 0.4401 0.3780 0.4139
RF 0.1878 0.1800 0.1757 0.1786 0.1788 0.1879 0.1741 0.1826 0.1839 0.1714 0.1783
SVM 0.2646 0.3430 0.2547 0.3506 0.3693 0.2666 0.2654 0.3111 0.3106 0.2342 0.3686
SVM-W 0.2647 0.2257 0.2012 0.2263 0.2322 0.2666 0.2654 0.3107 0.3095 0.2253 0.2306
XGB 0.3102 0.3239 0.3029 0.3238 0.3262 0.2481 0.2441 0.2549 0.2554 0.2360 0.3263

Table 3
ROC AUC loss on the selected courses using all the ML models and the sampling methods.

ADASYN ENN IHT NCR None Rand Rand SMOTE SMOTE SMOTE Tomek
Over Under Tomek ENN Links

B[NS] 0.3746 0.3746 0.3746 0.3746 0.3746 0.3746 0.3746 0.3746 0.3746 0.3746 0.3746
B[NA] 0.2715 0.2715 0.2715 0.2715 0.2715 0.2715 0.2715 0.2715 0.2715 0.2715 0.2715
LR 0.2010 0.3557 0.2936 0.3629 0.3811 0.2055 0.1490 0.2522 0.2521 0.1784 0.3812
LR-W 0.2010 0.1817 0.1620 0.1837 0.1888 0.2055 0.1490 0.2408 0.2408 0.1698 0.1885
NB 0.3068 0.3201 0.2895 0.3232 0.3319 0.3334 0.2552 0.3833 0.3826 0.2881 0.3314
RF 0.1518 0.1434 0.1394 0.1413 0.1425 0.1543 0.1432 0.1606 0.1616 0.1436 0.1428
SVM 0.1888 0.2461 0.1871 0.2508 0.2662 0.1902 0.2780 0.2249 0.2246 0.1762 0.2656
SVM-W 0.1888 0.1679 0.1547 0.1676 0.1710 0.1902 0.2780 0.2243 0.2226 0.1673 0.1702
XGB 0.2110 0.2330 0.2096 0.2342 0.2377 0.1849 0.1796 0.1972 0.1971 0.1725 0.2379

Fig. 6. Loss of PR AUC and ROC AUC for dif-
ferent sizes of the labelling window and the
influence of including the early achievers in
the training data. INC denotes including stu-
dents that submitted the assessment before the
start of the labelling window. The dotted lines
correspond to the wSame approach, being
comparable to the strategy denoted with the
same colour with full line.
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5.5.1. Impact of very early achievers
As shown, including students who submitted before the start of the

labelling window improves the performance. The question is, whether
the students who submitted a long time before the start of the labelling
interval do not hinder the performance. Especially, as approaching the
deadline, one might expect that students who submit among the first
behave differently than those who submit at the last moment.

Having =SizeOfLabellingWindow 1, we varied the maximum
number of days (IncludeBackWindow) before the labelling window that
is allowed for a student to be added to the training data. The value of
the parameter was set from 0 to 40, which is the same as considering
‘infinity‘, given that the maximum deadline in the dataset is 61, seen in

course GGG. If the data pattern of the early achievers was different, we
would notice the decrease of performance measures for increasing value
of the parameter IncludeBackWindow. The results in Fig. 7 show this
neither for PR AUC loss nor for the ROC AUC loss. The only visible trend
is the exponential increase of loss when lowering the maximum window
size. The further analysis showed that the main loss does not come from
the days close to the deadline, but those that are far away.

In conclusion, including all the students back into the analysis, even
with the size of the labelling window 1, does not negatively influence
performance.

5.6. Modification 3: Domain driven sampling methods

Taking the best results from the previous experiments, labelling
window of sizes −1 7 were taken for evaluation together with the
original window, (i.e. wSame). The three proposed sampling methods
were compared with each other and to the results without any sam-
pling. Again, the loss of PR AUC and ROC AUC were the measures of
interest.

Table 5 shows the loss of PR AUC. EQ_CLS denotes the sampling
with the equal number of data in both classes, EST_RAT is the estima-
tion of the submission ratio, and RM_OVLAP stands for the removal of
the overlap between the classes. For RM_OVLAP, 100 denotes the re-
moval of all the majority data that overlap with the minority class and
25 allowing 25% of minority data to overlap with the majority data.
Table 6 shows the same analysis using ROC AUC loss as the measure.

Results indicate that the best performance for both measures is
achieved for the EST_RAT. With the best PR AUC achieved for window
size 2, the loss was decreased from 0.1716 to 0.1417, i.e. by 0.0299.
Window 4 has loss of only 0.0010 higher, i.e. 0.1427. For window 1 the
loss is 0.1432. The results for ROC AUC are similar, EST_RAT for
window size 1 achieving the best results with the loss 0.1133 followed
by EST_RAT with window size 2 with a loss of 1162.

From the other sampling methods, EQ_CLS improved performance
but only for PR AUC. The problem with EQ_CLS is probably the removal
of too many students, retaining mainly the most obvious submitters. For
the PR AUC, it still performs well.

Table 4
Loss of PR AUC and ROC AUC for different sizes of the labelling window and the
influence of including the early achievers in the training data. INC denotes
including students that submitted the assessment before the start of the label-
ling window.

winSize PR AUC LOSS ROC AUC LOSS PR AUC LOSS ROC AUC LOSS
NOTINC NOTINC INC INC

1 0.2553 0.1956 0.1707 0.1265
2 0.2133 0.1584 0.1716 0.1297
3 0.1958 0.1495 0.1716 0.1304
4 0.1844 0.1431 0.1672 0.1279
5 0.1794 0.1379 0.1680 0.1288
6 0.1730 0.1332 0.1674 0.1307
7 0.1732 0.1320 0.1690 0.1289
8 0.1757 0.1347 0.1703 0.1319
9 0.1775 0.1366 0.1717 0.1332
10 0.1791 0.1386 0.1780 0.1378
11 0.1771 0.1382 0.1782 0.1382
12 0.1794 0.1408 0.1784 0.1404
13 0.1797 0.1430 0.1805 0.1438
14 0.1860 0.1472 0.1841 0.1477
15 0.1887 0.1526 0.1881 0.1536
16 0.1867 0.1519 0.1866 0.1527
17 0.1891 0.1565 0.1900 0.1560
18 0.1908 0.1567 0.1883 0.1558
19 0.1920 0.1595 0.1918 0.1594
same 0.1788 0.1425 0.1765 0.1408

Fig. 7. Loss of PR AUC and ROC AUC for varying maximum days from the start of the labelling window for students to be included back in the training data, for
=SizeOfLabellingWindow 1.
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5.6.1. Sampling with the original solution
The sampling methods were used to improve the performance of the

original version of Self-Learning, adjusting the labelling window and
not including students submitting before the start of the window.
Table 7 shows the results for both PR AUC and ROC AUC loss. Two
important findings are that (1) the EST_RAT performs again best for
both measures and (2) the results for sampling confirm the previous
finding that using a smaller labelling window leads to a better perfor-
mance.

5.7. Comparison with existing sampling methods

Existing sampling methods were applied to data with window sizes
−1 7 and compared with the domain-driven methods. The results for

existing methods for PR AUC loss in Table 8 and for ROC AUC in
Table 9 indicate that out of them the best-performing method, in gen-
eral, is random under-sampling. For PR AUC it reaches the minimum
loss for the window 2. For ROC AUC the global minimum is achieved by
the SMOTE-ENN for window size 1, but in the other windows, random
under-sampling performs better. Decreasing the window size helps the
performance, but not as much as for the domain-driven sampling. When
compared with the domain driven techniques, for PR AUC the best
existing method reaches the loss 0.1554 while the EST RAT_ 0.1417,
see Table 5. Similarly, for ROC AUC, the best solution from the existing
methods with the loss 0.1235 is outperformed by EST RAT_ with the
loss 0.1130, see Table 6.

5.7.1. Daily performance analysis
For closer examination, Random Under-Sampling and SMOTE-ENN

have been selected together with the two best performing domain-
driven methods, i.e. EST_RAT and EQ_CLS, all of them with the para-
meter =SizeOfLabellingWindow 1. Their results in terms of the average
absolute performance are plotted in Figs. 8 and 9. For both measures,
the best performer is EST_RAT. For PR AUC, however, in days −14 11
the EQ_CLS performs slightly better. Furthermore, the main increase in
performance of the sampling methods occurs between days −19 10.
From day 10 to the deadline, the differences are negligible, apart from
day 1. On day 1, the EQ_CLS method performs worse than the other
methods. The plotted results for window size 2, which achieves slightly

Table 5
PR AUC loss for domain-driven sampling techniques in various window sizes,
winSize denotes the SizeOfLabellingWindow parameter.

winSize EQ_CLS EST_RAT None RM_OVLAP_100 RM_OVLAP_75

1 0.1559 0.1432 0.1707 0.1772 0.1728
2 0.1554 0.1417 0.1716 0.1781 0.1730
3 0.1594 0.1447 0.1716 0.1750 0.1728
4 0.1596 0.1427 0.1672 0.1746 0.1684
5 0.1616 0.1450 0.1680 0.1737 0.1691
6 0.1625 0.1458 0.1674 0.1723 0.1692
7 0.1644 0.1484 0.1690 0.1733 0.1682
wSame 0.1833 0.1603 0.1765 0.1814 0.1783

Table 6
ROC AUC loss for domain-driven sampling techniques in various window sizes,
winSize denotes the SizeOfLabellingWindow parameter.

winSize EQ_CLS EST_RAT None RM_OVLAP_100 RM_OVLAP_75

1 0.1317 0.1130 0.1265 0.1321 0.1279
2 0.1330 0.1160 0.1297 0.1352 0.1304
3 0.1377 0.1174 0.1304 0.1347 0.1308
4 0.1368 0.1170 0.1279 0.1361 0.1289
5 0.1374 0.1199 0.1288 0.1360 0.1299
6 0.1395 0.1220 0.1307 0.1352 0.1327
7 0.1395 0.1233 0.1289 0.1364 0.1300
wSame 0.1597 0.1345 0.1408 0.1470 0.1430

Table 7
PR AUC and ROC AUC loss for domain-driven sampling techniques for the
original version of Self-Learning.

sampler PR AUC LOSS ROC AUC LOSS

EQ_CLS 0.1824 0.1570
EST_RAT 0.1603 0.1349
None 0.1788 0.1425
RM_OVLAP_100 0.1781 0.1443
RM_OVLAP_75 0.1779 0.1420

Table 8
PR AUC loss for sampling techniques in various window sizes.

ADASYN ENN IHT NCR None Rand Rand SMOTE SMOTE SMOTE Tomek
Over Under Tomek ENN Links

1 0.1751 0.1712 0.1691 0.1714 0.1707 0.1714 0.1573 0.1720 0.1699 0.1629 0.1709
2 0.1717 0.1729 0.1705 0.1710 0.1716 0.1723 0.1554 0.1714 0.1704 0.1632 0.1719
3 0.1713 0.1712 0.1700 0.1709 0.1716 0.1720 0.1594 0.1725 0.1717 0.1629 0.1691
4 0.1702 0.1692 0.1645 0.1692 0.1672 0.1713 0.1595 0.1683 0.1672 0.1609 0.1666
5 0.1682 0.1693 0.1656 0.1670 0.1680 0.1690 0.1578 0.1662 0.1673 0.1593 0.1677
6 0.1690 0.1716 0.1672 0.1687 0.1674 0.1733 0.1571 0.1692 0.1689 0.1593 0.1668
7 0.1722 0.1710 0.1683 0.1706 0.1690 0.1749 0.1589 0.1690 0.1686 0.1591 0.1675
wSame 0.1830 0.1777 0.1752 0.1774 0.1765 0.1867 0.1694 0.1782 0.1771 0.1693 0.1773

Table 9
ROC AUC loss for sampling techniques in various window sizes.

ADASYN ENN IHT NCR None Rand Rand SMOTE SMOTE SMOTE Tomek
Over Under Tomek ENN Links

1 0.1276 0.1260 0.1248 0.1256 0.1265 0.1310 0.1260 0.1359 0.1349 0.1235 0.1256
2 0.1288 0.1308 0.1283 0.1302 0.1297 0.1338 0.1256 0.1383 0.1382 0.1277 0.1294
3 0.1300 0.1306 0.1287 0.1303 0.1304 0.1355 0.1272 0.1414 0.1409 0.1277 0.1297
4 0.1283 0.1298 0.1262 0.1288 0.1279 0.1347 0.1275 0.1382 0.1385 0.1282 0.1272
5 0.1282 0.1294 0.1275 0.1298 0.1288 0.1341 0.1278 0.1378 0.1388 0.1286 0.1285
6 0.1312 0.1325 0.1299 0.1311 0.1307 0.1374 0.1278 0.1412 0.1409 0.1297 0.1305
7 0.1315 0.1311 0.1290 0.1313 0.1289 0.1361 0.1307 0.1404 0.1409 0.1298 0.1301
wSame 0.1483 0.1415 0.1399 0.1414 0.1408 0.1534 0.1409 0.1549 0.1539 0.1421 0.1417
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higher results for ROC AUC, were consistent with Figs. 8 and 9, thus
they were omitted in the figures for brevity.

5.8. Impact of the improvements

To make the impact of the single improvements and their combi-
nation clear, we selected the best results for the window analysis (i.e.
window sizes 1 and 2) and the best sampling method: EST_RAT. We
compute their losses both separately and in combination.

Table 10 shows the losses of PR AUC and ROC AUC and the dif-
ference between the loss of the original solution (the first row in italics)
and the loss of the improvement. The differences are denoted as
d prauc loss_ _ and d rocauc loss_ _ . This reveals that the highest individual

contribution is achieved by EST_RAT sampling for both metrics. The
combination of improvements substantially contributes to the results.
Especially, the small window size is only useful when combined with
including the early achiever. But the best results are achieved when all
improvements are applied together. For example, while using only
window size 2 with INC leads to a difference of 0.0072 and using ES-
T_RAT to 0.0184 for PR AUC, their combination makes the difference

=d prauc loss_ _ 0.0371.

5.9. Comparison and statistical significance

Figs. 10 and 11 show the impact of improvements per day in the
context of the baseline model, the model trained on the previous

Fig. 8. Daily comparison of PR AUC for sampling methods.

Fig. 9. Daily comparison of ROC AUC for sampling methods.
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presentation (PrevPres) and the model trained on the testing data (Self-
Test). EST_RAT with both window sizes 1 and 2 are presented, denoted
in the figure as Self-LearningSW1 and Self-LearningSW2. Both of them
improved both PR ROC and ROC AUC especially in the early phases of
predictions. They narrowed the performance gap, especially to the
PrevPres strategy. For example, the difference for ROC AUC instead of
being visible from day 10 back to the past, is now visible around days
16–17. We also included the approach using the best performing tra-
ditional sampling method, i.e. SmoteENN (Self-LearningSample).

To evaluate the statistical significance of the improvements, we
performed the Wilcoxon signed-rank test (see Section 5.3). We included
the same approaches as in the Figs. 10 and 11. The results in Table 11
show that for PR AUC there is a statistical difference between both Self-
LearningSW1 and Self-LearningSW2 and the other methods. There was
no significant difference between these two methods.

For ROC AUC, the results in Table 12 show that for this metric, there
is again no significant difference between the results of Self-Lear-
ningSW1 and Self-LearningSW2. Moreover, the results of the best
conventional sampling method SmoteENN didn’t show to be statisti-
cally significant from the results Self-LearningSW2. The differences
between all the other pairs are statistically significant with significance
level p< .01, with the exception of Self-LearningSW2 and Self-Lear-
ningSample with p< .05. The results were computed on the absolute

values of the measures but we obtained the same results also if we
counted relative differences with the theoretical best model (Self-Test).

5.10. Note about incremental methods

We were also considering utilising incremental ML models from
data streams. One of their key property is their ability to process the
data only once, therefore allow faster training, and operating with
limited memory [35]. This is beneficial for processing very large data
and data arriving very fast, e.g. data streams. In such cases, there it is
sometimes undesirable or even impossible to process the data more
than once. In our scenario, we did not suffer from such constraint and
we could afford to perform offline classifier on each subsequent day.

Also, we did not encounter the traditional way of online learning
where more data points are available but we are rather obtaining more
information about the same instances. For such cases, we encoded the
dynamic properties of the data as features during the training process. It
is difficult to find a comparison between incremental and offline algo-
rithms, however for [36] found that the offline algorithms have higher
accuracy than the incremental ones. Some online methods are designed
to deal with non-stationary environments, i.e. the algorithms can cope
with concept drift [37]. In our case, the concept drift problem was
tackled by finding the suitable size of the labelling window and

Table 10
Performance loss of individual best improvements and their combination and their difference from the original solution (first row - italic). Positive difference means a
performance gain, negative difference performance loss.

(1)winSize (2)Include (3)EST_RAT PR AUC ROC AUC d_prauc_loss d_rocauc_loss

wSame − − 0.1788 0.1425 0 0
wSame INC − 0.1765 0.1408 0.0023 0.0005
wSame − Yes 0.1603 0.1349 0.0185 0.0064
wSame INC Yes 0.1603 0.1345 0.0185 0.0068
1 − − 0.2553 0.1956 −0.0765 −0.0543
1 INC − 0.1707 0.1265 0.0081 0.0148
1 − Yes 0.1957 0.1601 −0.0169 −0.0188
1 INC Yes 0.1432 0.1130 0.0356 0.0283
2 − − 0.2133 0.1584 −0.0345 −0.0171
2 INC − 0.1716 0.1297 0.0072 0.0116
2 − Yes 0.1637 0.1327 0.0151 0.0086
2 INC Yes 0.1417 0.1160 0.0371 0.0253

Fig. 10. Comparison of PR AUC of the best Self-Learning improvement with the best solutions from the original approach.
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investigating impact of early achievers. Nevertheless, incremental ap-
proaches could be subject to future work, especially in the cases of
larger data. The existing state-of-the-art approaches need to be adjusted
to the problem, where more information about the data is collected.

5.11. Summary results

We discussed issues pertaining to the original Self-Learning ap-
proach. Based on these issues, three types of modifications were de-
signed: (1) modifying labelling window size, (2) including students
submitting before the start of the window, and (3) using domain-driven
sampling methods.

To better evaluate the impact of the modifications, a new evaluation
strategy was defined. This strategy is based on computing the loss of
performance against the model that was trained on the same data as

tested (Self-Test) representing the limits of what the model can explain
based on the given features.

Using the modification 1 and 2 lead to the improvement only when
combined together. Window size = 1 and 2 produced the best results. If
such window sizes are used without including early achievers, the
performance even drops. On the other hand, including only early
achievers without narrowing the labelling window doesn’t lead to any
improvement. The best results were achieved when such improvements
were combined with the best performing sampling-method (EST_RAT).
This method was able to increase the performance even when used
separately but not as much as when in combination. We showed that
the performance difference between the proposed improvements and
both the original Self-Learning and the best of the selected existing
sampling methods is statistically significant.

Fig. 11. Comparison of ROC AUC of the best improvement with the best solutions from the original approach.

Table 11
The significance test results for the PR AUC metric. The values denotes the p-value accompanied by *** if the significance level p< .01, ** if 0.01≤ p< .05 and * if
0.05≤ p< .1.

Self-Learning Self-LearningSample Self-LearningSW1 Self-LearningSW2 Prev-Pres Self-Test

B[NA] 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***
Self-Learning − 0.001*** 0.000*** 0.000*** 0.000*** 0.000***
Self-LearningSample − − 0.001*** 0.000*** 0.000*** 0.000***
Self-LearningSW1 − − − 0.108 0.000*** 0.000***
Self-LearningSW2 − − − − 0.000*** 0.000***
Prev-Pres − − − − − 0.000***

Table 12
The significance test results for the ROC AUC metric. The values denotes the p-value accompanied by *** if the significance level p< .01, **if 0.01≤ p< .05 and *if
0.05≤ p< .1.

Self-Learning Self-LearningSample Self-LearningSW1 Self-LearningSW2 Prev-Pres Self-Test

B[NA] 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***
Self-Learning − 0.000*** 0.000*** 0.000*** 0.000*** 0.000***
Self-LearningSample − − 0.012** 0.198 0.000*** 0.000***
Self-LearningSW1 − − − 0.176 0.000*** 0.000***
Self-LearningSW2 − − − − 0.000*** 0.000***
Prev-Pres − − − − − 0.000***

M. Hlosta et al. Knowledge-Based Systems 160 (2018) 278–295

293



6. Conclusions

The Learning Analytics domain, and identification of at-risk stu-
dents without legacy data, in particular, motivated the need to articu-
late the general problem of achieving a goal within a deadline. As such,
the problem faces a large imbalance especially in the beginning as only
a few entities satisfy the goal very early. We proposed the Self-Learning
method [9] and evaluated it in a case study of predicting at-risk stu-
dents. In this domain, the lack of legacy data means that the course is
presented for the first time and there is no other course that is struc-
turally similar in order to provide data for building the predictive
model by machine learning algorithms. The proposed approach showed
the predictive power, but there was also a performance gap with respect
to training the model using legacy data from the previous presentation
of the same course. Based on knowledge about the problem, we de-
signed three modifications that tackle the loss of information and the
imbalance in the data caused by the noise. This is crucial especially at
the beginning of the predictions. Modification (1) and (2) improved the
performance of the original solution only when used in combination
and for small window sizes. The best results were achieved when these
were used together with modification (3).

To evaluate the quality of the suggested solutions and modifica-
tions, we designed new evaluation strategies that measure the perfor-
mance summarised both across all prediction times and for all datasets
(here the available courses) with the classification measure by a single
value. Instead of counting the absolute value, it calculates the loss
against the best achievable model, which is the one trained on the
testing dataset. Relating performance measure of the method by com-
paring with the theoretical baseline makes it possible to evaluate the
methods while eliminating the impact of other factors, such as using
different data and features.

The domain helped to define the problem of achieving a goal within
the deadline, revealing that the problem naturally generates im-
balanced data. Moreover, the information about the process helped to
realise the loss of information in the original solution and guide the
design of the sampling method. The underlying process of student
submission generates high activity and more submissions close to the
deadline and motivated us to use the exponential function for esti-
mating the number of sampled instances. The presence of a deadline is
something, what makes this problem unique and influences the beha-
viour of the participating subjects, i.e. students. It is likely a problem
specific to a human behaviour. One of the possible explanation is pro-
crastination, a phenomenon of preferring short-term goal over the long-
term goals and then postponing the activity until the very end [23,38].

The contribution of our work can be summarised according to the
posed research questions as:

1. We provide a generalised problem for prediction of goal achieve-
ment by entities within a specified deadline, with a natural presence
of imbalanced data especially in the beginning of the training.
(RQ1).

2. Using the information about the problem, we extended the frame-
work and improved the performance by (1) parametrised labelling
windows size, (2) including entities that were not included in the
labelling window; and (3) designing a domain-driven under-sam-
pling strategy with estimating the number of expected entities that
will achieve the goal. Strategy (1) and (2) lead to improvement
when used in combination together and the best improvement was
reached best when these were combined with strategy (3). In this
way, the performance narrows the gap between the Self-Learning
and the theoretical possibilities of the ML defined by training on the
testing data, i.e. Self-Test model (RQ2).

6.1. Future work

Several avenues for further research are possible. First, the suit-
ability of the method across different domains can be investigated and
possibly discover whether the domain-specific improvements are gen-
eralisable in different contexts. These can include other tasks, such as
completing individual or team-based goals within a company [39], or
paying the tax returns in time [24]. Indeed, the data collection is ne-
cessary to confirm or refute this hypothesis.

Moreover, the theoretical properties of the underlying process can
be studied with more focus on parameters influencing the distribution
of achievement times. Investigating which parameters affect the sub-
mission of the assessment, or achieving goals in general, can lead not
only to an additional classification improvement but also to better
understanding of this process. Parameters that would allow controlling
the process may be discovered, and the process can be optimised so that
more entities achieve the goal.
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