
Coarse-Grained TMR Soft-Core Processor Fault
Tolerance Methods and State Synchronization for

Run-Time Fault Recovery
Karel Szurman and Zdenek Kotasek

Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence
Bozetechova 2, 612 66, Brno, Czech Republic

Email: {iszurman, kotasek}@fit.vutbr.cz

Abstract—Triple Modular Redundancy (TMR) applied with
various granularity combined with periodical scrubbing of a
configuration memory or with Partial Dynamic Reconfiguration
(PDR) for a fault recovery are preferred Single Event Upset
(SEU) mitigation techniques used by Fault Tolerant Systems
(FTSs) implemented into SRAM-based FPGAs. Usage of PDR
and TMR allows FTSs to recover from all transient SEU induced
faults and offers run-time fault mitigation compared to scrubbing
methods which only correct configuration upsets and are limited
by a scrubbing period latency. Reconfigurable TMR architecture
may require a global state maintenance after the PDR is applied
for a fault removal. In such situation, an operational state of
reconfigured circuit copy needs to be synchronized with the
remaining circuit copies which were operating during PDR.
This paper evaluates existing state synchronization methods used
in reconfigurable TMR architectures and soft-core processors,
presents our recent research focused on development of a state
synchronization methodology compared to the state of the art
methods and further investigates strategy for a state synchro-
nization of TMR protected soft-core processor NEO430.

Index Terms—soft-core processor, state synchronization, TMR,
SEU mitigation, partial dynamic reconfiguration

I. INTRODUCTION

Emerging technologies used in avionics and space systems
have growing demands on computing frequency, latency and
data throughput. Therefore, the SRAM-based FPGAs have
become broadly used inside these systems although Antifuse
and Flash-based FPGA technologies are more resistant to
radiation induced faults [2]. These systems are exposed to
various failure conditions during their lifetime and the Single
Event Effects (SEEs) caused by energetic particles in the harsh
space radiation environment are the ones of the most serious.
The major concern is SRAM configuration memory which is
susceptible to Single Event Upset (SEU), the most common
SEE effect. SEUs can cause changes in a state of bi-stable
element which affects configuration memory and user logic.
Consequently, the usage of SRAM-based FPGAs in safety-
critical systems generally requires an implementation of SEU
mitigation strategy and employing fault tolerance to operate
correctly even in the presence of faults.

Conventional SEU mitigation methods which are accepted
across the industry [6] [2] [12] are based on Triple Modular
Redundancy (TMR) for fault masking applied on different

978-1-7281-1756-0/19/$31.00 ©2019 IEEE

granularity levels and periodical scrubbing which corrects
accumulated configuration memory upsets. When faults are
detected in any part of the system implemented into SRAM-
based FPGA then a possibility to reconfigure it and to extend
the system lifetime exists. For this purpose, Partial Dynamic
Reconfiguration (PDR) can be used [3]. In Fault-Tolerant
Systems (FTSs), the PDR is frequently combined with TMR
methods to implement Fault Detection, Isolation and Recovery
strategy. After the reconfiguration of a failed redundant sub-
system is finished, its operational state is not actual and need
to be synchronized with the correctly operating subsystems of
FTS before it is included back into the TMR architecture.

The main goal of the paper is to investigate applicable state
synchronization methods for soft-core processors protected by
coarse-grained TMR architecture and to describe proposed
run-time fault recovery for soft-core processor NEO430.

II. RELATED RESEARCH

In the TMR architecture, a single fault in any of three
redundant hardware modules will not produce an error at the
output as the majority voter will select the correct result from
the remaining two correctly working modules. Following ratio-
nales for usage TMR exist: (1) the possibility of fault masking
by implementing the process of voting, (2) the method of
scaling the TMR protection by changing its granularity from
fine-grained (FG) to coarse-grained (CG) application, and (3)
the availability of tools allowing for a completely automated
TMR generation [1]. There is always a trade-off between usage
of FG and CG TMR schemes. The FG TMR reduces the
highest system frequency in dependence on number of inserted
voters added to the critical path. Another compromise is made
between power consumption, resources utilization and design
robustness. On the other hand, CG TMR is often combined
with PDR in reconfigurable FTS with advantage of ability for
self-recovery and adaptation by means of reconfiguration or
relocation of FPGA design modules.

A critical component which oversees PDR and recovery
process is a reconfiguration controller (RC). RC may be
used to control periodical scrubbing over FPGA configuration
memory frames or to control run-time reconfiguration for
selected area in the configuration memory, identified as Par-
tial Reconfiguration Module (PRM). In RC designs, Internal

2019 20th IEEE Latin-American Test Symposium (LATS)

32

Configuration Access Port (ICAP) interface is often preferred
due its easy integration in a HDL design. Various RCs have
been developed with the goal to optimize reconfiguration
time, minimize FPGA overheads or to provide fault-tolerant
design [4] [15]. In our PDR methodology, we use previously
developed Generic Partial Dynamic RC (GPDRC) [4]. The
GPDRC is based on ICAP. It supports detection and correction
of single appearing transient faults caused by SEUs and the
mitigation of permanent faults by reducing FT architecture
scheme and changing its layout in utilized PRMs. In integra-
tion with TMR, the GPDRC receives an information about
a PRM including TMR module with localized faulty circuit.
After the reconfiguration is finished, the GPDRC initiates the
start of the synchronization procedure to return repaired TMR
module into a fully operational state.

A. Soft-Core Processor State Synchronization

Authors in [1] identified the synchronization process as
essential step for recovering a fault tolerant processor in
the TMR after its erroneous instance is reconfigured. Their
research evaluates four different synchronization methods for
soft-core processor Xilinx Picoblaze which balance differently
the trade-off between the synchronization speed and hardware
overhead. Following representative methods were evaluated:

1) Synchronization reset – a simple approach which re-
quires bringing all three soft-core processors to a known
state and restarting the program execution from the
beginning.

2) Synchronization through shared memory with manual
trigger – this method is based on sharing memory
between processors and their resynchronization by con-
current saving all registers through majority voted sig-
nals, followed by concurrent reading. It is started by
forcing a JUMP instruction to synchronization routine
which reloads processors registers when ongoing cal-
culations are finished. No HW changes are needed but
only internal registers accessible by programmer can be
synchronized.

3) Synchronization through shared memory triggered by an
interrupt – improved method n. 2 which allows also
usage of interrupt processing and with advantage of
that, immediate resynchronization in an Interrupt Service
Routine (ISR). However, this method requires partial
HW synchronization of internal registers processor ob-
jects which are not accessible by SW, e.g. stack-pointer
and stack data memory.

4) Ad-hoc HW synchronization – method which requires
custom design of synchronization control logic and
corresponding modification in a processor.

Synchronization reset is a method suitable for simple
circuits or systems performing periodical calculations (e.g.
network packet processing). The time needed for processor
reset and program re-execution is the only overhead. Similar
approach was used in [8] for Finite State Machine (FSM)
based system. It used the principle of predicting a future state
to which the system will soon converge and presetting the

reconfigured circuit to it. Per authors, the prediction should
consider well-known state which will be the best checkpoint
state for actual system behavior and conditions.

Synchronization through shared memory was also used in
[7] where processors share Block RAM and an interrupt is
used to trigger synchronization after the reconfiguration is
finished (or it can be invoked periodically). The main benefit
is that recovery process can be performed on the fly and
an overhead of the synchronization is only the time required
to store and restore the processor’s state context. The same
method is used in [10] for FT multiprocessors architecture.
Synchronization through shared memory was used also in [11]
for FTS based on 32-bit RISC Plasma soft-core processor
which can recover from both transient and permanent errors
using scrubbing applied per single frame for detection and
configuration rewriting with following state resynchronization.

Thus, the synchronization based on shared memory is
suitable for recovery of registers which are accessible by a
program. This approach also solves synchronization of pro-
cessor memories. However, some processors (e.g. Picoblaze)
do not have all registers accessible by software. Furthermore,
this method does not address internal architectural registers
which are hidden before programmers.

According to [9], the key of a proper synchronization is to
avoid any blocking situation in a system operation. Proposed
method leads the reconfigurable modules into a safe state
recognized by the rest of the system and avoids blocking it.

In [13] [14], we proposed and evaluated serial and parallel
hardware synchronization for a reconfigurable fault toler-
ant CAN bus control system where the synchronization of
application-related registers was necessary. The serial synchro-
nization is based on the principle of data shifting through
internal registers to next unit in the oriented circle topology.
In this interconnection, only for the reconfigured unit the
synchronization data of predecessor unit are brought to its
first register serial input. The other units have connected their
serial output to their first register serial input. This principle
ensures that only the reconfigured unit will receive new data
to its internal registers. The second synchronization approach
uses two parallel buses for data transfers between registers
in reference and synchronized circuits. Individual registers
are addressed through the address bus. The principle of the
synchronization is based on sequential addressing of each
register through the address bus and enabling write or read
signals for circuits which are active during the synchronization
process. Reference circuit transfers the content of its addressed
registers to the data bus while the synchronized circuit reads
these data from the bus and stores them into its internal
registers.

III. NEO430 RUN-TIME FAULT RECOVERY

NEO430 soft-core processor is customizable 16-bit soft-
core microcontroller compatible with TI MSP430 [5]. The
CPU has Harvard architecture including program memory
(IMEM) and data memory (DMEM) with configurable sizes
and multiple peripherals available which are interconnected

33

with the CPU through a system bus. The CPU internal
architecture is shown in Fig. 1. It includes an Arithmetic
Logic Unit (ALU), a CPU control arbiter (CA), an address
generator unit (AG) and a register file. These components
identify the data path which is necessary to synchronize after
the reconfiguration of failed CPU instance is finished. The
CPU incorporates sixteen 16-bit registers. Program Counter
(PC), Stack Pointer (SP), Status Register (SR) and Constant
Generator Register (CG) have dedicated functions. R4 to R15
are working registers for general use. Moreover, also the
CPU architecture includes internal registers: Memory Address
Register (MAR) in the AG, Instruction Register (IR) in the CA
and temporary operand registers (SRC and DST) in the ALU.
Besides internal registers, another data are located in proces-
sor memories. The DMEM contains interrupt vectors, global
variables, the stack and the heap. The IMEM is dedicated to
store instructions of the actual application.

An instruction execution is conducted by performing se-
quence of micro operations, thus the CPU needs several con-
secutive cycles to complete a single instruction. The execution
of micro operations is controlled by the CA FSM which
generates the control signals for the data path. The FSM is
after reset in default state IFETCH 0, where execution of all
CPU instructions starts. The CPU in this state also waits for an
incoming Interrupt ReQuest (IRQ) which can bring the CPU
out of the SLEEP mode.

MAR

mux

ALU

CPU control arbiter FSM

SRC DST
+

Swap Swap

Mask
mux

m
u

x

m
u

x
m

u
x

m
u

x
m

u
x

muxmux

muxmux

MEM

RDATA

MEM

WDATA

Immediate

-2 +2 +1

IRQ vector

MEM

ADDR

MEM

RDATA

PC

SP

SR

CG

PC

SP

SR

CGR
e
g

is
te

r
fi

le

A
d

d
re

ss
 G

e
n

e
ra

to
r

A
ri

th
m

e
ti

c
L
o

g
ic

 U
n

it

Fig. 1. NEO430 architecture

A. Reconfigurable CG TMR Architecture

The reconfigurable architecture is shown in Fig. 2, the
NEO430 CPU is triplicated, the same inputs are connected
to all redundant CPUs and their outputs are brought into
dedicated TMR majority voters which were improved in order
to ensure both functions: fault masking for each single output
and identification of a faulty CPU instance and thus, an
index of PRM to be reconfigured. A design FPGA floorplan
is divided into static and dynamic areas. In the dynamic
part, each TMR module is placed into dedicated PRM. The
static part of the design includes GPDRC, synchronization
controller, ICAP core, flash controller for communication with
a parallel flash containing stored partial PRM bitstreams, TMR

voters, DMEM and IMEM memories, and all peripherals
shared between triplicated CPUs. Note that in this research,
we focused mainly on design of CPUs synchronization, there-
fore we implemented this experimental architecture without
considering FT parameters for entire system. Nevertheless,
proposed synchronization is developed with the goal to allow
easy integration with SW executed on NEO430 CPU without
unexpected blocking the system operating.

NEO430 CPU

NEO430 CPU

NEO430 CPU

Majority
voter

Majority
voter

Program
memory
(IMEM)

Data
memory
(DMEM)

Majority
voter

Test Outputs

Test Inputs

PDR Framework

Majority
voter

Peripheral Device

Peripheral Device

Peripheral Device

System bus

GPDRCGPDRC

P
R

M
 0

P
R

M
 1

P
R

M
 2R

e
c
o

n
fi

g
u

ra
b

le
 a

re
a

PRM error vector

GPDRC

reconfigures

faulty PRM

PDR Framework

supervises

recovery process

Synchronization

Controller

Synchronization

Controller

NEO430 CPU

NEO430 CPU

NEO430 CPU

Majority
voter

Majority
voter

Program
memory
(IMEM)

Data
memory
(DMEM)

Majority
voter

Test Outputs

Test Inputs

PDR Framework

Majority
voter

Peripheral Device

Peripheral Device

Peripheral Device

System bus

GPDRC

P
R

M
 0

P
R

M
 1

P
R

M
 2R

e
c
o

n
fi

g
u

ra
b

le
 a

re
a

PRM error vector

GPDRC

reconfigures

faulty PRM

PDR Framework

supervises

recovery process

Synchronization

Controller

Registers

Registers

Registers

Sync enable

Ctrl Data

Fig. 2. Reconfigurable FT architecture

B. State Synchronization for NEO430 CPU

As the processor memories and peripherals are in the recon-
figurable architecture shared between triplicated CPUs, their
synchronization is implicitly performed by majority voters
protecting the access from the CPU to shared resources over
the system bus. Considering SEU mitigation for entire system,
all memories should be protected by means of error detection
and correction codes since their triplication would cause
unnecessary resource overhead. The microcontroller peripheral
devices could be protected by FG TMR or again by CG TMR
methods.

Finally, the state synchronization for the NEO430 CPU ar-
chitecture and entire fault recovery process were implemented
by the following sequence of steps:

1) Reconfiguration of a PRM with faulty CPU is started
based on a PRM error vector generated by TMR voters
which detect a mismatch on compared CPU outputs.

2) A program executed by triplicated CPUs periodically
checks the digital input indicating the Sync enable
request for performing the state synchronization. The
request is generated from GPDRC after the reconfigura-
tion of failed CPU instance is finished.

3) After the reconfiguration, repaired CPU is restarted.
During its startup, a program reads the digital inputs

34

and checks if request for synchronization is active. Since
the request was activated by GPDRC, the CPU switched
into the SLEEP mode as well.

4) When the program executed by operating CPUs is in a
state suitable for synchronization, it will indicate readi-
ness for the hardware synchronization through processor
digital output to a synchronization controller. This is
a special circuit responsible for parallel addressing of
all synchronized registers and their copying from the
correctly working CPUs to the recovered one.

5) Afterwards, operating CPUs go into the SLEEP mode. In
this state, CPUs are in an idle state IFETCH 0 waiting
for an external IRQ generated by the synchronization
controller which will activate normal operating mode.

6) In parallel with the previous step, the synchronization
controller performs synchronization procedure of all
architectural registers (PC, SP, SR, CG, GP R4-R15)
and all processor internal registers (MAR, IR, ALU SRC
and DST) by their copying from correctly working CPUs
into the faulty one, while all CPUs are idle in the SLEEP
mode.

7) After the hardware synchronization phase is finished, the
external IRQ signal is triggered to bring all CPUs from
the SLEEP mode to the operating mode.

8) All three CPUs continue in the program execution from
the synchronized state as all internal registers required
for correct program execution and architectural registers
were synchronized.

In comparison with the existing synchronization methods,
and with omitting a reset as a synchronization method, the
complete synchronization for a soft-core processor (or just its
CPU) as for a complex system, requires combination of all
mentioned methods, considering following options:

• Processor memories should be shared between all re-
dundant instances and then, the concurrent access to a
memory needs synchronization through majority voters.

• Processor peripherals can be also shared or brought into a
safe state. Eventually, all peripherals can be reinitialized
by SW after CPU synchronization is finished.

• Some internal CPU registers may be synchronized by
SW routine, however CPU always contain some internal
architectural registers which should be also addressed.
Therefore, some form of hardware implemented synchro-
nization is always necessary.

• Synchronizing ISR can be used for handling an external
event triggered e.g. when the PDR is finished or when
the next step in the recovery process is on the turn.

IV. CONCLUSIONS AND FUTURE RESEARCH

The paper described the state synchronization strategy de-
veloped for NEO430 CPU included in soft-core processor
NEO430. In the design of the synchronization, we focused
mainly on the seamless integration with the internal CPU
architecture. This was achieved: (1) by implementation of
a software trigger allowing the start of the synchronization
procedure in a consistent state determined by an executed

program and (2) by incorporating hardware mechanism to
synchronize all architectural registers. Moreover, this paper
also summarizes existing synchronization methods which are
applicable for a processor fault recovery.

Our future research will be focused on evaluation of syn-
chronization methods with respect to various reliability and
overhead parameters.

ACKNOWLEDGMENT

This work was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sustain-
ability (NPU II) project IT4Innovations excellence in science
– LQ1602 and the BUT project FIT-S-17-3994.

REFERENCES

[1] U. Kretzschmar, J. Gomez-Cornejo, A. Astarloa, U. Bidarte, and J.
Del Ser, “Synchronization Of Faulty Processors In Coarse-Grained
TMR Protected Partially Reconfigurable FPGA Designs”, Reliability
Engineering & System Safety, 2016, vol. 151, pp. 1–9.

[2] F. Siegle, T. Vladimirova, J. Ilstad, and O. Emam, “Mitigation of
Radiation Effects in SRAM-Based FPGAs for Space Applications”,
ACM Comput. Surv., 2015, vol. 47, no. 2, pp. 37:1-37:34.

[3] B. Osterloh, H. Michalik, S. A. Habinc, B. Fiethe, “Dynamic partial
reconfiguration in space applications”, NASA/ESA Conference on Adap-
tive Hardware and Systems, vol. 0, 2009, pp. 336–343.

[4] L. Miculka, Z. Kotasek, “Generic Partial Dynamic Reconfiguration
Controller for Transient and Permanent Fault Mitigation in Fault Tolerant
Systems Implemented Into FPGA”, in 17th IEEE Symposium on Design
and Diagnostics of Electronic Circuits and Systems, Warszawa, PL,
2014, ISBN 978-0-7695-5074-9, pp. 171–174.

[5] S. Nolting, “The NEO430 Processor”, github.com/stnolting/neo430.
[6] Xilinx Inc., “Correcting Single-Event Upsets Through Virtex Partial

Configuration”, XAPP216, June 2000.
[7] S. Tanoue, T. Ishida, Y. Ichinomiya, M. Amagasaki, M. Kuga, and

T. Sueyoshi, “A novel states recovery technique for the tmr softcore
processor”, in International Conference on Field Programmable Logic
and Applications (FPL), Aug 2009, pp. 543–546.

[8] J. Azambuja, F. Sousa, L. Rosa, F. L. Kastensmidt, “Evaluating large
grain tmr and selective partial reconfiguration for soft error mitigation in
sram-based fpgas”, in 15the International On-Line Testing Symposium,
June 2009, pp. 101–106.

[9] A. Morillo, A. Astarloa, J. Lazaro, U. Bidarte, J. Jimenez, “Known-
blocking synchronization method for reliable processor using tmr & dpr
in sram fpgas”, in VII Southern Conference on Programmable Logic
(SPL), Cordoba, Arg., April 2011, pp. 57–62.

[10] H.-M. Pham, S. Pillement, and D. Demigny, “A fault-tolerant layer for
dynamically reconfigurable multi-processor system-on-chip”, in Interna-
tional Conference on Reconfigurable Computing and FPGAs (ReCon-
Fig), December 2009, pp. 284–289.

[11] M. Fujino, H. Tanaka, Y. Ichinomiya, M. Amagasaki, M. Kuga, M. Iida,
T. Sueyoshi, “Fault Recovery Technique for TMR Softcore Processor
System Using Partial Reconfiguration”, Springer, ICA3PP, 2012, vol.
7439, pp. 392–404, ISBN 978-3-642-33078-0.

[12] P. Adell and G. Allen, “Assessing and Mitigating Radiation Effects in
Xilinx FPGAs”, NASA Electronic Parts and Packaging (NEPP) Program
Office of Safety and Mission Assurance, NASA, JPL 08-9 2/08, 2008.

[13] K. Szurman, L. Miculka, and Z. Kotasek, “State Synchronization after
Partial Reconfiguration of Fault Tolerant CAN Bus Control System”, in
17th Euromicro Conference on Digital Systems Design, Verona, 2014,
pp. 704-707, ISBN 978-0-7695-5074-9.

[14] K. Szurman, L. Miculka, and Z. Kotasek, “Towards a State Synchroniza-
tion Methodology for Recovery Process after Partial Reconfiguration
of Fault Tolerant Systems”, in 9th IEEE International Conference on
Computer Engineering and Systems, Cairo, 2014, pp. 231-236, ISBN
978-1-4799-6593-9.

[15] L. Gong, A. Kroh, D. Agiakatsikas, N. T. H. Nguyen, E. Cetin, and O.
Diessel, “Reliable SEU monitoring and recovery using a programmable
configuration controller”, in 27th International Conference on Field
Programmable Logic and Applications (FPL), Ghent, 2017, pp. 1-6,
ISSN 1946-1488.

35

