
Run-Time Reconfigurable Fault Tolerant
Architecture for Soft-Core Processor NEO430

Karel Szurman and Zdenek Kotasek
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence

Bozetechova 2, 612 66, Brno, Czech Republic
Email: {iszurman, kotasek}@fit.vutbr.cz

Abstract—Reconfigurable fault tolerant (FT) architecture can
be implemented into a SRAM FPGA by using combination of
Partial Dynamic Reconfiguration (PDR) and Triple Modular
Redundancy (TMR). SRAM FPGAs are susceptible to Single
Event Upsets (SEUs) which are the most common transient
faults induced by the cosmic radiation. Therefore, SEU miti-
gation strategy is required when SRAM FPGAs are integrated
into safety-critical systems. An essential requirement for these
systems is often to remain fail-operational and thus, to perform
implemented functionality after the occurrence of a fault. In
this paper, we propose a run-time reconfigurable FT architecture
based on coarse-grained TMR with triplicated soft-core processor
NEO430 core, PDR for removing all transient SEU faults and
the state synchronization allowing smooth state recovery from the
inconsistent state when the reconfiguration of a failed processor
instance was finished into the state where all three processors
operate synchronously. The paper describes implemented FT
architecture and run-time fault recovery strategy performing all
necessary steps without additional blocking of the system func-
tionality. The state synchronization for the soft-core processor
NEO430 architecture is described in a further detail. Moreover,
the paper presents developed PDR framework used for validation
and testing of proposed fault recovery strategy.

Index Terms—TMR, fault recovery, state synchronization, soft-
core processor, partial dynamic reconfiguration, SEU mitigation

I. INTRODUCTION

Safety-critical systems are mostly developed as fail-safe
systems able to detect any failure and to react on the failure
situation by bringing the system into a safe state (e.g. by stop-
ping driving of an autonomous vehicle); or as fail-operational
systems whose safe state cannot be easily identified. Fail-
operational systems are able to compensate detected failures
in order to allow the system to continue in its function or
mission (e.g. typically redundant avionics) [8]. These systems
frequently utilize some type of processor implementing control
algorithms and FPGA performing accelerated computations,
signal processing or integrating customized system on a chip
design. Many safety-critical systems are also hard real-time
systems which produce time-critical outputs used in safety-
critical functions (e.g. to control the flight of an aircraft) [7].
Thus, in order to satisfy requirements for hard real-time and
fail-operational operating, such systems must be implemented
also as fault tolerant. Although SRAM FPGAs are susceptible
to Single Event Upsets (SEUs), responsible for transient faults
induced by random bit-flip errors in configuration memory
cells or in user logic, these programmable circuits are suitable
platform to be used in Fault Tolerant Systems (FTSs).

SEU mitigation strategy may combine hardware redundancy
and Partial Dynamic Reconfiguration (PDR) in order to im-
plement error detection, self-repair ability and fault recovery
mechanism into the system. With respect to the compromise
between the system reliability and the resource overhead,
various hardware redundancy schemes can be used. The most
used form is Triple Modular Redundancy (TMR) which can
be applied on different granularity levels in the system design.
Coarse-grained TMR and PDR are often combined in one
reconfigurable architecture. The time between SEU occurrence
and completion of fault recovery become crucial parameter
because the reliability of the TMR with one failed replica
is worse than the reliability of an unprotected system [13].
The fault recovery process can be generally divided into three
phases: 1) fault detection, 2) fault removal by reconfiguration
of a region containing replica identified as faulty, and 3) state
synchronization bringing the reconfigured replica into the op-
erating state consistent with other correctly operating replicas
[5] [6] [10]. While the PDR can be performed run-time, the
synchronization may impact availability of the system.

This paper describes proposed run-time reconfigurable FT
architecture based on TMR with hardware-implemented state
synchronization for soft-core processor NEO430 enabling re-
liable and non-blocking processor execution in the presence
of SEU induced faults and during the fault recovery process.

II. RELATED WORK

Various partially reconfigurable architectures and fault re-
covery strategies have been investigated in recent years.
Since TMR has large overhead, another possibility may be
employing of less demanding method such as Duplication
with Comparison (DWC). Authors in [15] presents an error
detection and self-repairing method for partially reconfigurable
systems based on fine-grained DWC and PDR at the level
of individual frames in FPGA configuration memory. Fine-
grained DWC enables high error detection and it has lesser
overhead. However, this method has no longer ability for fault
masking and thus, the continuous processor execution in the
presence of faults is not possible as with TMR.

For reconfigurable TMR, the state synchronization is im-
portant part of the fault recovery. According to [5], finding an
adequate synchronization strategy implies balancing a trade-
off between the speed of the synchronization, extra hardware
overhead utilized by synchronization logic and the impact on

	

978-1-7281-0072-2/19/$31.00 ©2019 IEEE 

	



the critical path of the system. For processors which repeat
the same execution periodically or do not require continuous
availability, the simplest way for the state synchronization is
global reset. However, the main drawback of this method is
the loss of global state which can depend on previous program
execution. The need for state maintenance can be overcome by
implementation of backward fault recovery method or proper
state synchronization strategy.

In general, a processor state is given by the content of
internal program and data memories; a register file and all
internal registers implementing processor logic which are not
directly visible for programmers. The largest amount of data
which needs to be synchronized is the content of internal
memories. With respect to huge resource overhead, the use of
a shared memory accesible from all three processor instances
is only practice solution, as it is indicated by [5], [6], [12]
and [14]. Nevertheless, the critical part of the processor state
synchronization is the maitenance of all internal registers
located in a CPU architecture by copying of their state from
correctly working reference CPUs to the reconfigured one.
This requires implementation of the synchronization method
directly in hardware to enable access to all registers and to
minimize the synchronization time.

Considering only processor registers which are accessible
by programmers, the approach described in [12] could be used.
The authors proposed fault recovery strategy for 32-bit RISC
soft-core processor Plasma protected by TMR. A SEU fault
recovery is done by combination of the read-back scrubbing
and the processor synchronization. Moreover, possible perma-
nent fault recovery is performed by evacuating the corrupted
module into a spare region in FPGA configuration memory.
The processor state synchronization is needed in both cases.
It is performed by storing and restoring the processor context
through shared BRAM memory.

For internal architectural registers which cannot be easily
accessed and synchronized by previously mentioned method,
the synchronization requires usage of hardware. In [11], we
proposed and evaluated serial and parallel hardware synchro-
nization for the reconfigurable fault tolerant CAN bus control
system. The serial synchronization was based on the principle
of data shifting through internal registers to next unit in the
oriented circle topology. The second synchronization approach
used two parallel buses for data transfers between registers
in reference and synchronized circuits. The principle of the
synchronization was based on sequential addressing of each
register through an address bus and enabling write or read
signals for circuits which are active during the synchronization
process. Reference circuit transfers the content of its addressed
registers to the data bus byte after byte while the synchronized
circuit reads these data from the bus and stores them into its
internal registers.

In [3], an extensive fault injection campaign and an analysis
of SEU effect on soft-core processor LEON3 shown that the
most of faults that led to the processor’s malfunction were
caused by the set of critical registers (mainly by program
counter) and ALU operands. Moreover, it was found that only

a third of injected faults propagates to the CPU interfaces.
Authors in [4] also identified the register file as the most
critical CPU structure during their soft-error vulnerability
assessment for commercial ARM Cortex-R5 processor, which
is extensively used in real-time safety-critical applications. We
have not investigated reliability of the soft-core microcon-
troller NEO430 CPU so far. However, these results confirm
the need for CPU core protection and fast fault recovery.

III. RUN-TIME RECONFIGURABLE FT ARCHITECTURE

Our PDR design includes soft-core microcontroller NEO430
with the CPU core protected by reconfigurable TMR archi-
tecture. In the TMR architecture, the same input signals are
shared between all CPU instances and their output signals are
brought into the majority voters. Each TMR voter is enhanced
by additional error detection logic for identification of a failed
CPU instance. The design architecture is shown in Fig. 1.

The FPGA design floorplan is divided into the static and
the dynamic area. The static area includes Generic Partial
Dynamic Reconfiguration Controller (GPDRC), Internal Re-
configuration Access Port (ICAP) core, flash controller for
communication with a parallel flash containing stored par-
tial bitstreams, microcontroller memories and all peripherals
shared between triplicated CPUs, TMR majority voters and the
PDR framework for validation of fault recovery experiments.
In the dynamic area, the replicated CPU instances are placed
into corresponding Partial Reconfiguration Modules (PRMs).

The GPDRC [9] is previously developed reconfiguration
controller based on ICAP interface. It supports detection
and correction of single appearing transient faults caused by
SEUs and the mitigation of permanent faults by reducing FT
architecture scheme and changing its layout in utilized PRMs.

NEO430 CPU

NEO430 CPU

NEO430 CPU

Majority
voter

Majority
voter

Program 
memory
(IMEM)

Data
memory
(DMEM)









Majority
voter

Test Outputs

Test Inputs

PDR Framework

Majority
voter

Peripheral Device

Peripheral Device

Peripheral Device

System bus

GPDRCGPDRC

P
R

M
 0

P
R

M
 1

P
R

M
 2R

e
c
o

n
fi

g
u

ra
b

le
 a

re
a

PRM error vector

GPDRC 

reconfigures 

faulty PRM

PDR Framework 

supervises 

recovery process

Synchronization 

Controller

Synchronization 

Controller

NEO430 CPU

NEO430 CPU

NEO430 CPU

Majority
voter

Majority
voter

Program 
memory
(IMEM)

Data
memory
(DMEM)









Majority
voter

Test Outputs

Test Inputs

PDR Framework

Majority
voter

Peripheral Device

Peripheral Device

Peripheral Device

System bus

GPDRC

P
R

M
 0

P
R

M
 1

P
R

M
 2R

e
c
o

n
fi

g
u

ra
b

le
 a

re
a

PRM error vector

GPDRC 

reconfigures 

faulty PRM

PDR Framework 

supervises 

recovery process

Synchronization 

Controller

Registers

Registers

Registers

Sync enable

Ctrl Data

Fig. 1. Reconfigurable FT architecture

!

!



Fig. 2. Soft-core microcontroller NEO430 architecture [1]

The NEO430 microcontroller has customizable 16-bit CPU
compatible with TI MSP430 [1] [2]. The CPU, program
memory (IMEM) and data memory (DMEM), and all pe-
ripherals are interconnected through a system bus. The ar-
chitecture is is shown in Fig. 2. An instruction execution is
conducted by performing several micro operations, thus the
CPU needs several consecutive cycles to complete a single
instruction. The execution of micro operations is controlled
by the control arbiter (CA) which generates control signals
for the data path. The data path includes the register file, the
Arithmetic Logic Unit (ALU) and the address generator (AG).
When the NEO430 CPU is reconfigured, the internal registers
within these components have to be addressed during state
synchronization. The register file incorporates sixteen 16-bit
registers. Program Counter (PC/R0), Stack Pointer (SP/R1),
Status Register (SR/R2) and Constant Generator Register
(CG/R3) have dedicated functions. R4 to R15 are general
purpose registers.

Fault recovery implemented in the hardware is shown in
Fig. 3. In the experiments, the reconfiguration of the PRM
corresponding to the faulty CPU is started based on the PRM
error vector generated by TMR voters which can detect a
mismatch on the compared CPU outputs. A test application
executed by triplicated CPUs periodically checks the digital
input indicating the Sync enable request for performing the
state synchronization. The synchronization request is gener-
ated from GPDRC after the reconfiguration of failed CPU
instance is finished.

The state diagram in Fig. 4 shows processors execution
during the normal state and the fault recovery process. After
the reconfiguration, repaired CPU is restarted. During its
startup, a program reads the digital inputs and checks if request
for synchronization is active. Since the request was activated
by GPDRC, the CPU switched into the SLEEP mode as well.
When the program executed by operating CPUs is in a state
suitable for synchronization, it will indicate readiness for the
hardware synchronization through processor digital output to a
synchronization controller. This is a special circuit responsible
for parallel addressing of all synchronized registers and their
copying from the correctly working CPUs to the recovered
one. Afterwards, operating CPUs go into the SLEEP mode.

Fig. 3. Processor fault recovery implemented in hardware

In this state, CPUs are in an idle state IFETCH 0 waiting for
an external IRQ generated by the synchronization controller
which will activate normal operating mode. In parallel with
the previous step, the synchronization controller performs
synchronization procedure of all architectural registers (PC,
SP, SR, CG, GP R4-R15) and all processor internal registers
(MAR, IR, ALU SRC and DST) by their copying from
correctly working CPUs into the faulty one, while all CPUs are
idle in the SLEEP mode. After the hardware synchronization
phase is finished, the external IRQ signal is triggered to
bring all CPUs from the SLEEP mode to the operating
mode. All three CPUs continue in the program execution
from the synchronized state as all internal registers required
for correct program execution and architectural registers were
synchronized.

IV. EXPERIMENTS AND VALIDATION

For experimental validation of the proposed solution for run-
time fault recovery, we implemented PDR Framework which
allow following validation activities: (1) to communicate with
a test application executed on the protected processor, (2) to
monitor and measure duration of various phases during the re-
covery process and (3) to validate the design functionality. The
PDR Framework is based on another NEO430 microcontroller,
called Debug Core, which is placed in the static FPGA area.
The Debug Core is interconnected with protected processor
through Wishbone bus in point-to-point topology as it is shown

!

!



Fig. 4. Processor operating during normal state (a) and the fault recovery (b)

in Fig. 5. The Debug Core implements a monitoring applica-
tion which can be controlled via serial command line interface.
This interface allows to read/write data from/to internal status
and control registers within the PDR Framework which are
memory-mapped into area accessible through Wishbone bus
communication. Moreover, the PDR Framework also supports
setting of inputs which then passed to the test application or
receiving the test outputs useful for verification of correct
program execution of the protected processor during fault
recovery simulation.

Fig. 5. Wishbone interconnection between Debug and protected CPU cores

V. CONCLUSIONS AND FUTURE RESEARCH

Three main concerns for processor state synchronization
in proposed architecture exists. The implemented state syn-
chronization strategy for reconfigurable TMR NEO430 CPU
with respect to the microcontroller architecture and real-time
execution of software tasks was designed with following
considerations: (1) the synchronization of an application data
context stored in internal program and data memories is
implicitly done by concurrent writing output data through
majority voters and consequent reading data back, (2) the CPU
core peripherals are shared by the same way as memories, (3)
we were focused only on synchronization of internal CPU
architecture.

In this paper, we proposed run-time reconfigurable FT
architecture for the soft-core processor NEO430 and the state
synchronization strategy allowing smooth transition to the state
when all triplicated processors operate synchronously after the
failed processor instance was reconfigured. Furthermore, we
described the recovery process validation method based on use
of PDR Framework. Our future research will be focused on
the design and evaluation of the state synchronization methods
implemented in the hardware.

ACKNOWLEDGMENT

This work was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sustain-
ability (NPU II) project IT4Innovations excellence in science
– LQ1602 and the BUT project FIT-S-17-3994.

REFERENCES

[1] S. Nolting, “The NEO430 Processor”, github.com/stnolting/neo430.
[2] Texas Instruments Inc, “MSP430x1xx Family – User’s Guide”,

SLAU49F, 2006.
[3] R. Travessini, P. R. C. Villa, F. L. Vargas, E. A. Bezerra, “Processor

core profiling for SEU effect analysis”, IEEE 19th Latin-American Test
Symposium (LATS), Sao Paulo, 2018, pp. 1-6.

[4] X. Iturbe, B. Venu, E. Ozer, “Soft error vulnerability assessment of
the real-time safety-related ARM Cortex-R5 CPU”, IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), Storrs, CT, 2016, pp. 91-96.

[5] U. Kretzschmar, J. Gomez-Cornejo, A. Astarloa, U. Bidarte, and J.
Del Ser, “Synchronization Of Faulty Processors In Coarse-Grained
TMR Protected Partially Reconfigurable FPGA Designs”, Reliability
Engineering & System Safety, 2016, vol. 151, pp. 1–9.

[6] A. Morillo, A. Astarloa, J. Lazaro, U. Bidarte, J. Jimenez, “Known-
blocking synchronization method for reliable processor using tmr & dpr
in sram fpgas”, in VII Southern Conference on Programmable Logic
(SPL), Cordoba, Arg., April 2011, pp. 57–62.

[7] C. Spitzer, U. Ferrell, “Ferrell, T.: Digital Avionics Handbook”, CRC
Press, Boca Raton, FL, USA, 2015, ISBN 978-1-4398-6861-4.

[8] H. Kopetz, “Real-Time Systems, Design Principles for Distributed
Embedded Applications”, Kluwer Academic Publishers, USA, 2002,
ISBN 0-792-39894-7.

[9] L. Miculka, Z. Kotasek, “Generic Partial Dynamic Reconfiguration
Controller for Transient and Permanent Fault Mitigation in Fault Tolerant
Systems Implemented Into FPGA”, in 17th IEEE Symposium on Design
and Diagnostics of Electronic Circuits and Systems, Warszawa, PL,
2014, ISBN 978-0-7695-5074-9, pp. 171–174.

[10] E. Cetin, O. Diessel, L. Gong, V. Lai, “Towards bounded error recovery
time in FPGA-based TMR circuits using dynamic partial reconfigu-
ration”, International Conference on Field programmable Logic and
Applications, Porto, 2013, pp. 1-4.

[11] K. Szurman, L. Miculka, and Z. Kotasek, “Towards a State Synchroniza-
tion Methodology for Recovery Process after Partial Reconfiguration
of Fault Tolerant Systems”, in 9th IEEE International Conference on
Computer Engineering and Systems, Cairo, 2014, pp. 231-236, ISBN
978-1-4799-6593-9.

[12] M. Fujino, H. Tanaka, Y. Ichinomiya, M. Amagasaki, M. Kuga, M. Iida,
T. Sueyoshi, “Fault Recovery Technique for TMR Softcore Processor
System Using Partial Reconfiguration”, Springer, ICA3PP, 2012, vol.
7439, pp. 392–404, ISBN 978-3-642-33078-0.

[13] M. Schütz, A. Steininger, F. Huemer, J. Lechner, “State Recovery for
Coarse-Grain TMR Designs in FPGAs Using Partial Reconfiguration”,
IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT), Chicago, IL, USA, 2018, pp. 1-6.

[14] A. Morillo, A. Astarloa, J. Lázaro, U. Bidarte, J. Jimenez, “Reliable
microprocessors for FPGAs: State of the art and trends”, International
Conference on Applied Electronics, Pilsen, 2010, pp. 1-6.

[15] M. S. Reorda, L. Sterpone, A. Ullah, “An Error-Detection and Self-
Repairing Method for Dynamically and Partially Reconfigurable Sys-
tems”, in IEEE Transactions on Computers, vol. 66, no. 6, pp. 1022-
1033, 1 June 2017.

!

!


