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Abstract—As electronic systems penetrate into areas in which
reliable computing is required, new methods incorporating re-
liability into these systems arise. It is important to properly
test and evaluate parameters of such methods before the ac-
tual implementation and the practical usage in an application.
Generally, in our research, we are focusing on the acceleration
of reliable design through creation of automation methods.
However, for this purpose, it is important to develop tools to
automatically analyze reliability properties of the system after the
method is applied. In our previous work, we developed the Fault
Tolerance ESTimation (FT-EST) framework, which specializes
on minimizing the requirement for user intervention. In this
paper, we are using the framework to collect the data, however,
the research presented in this paper primarily focuses on the
possibility to automatically analyze such data. Our previous
papers were focused on particular methods of the automatic
reliability insertion and evaluation while this paper introduces
new reliability indicators based on low-level properties of FPGA
configuration bitstreams. Currently, we are limiting our research
to SRAM-based FPGA systems and focus on the VHDL and C++
(in the combination with High-level Synthesis) languages.
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I. INTRODUCTION

To improve electronic circuit reliability, two general ap-
proaches exist. The first is called Fault Avoidance (FA) [1]
and its main objective is to precisely select such electronic
components that are able to withstand the conditions of the tar-
get environment during their operation. The second approach
is called Fault Tolerance (FT) [2]. FT, in contrast to FA,
accepts the components of the system might occasionally fail,
however, the architecture of the system counts with this fact
and eventually masks the fault. This means that the failure
does not propagate and does not influence the controlled task,
although, this statement is valid only until all the redundant
components are exhausted. In our research, we focus on the
FT approach and so does this paper.

The rising complexity of today’s systems results in usage
of advanced design methodologies, such as the High-Level
Synthesis (HLS) [3]. HLS-generated systems consist of the
so-called data-path, which processes the data, and the so-
called control-path, which is a Finite State Machine (FSM)
controlling the data-flow through the data-path. Generally
two approaches to generate FT systems using HLS can be
distinguished throughout the literature: 1) modification of the
HLS methodology, and, 2) modification of the source code
before its processing through HLS.

So far, in our research, we have been considering the
reliability of systems implemented in Field Programmable

Gate Arrays (FPGAs), as they are prone to the so-called
Single Event Upsets (SEUs) causing a change of bits in the
SRAM configuration memory. The bits of the bitstream that
propagate a fault to the circuit outputs are generally called
critical or sensitive bits. So far, we have been evaluating the
reliability of circuits just and only through the critical bits
percentage. Our previous research papers were focused towards
particular methods of the automatic reliability insertion and
reliability evaluation. The main contribution of this paper is
the presentation of other novel metrics (i.e. indicators, such
as the size of the largest continuous block of sensitive bits or
the number of bits leading to a constant failure response) that
could be, possibly automatically, evaluated and could improve
the expression of the circuit behavior.

The problematic of design analysis is discussed in the lit-
erature. The authors of [4] present an approach to mixed-level
dependability analysis. Their research evaluates the improve-
ment of the analysis achievable by considering the accurate
modeling of the environment in which the circuit performs its
application. In the paper [5], the analysis of FPGA platforms
made by Digilent Nexys, that are utilizing Xilinx technol-
ogy, is shown. The author utilizes a commercially available
tool, the Computer Aided Reliability Engineering (CARE) [6]
software, to model and analyze the platforms parameters.
The authors of [7] present the formal analysis of a Finite
Impulse Response (FIR) filter design that utilizes arithmetic
residue codes. The paper focuses on the analysis of the so-
called missing fault rate, meaning a fault for which the FIR
branch cannot be identified, mainly. The paper verifies the
obtained results using a simulation. The authors of [8] present
the reliability analysis of HLS-generated circuits with and
without pipelining. The authors also consider the influences
on using DSPs in their design. The same authors analyzed and
compared the influences on FT properties between a soft-core
processor-based implementation and HLS circuit implementing
the equivalent algorithm, in their research paper [9].

This paper is organized as follows. An overview of our
FT design automation platform, alongside with its components
used for the experimental evaluation, is shown in Section II.
The analysis process, which is the main contribution of this
research paper, is described in Section III. The results are sum-
marized on a case study in Section IV. Section V concludes
the paper and suggests our plans for future research.

II. FAULT TOLERANT DESIGN AUTOMATION PLATFORM

Our research is originally based on our intention to de-
velop a platform that would be able to automatically modify
system description in such way, that the system, after its
implementation, becomes more reliable. Our approach is based
on the classical iterative designer’s approach, however, we
adjusted this approach to prepare it for automatic operation
and accelerated execution.978-1-7281-1756-0/19/$31.00 c©2019 IEEE
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At the beginning of the design process, an unhardened
system in the form of a description code is provided. Desired
parameters are defined before the process enters its iterative
loop. Each loop starts with the modification of the description
code. For this purpose, we developed a concept of helpers,
which allow to insert particular FT architecture to a given place
in the circuit description. As the second part of each iteration,
the obtained circuit is synthesized within our Fault Tolerance
ESTimation (FT-EST) [10] framework, which is strongly fo-
cused on the acceleration of the evaluation process. After the
evaluation, the decision is made, whether the resulting circuit
parameters are satisfactory or whether the iteration loop enters
another iteration. The process flow can be seen on Figure 1.
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Figure 1. Design of FT system from an unhardened system with the
designer’s operations mapped to the processes of our automation platform.

A. Evaluation Framework

As a part of our previous research, we developed a Fault
Tolerance ESTimation (FT-EST) framework, which is able to
benchmark FT properties of VHDL-written components and is
intended to be a part of the FT design automation platform. The
framework is based on the functional verification approach and
is designed to require as few human interactions as possible.
It utilizes some acceleration techniques such as stimuli gener-
ation and outputs comparison performed on the FPGA and is
prepared for parallel testing of multiple component instances.

The FT-EST framework can be divided into HW and SW
part. The HW part is currently written in the VHDL and is
synthesized together with the tested component unit, which we
call the Unit Under Test (UUT). The SW part runs on the PC
and communicates with the HW part using the ChipScope Pro
Virtual Input/Output (VIO) cores [11]. For the SEU simulation,
we use the Fault Injector [12] that was previously developed
in our research group. The injector has a possibility to filter
only utilized bits of the UUT that are used as contents of
Look-Up Tables (LUTs). The testing of the component can be
divided into two types of cycles: 1) the test cycle replays one
transaction in the UUT’s input pins and compares the outputs
with the golden unit. The transactions are generated using the
Input Generation Unit (IGU) and outputs are compared in the
Output Compare Unit (OCU). 2) The SEU cycle passes through
all the selected bits of the bitstream individually and in each
of its iterations, it performs one test cycle. The framework
architecture can be seen in Figure 2.
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Figure 2. The simplified architecture of the FT-EST system; the parts
highlighted in blue are dynamically and fully automatically generated, while
the parts highlighted in red are to be provided by the designer to specify the
experiment setup.

B. Redundant Data Types

In our approach, we targeted to modify the C++ source
description code before its processing by HLS. Redundant
Data Types (RDTs) [13], [14], [15], as we call them, play
the role of helpers in our FT design automation platform.
RDT is a newly created Data Type (DT) that represents a
one particular FT architecture (e.g. the duplex or the Triple
Modular Redundancy (TMR). The RDT acts as a decora-
tor to the DTs previously used in the algorithm. A set of
interconnected operations of equivalent RDT category forms
a subsystem of the given FT architecture. For example, for
the TMR approach, which is implemented using the triple
RDT, storage elements are triplicated through the creation of
multiple instances of the original DT and multiple equivalent
operations are then executed, one per each instance of the
storage element. Finally, a voting component utilizing bit- or
word-based selection is incorporated.

III. THE ANALYSIS PROCEDURE

In a classical design approach, a designer decides whether
the parameters of a particular system are satisfactory. However,
in the automatic FT design, human interactions are very
limited. It is possible to use the number of critical bits as a
reliability indicator, however, in a real application, we usually
want to take into account as much information as possible.
This motivated us to focus on a way to further statistically
analyze the information obtained through the fault injection.

Generally, for the number of erroneous output transactions,
three other dimensions (i.e. domains) can be analyzed: 1) the
stimuli transactions; 2) the bits of the bitstream; and 3) the
type of output errors (e.g. the number of mismatching bits,
etc.). The data can be studied after one of these dimensions is
collapsed. For this research, we have chosen to study the first
two domains (i.e. the stimuli transactions with the bits of the
bitstream), thus collapsing the domain of output error type.
The data we obtain from the FT-EST framework can be: 1) 2-
dimensional (2D), which means that we obtain the number of
erroneous output vectors for each bit of the bitstream; 2) 3-
dimensional (3D), which is similar to (1) except that the input
transactions are divided to intervals, resulting in a grid with
the input stimuli transactions intervals on x axis and bits of
the bitstream on y axis. The z axis then shows the number of
erroneous output vectors. 3) 2D with stochastic approximation,
which is similar to (1) except that the bits are selected
uniformly at random and the coverage is not 100 %. As we
found out in [10], 30 % SEU coverage gave us results varying
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by only 3.38 % points at maximum. 4) 3D with stochastic
approximation, similar to (3). As the raw data obtained from
the FT-EST framework is usually very voluminous, a graphical
representation is more illustrative. Examples of the graphical
representation of the 2D and 3D formats are shown in Figure 3.
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Figure 3. Two examples of the graphical representation with the description
of axis; (a) 2D type with the number of error vectors per bit only; (b) 3D
type with the stimuli input transactions divided into intervals, on which the
number of error vectors per bit and transaction interval is examined.

To be able to decide whether a given circuit satisfies the
requested parameters, we decided to design these indicators,
which statistically describe the data obtained in the test phase:
1) the representation of the area without errors (i.e. similar
to the critical bit representation); 2) the representation of
the largest continuous block of area without errors; 3) the
representation of the largest continuous block of erroneous
results; 4) the representation of bits leading to constant failure
response between intervals; 5) the average representation of
erroneous outputs per one bit. The indicators and their usability
with the presented data formats are shown in Table I.

TABLE I. THE OVERVIEW OF THE UNITS AND THEIR USABILITY
WITH PRESENTED MULTIDIMENSIONAL DATA FORMATS.

Data Format

2D 2D
w. Approx. 3D 3D

w. Approx.

U
ni

t Area w/o Errors 3 3 3 3
Largest Block w/o Errors 3 7 3 7

Largest Block w. Errors 3 7 3 7
Constant Response 7 7 3 3

Average Errors 3 3 3 3

IV. CASE STUDY AND EXPERIMENTAL RESULTS

For our case study, we decided to choose two digital
circuits. One simpler, which mainly depends on the internal
implementation in the HLS tool, and, also, a one, that is
composed of more operations. We have chosen a simple
addition of two 16 bit unsigned integers, which means the
input vectors together are 32 bit wide. The addition produces
one 16-bit unsigned integer on its output. The second circuit
implements the Cyclic Redundancy Check (CRC) with 8-bit
output. The bit width of the input vector of the CRC-8 is also
32 bits. These two circuits were written in the C++ language.
In this research, we decided to select the triple bit RDT, which
implements the TMR with a bit-based voter component, as the
bit-based voter component indicated to be more suitable for
this purpose in our previous research paper [16]. The source
codes were then modified in such way, that each DT definition,
including the input and output interface, was sanitized using
the triple bit RDT. We ended up with four C++ implementa-
tions, addition simple without any RDT applied (i.e. simplex)
and addition triple bit with data-path triplicated using RDT
approach. Similarly for the crc8 simple and crc8 triple bit

circuits. We synthesized these C++ source codes using the
traditional HLS flow utilizing the Mentor Graphics Catapult C
HLS tool [17] to obtain their VHDL RTL implementations.
Each version of the circuit was then instantiated inside the FT-
EST framework and synthesized using the Xilinx Integrated
Synthesis Environment (ISE) 14.7 [18]. This way, we obtained
a total of four test-beds for our tests. The LUT content sizes
of the UUTs are shown in Table II. The tests were held on the
ML506 board [19] utilizing Xilinx Virtex 5 FPGA technology.

With the stimuli for the circuits, we tried to explore the
whole space of input values, which, in our case, is 232, as
both the circuits have 32 bit wide inputs. However, to minimize
the time needed to test all these combinations, we evaluated
them from a starting point of 0 to 232 − 1 with the step of
43, resulting in approximately 100 millions combinations. The
length of the step was selected with the binary divisibility in
mind, as some steps might result in a lower coverage of the
input bits (e.g. the step of 2 would result in an impossibility
to set, and thus test the first bit in the input vector). In this
research, we focused on the novel approach of 3D format of
data, and thus we configured the IGU inside of the FT-EST
framework for an ability to select the starting and ending points
of the stimuli dynamically from the SW. This allowed us to
obtain results individually for each interval. The interval of
stimuli was divided into 86 sub-intervals based on the trade-
off between the resolution and the time required.

The voluminous data we obtained through the experimen-
tation are demonstrated graphically in Figure 4. As can be
seen, for the addition simple, the errors are spread all over
the grid, indicating a lower resistance against faults. As the
circuit without RDT is fairly simple, a failure inside the
control-path does not cause a complete failure, in other words,
there is a large number of less numerous discrepancies. For
the addition triple bit, the discrepancies are more numerous,
however, there is a smaller number of them. A large continuous
block of safe bits, covering 25% of utilized LUT area, can be
recognized here. We believe this large block belongs to bits
creating the data-path of the circuit, however, as the RDT
version is slightly more complex, the control-path is more
extensive, creating weak points in the circuit. The fact, there
is a smaller number of bits creating more numerous errors
would support the assumption, that these sensitive bits belong
to the control-path. We are convinced, the bits that create an
alternation in the error rate are part of the very close end of
the data-path, causing a stuck-at faults in the circuit outputs.

For the CRC-8 circuits, the situation is similar with the
bits, we believe belong to the control-path, forming a darker
places on the screen. However, as can be seen, the biggest
difference to the previous circuit is that for the CRC-8 circuits
there is no large continuous block of safe bits as in the case of
the addition. This phenomenon can be explained with the fact
the CRC-8 circuit is composed of multiple operations, which
is blurring the possibility to view the internal context. The
important part of the analysis is also a numerical expression
of the indicators we proposed in this text. The exact numeric
values for the indicators can be seen in Table II.

The main benefit of this evaluation approach is, that,
though, it is oriented on the lower-level data format, the
circuit parameters can be described by statistical methods, and
thus returning the development back to a higher-level. The
presented indicators will certainly serve as a starting point
for our automation platform. Although meant for a machine
processing, if the results are visualized using the representation
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Figure 4. The graphical representation of data obtained through the experimentation; the stimuli intervals are displayed on the x axis; bits of the bitstream are
displayed on the y axis; the darker the point in the grid is, the larger the number of erroneous outputs was observed.

TABLE II. THE EXACT ENUMERATION OF THE PROPOSED CIRCUIT
RELIABILITY INDICATORS WITH THEIR PERCENTAGE REPRESENTATIONS.

Indicator
Circuit Implementation

addition simple addition triple bit crc8 simple crc8 triple bit
Abs. # Repr. [%] Abs. # Repr. [%] Abs. # Repr. [%] Abs. # Repr. [%]

Tested LUT
bits [b] | [%]

4288 b 100.00 % 8320 b 100.00 % 4800 b 100.00 % 6592 b 100.00 %

Area w/o Er-
rors [b] | [%]

4126 b 96.22 % 8157 b 98.04 % 3823 b 79.65 % 5773 b 87.58 %

Larg. Bl. w/o
Err. [b] | [%]

299 b 6.97 % 2102 b 25.26 % 190 b 3.96 % 385 b 5.84 %

Larg. Bl. w.
Err. [b] | [%]

2 b 0.05 % 1 b 0.01 % 225 b 4.69 % 34 b 0.52 %

Constant Res-
ponse [b | [%]

4198 b 97.90 % 8290 b 99.64 % 4069 b 84.77 % 6077 b 92.19 %

Avg. Err. per
bit [-] | [%]

1583965
errors

0.04 %
out of 232

996429
errors

0.02 %
out of 232

1612452
errors

0.04 %
out of 232

1568190
errors

0.04 %
out of 232

described in this paper, the method can also be used for
designers in the FT system development process.

V. CONCLUSION AND FUTURE RESEARCH

The paper described the approach of accelerated fault toler-
ance estimation and the concept of helpers which for the C++
language are called RDTs. The overview of the automation
platform utilizing these techniques was also presented. The
main contribution of this paper consists of the proposal of new
reliability indicators that are tightly connected to the low-level
functional verification and fault injection approaches, while
trying to move them to a higher abstraction level with the use
of statistical methods. The indicators were presented on a case
study utilizing our previously mentioned RDT FT approach
and other components of our FT automation platform.

As a part of our future research, we would like to de-
velop a better strategy to the FT architecture selection than
the presented arrangement which was utilizing equivalent FT
architecture for each operation.
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