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Abstract
The importance of captured network traffic as a data-source
for law enforcement crime investigation has increased be-
cause many devices are Internet-enabled and the data com-
munication might yield crucial evidence for an investigation.
There are many points in the Internet Service Provider’s
infrastructure where the network traffic might be captured.
One of them is a satellite connection, DVB-S2, which use
Generic Stream Encapsulation (GSE) protocol that carries
IP traffic. Current tools for network traffic forensic analysis
do not support GSE. In this paper, we describe principles
of GSE, methods for GSE traffic analysis and the extension for
an existing network forensic tool that performs GSE traffic
processing and extraction of encapsulated communication.

CCSConcepts •Applied computing→Network foren-
sics; • Networks→ Network monitoring; Network protocols;
Transport protocols; Application layer protocols; • Social
and professional topics → Computer crime.

Keywords network traffic forensics, generic streaming en-
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1 Introduction
The digital forensics is becoming a domain of skilled oper-
atives employed in Law Enforcement Agencies (LEA) that
are tasked to investigate crimes. Their data-sources might
vary, like seized mobile phones, computers, or other storage
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devices. Several cases use a lawfully intercepted network
traffic as a valued data-source [2].
Although the analysis of network communication was

not considered the primary area of digital forensics, its im-
portance has increased as most of the devices are Internet-
enabled. Performing network forensic analysis requires ade-
quate tool support [13, 14]. A typical network forensics anal-
ysis tool provides features that aid an investigator to reveal
evidence in network communication [1]. Instead of provid-
ing network protocol details, the forensic tool is expected
to extract contents of transmitted files, perform a keyword
search, identify user credentials, and more [2, 19].
Many complex and functionally rich network analysis

tools require expert knowledge of operators necessary to cor-
rectly pre-process the data to suit the tool. The field oper-
atives are experienced criminal investigators but usually
not computer experts. Therefore, tools they use need to be
straight-forward, provide top-to-bottom analysis, and re-
quire as few expert knowledge as possible.

The overlay networks are becoming widely used by Inter-
net Service Providers (ISPs) that are interconnecting various
public places, businesses, campuses, or regular home inter-
net connections. Technologies can be fiber-optic, metallic
ethernet, 3G, 4G, 5G or satellite connection DVB-S2 that uses
GSE to encapsulate IP traffic [6, 8–11].
Our motivation behind the implementation of GSE ana-

lyzer stems from the interest expressed by LEA investigators
that seek a tool capable of analysis Internet communica-
tion encapsulated in various tunneling protocols. The offi-
cers prefer open-source network forensic and analysis tools
(NFATs) [1, 12], even though they might be poorly docu-
mented, out-of-date, and even abandoned [13].

1.1 Problem Description
The GSE is nowadays commonly used for Internet traffic
encapsulation in satellite networks. As its name suggests, it
is a generic method of encapsulation and can occur on Data
Link, or Application layer even recursively. The LEAs strug-
gle to perform network forensics on data captured with GSE
encapsulation, but because commonly used tools for network
forensics do not process it, it is a difficult task.

1.2 Contribution and Paper Structure
This paper introduces the issues and methods of forensic
analysis of the GSE protocol. In the next section, we list
the most used Network Forensic Analysis Tools (NFAT) and
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Network Security Monitoring (NSM) tools and their capa-
bilities in processing tunneling traffic, in particular, GSE
protocol. It is interesting that to our knowledge, none of the
NFATs support GSE. Next, we provide a detailed description
of Netfox Detective architecture, and atop of it, we describe
the principles of GSE processing. The goal of the present
work is to provide advanced information for network foren-
sic practitioners that need to deal with GSE communication.
We also implemented the GSE processing as an extension
to our own NFAT making it available to the wider body
of digital investigators.

2 Related Work
Network forensic practitioners commonly use two types
of tools — the NSM and the NFAT [13]. This section mainly
focuses on tunneling protocols support in related tools and
their usability for network forensic investigation conducted
by LEA officers.

NSM tools are intended for a high-level insight into the net-
work communication. Such tools are usually fast and scal-
able; thus can process high volumes of network data on high-
speed networks up to hundreds of gigabits per second. These
tools provide information typically from lower layers, i.e.,
Internet and Transport, and only partially from Application,
where they parse only well-known protocols; rarely they sup-
port overlay networks. Also, these tools are guided strictly
by standards and usually do not include heuristics or more
in-depth analysis to extract additional content. They operate
online, and most cannot process malformed or incomplete
communication. The incomplete communication is a typical
case when interception is done on commodity hardware in-
side ISP infrastructure. Therefore, these tools are used mostly
by network operators for measurements, accounting, and in-
cident detection. NSM tools provide the bottom-up approach
showing dissected packets and letting the investigator con-
duct expert analysis.
The most commonly known NSM tool is Wireshark [27]

that supports the following encapsulation protocols: GSE,
GRE, Ayiya, GTPv1, L2TP, SSTP, PPTP, IPIP, IPsec, 6in4, etc.
It supports the broadest range of network and application
protocols. Wireshark defines an API that can be used to ex-
tend its functionality by a new protocol dissector. Note that
it is the only tool supporting GSE!

Some NSM tools can be integrated, and more sophisticated
analysis can be done programmatically, like TShark [27],
TCPDump [24], TCPFlow [26], NfDump [18], Suricata [23]
(Teredo, GRE), Zeek [29] (Ayiya, Teredo, GTPv1, GRE), Mo-
loch [16] (GRE) that can analyze live or intercepted com-
munication. They can be parts of scripts that can do one or
more tasks, but still can not be compared to NFAT carving
and analytical capabilities.

NFAT Our focus is to provide a tool for LEA operatives
to extract forensically important information mostly from
the application layer of communication. This intent perfectly
fits into the category of NFATs that is intended for in-depth
traffic analysis, that is mainly performed offline on captured
communication. NFATs provide the same amount of informa-
tion as NSM tools but also add extra information extracted
from the application layer. They conduct a thoughtful analy-
sis of the traffic and use the extracted data to infer informa-
tion that helps the investigator. The information is usually
provided in a synoptic, easily navigable user interface be-
cause NFATs are intended to be used even by field operatives
without specialized training.

Popular NFATs are NetworkMiner [17] (GRE, 802.1Q, PP-
PoE, VXLAN, OpenFlow, SOCKS, MPLS, and EoMPLS), Py-
Flag [3, 20], XPlico [28] (L2TP, VLAN, PPP), NetIntercept [5].
No NFAT supports GSE as far as we know.

3 Netfox Detective in Depths
In this section, we present Netfox Detective, a network ana-
lysis desktop application created for the Windows platform.
We discuss the low-level network traffic processing parts
to be able to explain the extension of GSE decapsulation
support. The tool is composed of two parts:

Netfox Framework (backend, details see Sec. 3.1) is net-
work traffic processing engine that provides all kinds
of functionality starting from capture file loading, go-
ing through traffic processing, extraction and ending
with traffic analysis.

Netfox Detective (frontend, details see Figs. 10, 11)
is a visualization tool that depends on the backend
for processing part but extending it with analytic ca-
pabilities to interpret extracted data.

For a high-level overview of the tool architecture see Fig. 1.
Note, Netfox Framework is a separate set of .NET assemblies
that have no dependency on Netfox Detective and can oper-
ate separately. However, the framework does not have any
CLI and therefore has to be incorporated into an application.
On the other hand,Netfox Detective has a direct dependency
on theNetfox Framework and is compiled with it, e.g., it uses
types that are defined in Netfox Framework.

3.1 Netfox Framework
Netfox Framework is the backend, and it is responsible for
parsing and preparing all information gathered. For instance,
it identifies used protocols, to overcome fragmentation (L3)
and segmentation (L4). In its current version, it does not sup-
port live capture but can process standard input file formats
such: libPCAP, Microsoft Network Monitor cap, and PCAP-ng.

Link Layer Once an input file is loaded, it is processed
frame by frame (L2). The lowest used protocols type (e.g.,
LINKTYPE_ETHERNET (IEEE 802.3), LINKTYPE_IEEE802_11
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Figure 1. The figure describes the abstraction of Netfox Detective and Netfox Framework architecture. The upper part of the
diagram above the line represents visual parts of the tool. Below the line, components of Netfox Framework are drawn in
a hierarchical view.

(IEEE 802.11), LINKTYPE_PPP, etc.) is stored in the ‘pcap_fi-
le_header’ structure, and we use it to load the first protocol
parser. A good overview of the Link-Layer header type values
is provided by [25].
Next, we utilize the frame header and its Logical Link

Controller header (LLC) where the main field is a unique
identifier of the L3 protocol (e.g., IPv4, IPv6).
Notice that sometimes it might not be stored in the cap-

ture file. Link layer usually does not carry any forensically
significant information; thus it is generally omitted and LINK-
TYPE_RAW, LINKTYPE_NULL link layer types are used.

Internet Layer Similarly, both IPv4 and IPv6 contain an
identification of an upper layer. (Note, IPv4 names the field
‘protocol’; IPv6 names it ‘Next Header’) which allows us
to choose an appropriate L4 parser. As long as the proto-
col/next header is present, we can parse the communication
deterministically, usually up-to the transport layer.

Transport Layer The transport layer carries no informa-
tion about the subsequent protocol; therefore, the continu-
ing application layer needs to be identified by other means
to be correctly processed. We can do this identification using
several methods (e.g., port-based classification, deep-packet
inspection, probabilistic and statistical methods based on ma-
chine learning). Typical encapsulation with protocol exam-
ples is presented in Fig. 2.

3.2 Conversation Tracking
This section provides a comparison of ISO/OSI and TCP/IP
models with denoted layer names and samples of typical
protocols used on particular layers. The logical approach
to process network data is to create a forest of trees with
roots based on identifiers extracted from the lowest layer
of the network encapsulation model and continue with upper
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Figure 2. This figure provides the comparison of ISO/OSI
and TCP/IP models with denoted layer names and samples
of typical protocols used on particular layers. Netfox De-
tective supports all protocols that are enumerated on this
figure.

encapsulation levels. This way, conversations on all levels
are created, which also sets boundaries, and specific traffic
can be targeted for analysis and information extraction.

Besides, each layer has its specifics that need to be taken
into account before processing ongoing layer.

IPv4 (L3) fragmentation can occur, and packets need
to be defragmented before further processing. Frag-
ments are identified by Fragment Offset and bit More
Fragments (MF) set in the Flags field. As long as MF bit
is set, defragmentation process has to buffer packets
and further process them in bulk, because fragments
do not carry headers from upper layers, thus cannot
be processed separately and in parallel.

TCP (L4) segmentation occurs regularly. Segments are
agnostic to processing mechanisms, carry all required
headers and can be processed in parallel. The posi-
tion of a segment in transmission buffer is defined by
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the difference of initial sequence number (SYN packet’s
SEQ) and the particular segment’s SEQ.

Application messages are not implicitly denoted be-
cause each application protocol has its structure and
is not parsed on this level of processing. To obtain at
least some level of abstraction, we can deduce bound-
aries of application messages from the transport layer.
E.g., TCP’s field Flags contains the PSH bit that is set
when the last segment of a particular application mes-
sage is created. In other words, when flush() is called
on network socket which is typically done to notify
the kernel that message is to be dispatch right away.

Our unique mechanism of processing network commu-
nication [15], mainly L4 segregation shown that even mal-
formed or corrupted captures could be used as data-source
and carving modules can extract otherwise lost information.
We accomplish this during the last processing step, that cre-
ates L7PDUs, which are the approximations of application
messages.

3.3 Netfox Detective Architecture
Netfox Detective was designed to be modular and modules
to be inter-operable, but also to work as self-contained li-
braries to be used by other tools. This way, we have created
a framework for network forensics and analytic application
supporting the forensic investigation.
Fig. 1 describes the decomposition of the tool to small

interconnected building blocks/modules. In the bottom part,
the architecture of Netfox Framework processing network
communication that is interconnected withNetfox Detective
byNetfoxFrameworkAPI. This API enables easy incorporation
of Netfox Framework with any additional software that may
use it as a platform. Furthermore, this part is divided into
two groups, the execution and model parts.
Execution part, on the left-bottom side of NetfoxFrame-

workAPI, consists of modules that by their composition en-
sures polymorphic behavior and extensibility. Each new net-
working protocol that is to be supported requires the creation
of its tracking building block and connection into the process-
ing pipeline. The communication interface between building
blocks is defined by their interfaces that buffer inputs and
outputs that encapsulates data in models.
Model part consists of blocks below DbContext. Models

serve as data carriers for parsed, extracted state information,
e.g., for L3 conversation it is the source and destination IP
addresswith a collection of othermodels representing Frames.
Models are persisted with DbContext and also accessible
through it to higher layers.
To ensure fast parallel processing on a single computa-

tion node with shared memory, i.e., an application running
a single process, we used Task Parallel Library (TPL). This ap-
proach enables the creation of functional blocks that improve
modularity. Each block processes immutable data; thus, all

blocks might run in parallel and together create an oriented
graph, a Data Flow1. TheNetfox Framework combines buffer-
ing blocks that interconnect execution blocks to maximize
the utilization of resources due to different time complexities
of data processing in the functional blocks. Also, this intro-
duces a back-pressure mechanism that is used as memory
management to slow down faster blocks that might other-
wise overwhelm the system and cause resource depletion
and consequently, a disk swapping or an application crash.

3.4 Capture File Processing
In Netfox Framework, capture file processing is initiated by
a method call of AddCapture in NetfoxFrameworkAPI. In the
current implementation, the tool processes captured traffic
in formats libPCAP, PCAP-ng and MNM Cap (Microsoft Net-
work Monitor). Fig. 3 describes a sequence of execution calls
and model passing through execution pipeline, a layer by
layer to describe logical processing in an abstracted manner.
Modules are designed to ensure concurrent processing

thus they do process immutable data only. Majority of mod-
ules also do run in parallel instances to increase a degree
of parallelism further. This design also enables with some
modifications of processing pipeline to scale up and run
the data flow graph in a distributed environment. That is
achieved with TPL Data Flow which also enables to change
interconnection of execution block to extend the process-
ing of capabilities to process new network encapsulations
(tunneling protocols).

The rest of this section describes processing blocks and
their interconnections denoted on Fig. 4.

ControllerCaptureProcessor
ControllerCaptureProcessor block is used to oversee captured
traffic processing. This module interconnects particular func-
tional and buffering block to a processing pipeline reflecting
typical network layered encapsulation. A new processing
data flow pipeline is created for each job. That leads to segre-
gation of data potentially originated from multiple cases and
guarantees that no data might be reconstructed into false
evidence. The processing has two reading phases.

Firstly, a path to file or files with captured communication
is passed to the CaptureProcessorBlock that takes care of pars-
ing of particular PCAP file format and retrieving raw frames.
The output of this block is PmCapture object collection meta
information about the capture file and frames encapsulated
in objects of PmFrame. PmFrame is obtained in the sequential
streamed one-way passage of capture file and contains only
information about its position in the capture file.

Secondly, additional meta information used in further pro-
cessing without actual payload is filled in the second read
by IndexMetaFramesBlock. This segregation is due to a way
how frames are stored in various PCAP file formats. Some

1https://msdn.microsoft.com/cs-cz/library/hh228603(v=vs.110).aspx
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L4 levels and furthermore on L7 application layer with the approximation of application messages and application protocol
identification.

formats (e.g., MNM) contains a frame table with this meta-
information in place and spares the first PCAP read. Execu-
tion of IndexMetaFramesBlock block, which is a non-blocking
read from PCAPfilewith parsing of (L2), L3, L4 layers, is done
with the maximal level of parallelism. Layer 2 might be omit-
ted in case that PCAP is captured without it.

L3L4ConversationTracker
L3L4ConversationTracker takes care of the creation of con-
versations on particular levels inside the ProcessPacketBlock.
A PmFrame(s) (packets) with the same IP source and destina-
tion address compose an L3Conversation. This L4 conversa-
tion if furthermore a collection of smaller L4 conversations
that composes PmFrame(s) (datagrams) with the same IP
source and destination address and TCP or UDP source and
destination ports and L4 protocol type (i.e., UDP or TCP).
In the time when conversations on layer L3 and L4 are

created, meta-information in the form of PmFrames is still
kept in memory. Because of that, complementary to the con-
versation creation, conversation statistics are generated as
well. Statistics on both levels are updated by data processed
from each PmFrame passing through ProcessPacketBlock.

Because the processingmodel inNetfox Framework is based
on IP communication, all non-IP communication is tracked
in special aggregation conversations. These conversations
have invalid IP addresses as identifiers, i.e., 0.0.0.0 and [::]
on L3 level, and invalid endpoints on L4, i.e., 0.0.0.0:0 and [::]:0
as both source and destination. Similarly, L3 conversations
containing an unknown transport protocol are aggregated
into first L4 conversation with valid IP addresses but invalid
transport ports, i.e., 0 port number.

L7ConversationTracker
L7ConversationTracker is a core of our reassembling engine
currently supporting TCP and UDP transport protocols. Vari-
ous TCP heuristics [15] are used to separated IP flow commu-
nication, i.e., L4 conversations to finer-grained units based
on application session. We call them L7 conversations.
This module processes incoming datagrams in parallel

respecting the following scheme. For each newly processed
L4 conversation it creates a new Task and stores it into
a dictionary keyed by an L4 conversation key. All conse-
quently processed datagrams will be forwarded into this



ECBS ’19, September 2–3, 2019, Bucharest, Romania Jan Pluskal, Martin Vondráček, and Ondřej Ryšavý

task. Tasks run in parallel on multiple cores and are sched-
uled by the TaskScheduler inside Common Language Run-
time (CLR), which makes them much lighter than regular OS
threads because they are running on existing threads stored
in the ThreadPool. After a task is done or paused, the thread
is returned into the ThreadPool, and a new task is immedi-
ately executed on it. This way, the overhead is minimal, and
parallel processing improves performance rapidly.

Based on the transport protocol type, appropriate reassem-
bler is selected, and the datagram is passed to it for the pro-
cessing. Reassemblers incorporate heuristics [15] for ad-
vanced network traffic processing capable of accurate pro-
cessing of even malformed, or missing frames.

UDP reassembler uses timeouts to separate consequen-
tial UDP sessions. Because of a lack of information
from UDP protocol, application messages are created
as an ordered sequence of L7 PDUs. Each L7 PDU con-
tains only one datagram.

TCP reassembler is more complex and uses properties
of TCP protocol like sequence numbers, flags (mainly
SYN, FIN, RST, PSH) in combination with timeouts.
Based on TCP properties, approximations of applica-
tion messages are created in the form of the ordered
sequence of L7 PDUs. Each L7 PDU contains one or
more datagrams composing the application message.

TCP Reassembler This solves an issue with the ambiguity
of L4 conversations captured in one or many simultaneously
processed captures. Typically this happens when static ports
are used at server and client side. In a case when a packet loss
corrupts capture, it may happen that multiple TCP sessions
would be merged into one because from a network point
of view, communication would match the regular schema.
A TCP finite state machine would process this merged com-
munication and report missing data but would lack further
information. That would result in ambiguity in determina-
tion who was communicating, whether there were one or
more identities involved.
Both reassemblers (TCP and UDP) produce L7 Conversa-

tions that contain collections of data and non-data frames.
Non-data frames are frames without payloads that serve
for signaling purposes like TCP ACKs, or frames with pay-
loads that are malformed, or retransmitted. These frames do
not participate in final stream creation, but their presence
is either way recorded for auxiliary forensic intents.

L7PDUs Data frames are stored inside L7 PDUs. One L7
PDU represents a data stream that is an approximation of an
application message. An application message is considered
to be a sequence of datagrams containing one user action,
e.g., the user sends a message on online chat, or an email,
or downloads a picture, etc. Although, one application mes-
sage can span across multiple L7 PDUs, scarcely, one L7
PDU would contain multiple application messages. This also

serves as a check-pointingmechanism in case that module ex-
tracting data from the application protocol is unable to parse
the data stream due to corruption or unknown content cor-
rectly. We observed that this happens a lot when proprietary
application protocols are involved because of their volatile
nature and closed specification.

Storage Blocks
Storage blocks are used to assure asynchronous persistence
of gathered meta-information in the form of outputs of all
functional blocks, i.e., L3, L4, L7 Conversations with statis-
tics, L7 PDUs and Frames. Data is stored in SQL database in
bulk operations to achieve higher performance with a cost
of delay introduced with buffering. Buffering and database
storing operations run in separate tasks. This way, both ser-
vices run in parallel and do not block one-another under
ideal circumstances. Storage buffering is highly memory
consumptive; therefore, in case that database is slower then
processing, back-pressure mechanism protects processing
pipeline against memory deprivation lowering its perfor-
mance.

4 Decapsulation of Overlay Network
Communication

Available network technologies provide ways to encapsu-
late various network protocols inside carrier traffic. This
approach practically establishes an overlay network on top
of an existing network infrastructure. The virtual topology
of such an overlay network is usually different than the phys-
ical topology. Encapsulation methods can aim to maintain
security Confidentiality, Integrity, and Availability (CIA) triad.
As already explained, the goal of Netfox Detective is to offer
an extensive forensic analysis of captured traffic. To fulfill
this goal and provide a broader range of use-cases, our re-
search and development further focused on the processing
of encapsulated traffic. This section, therefore, outlines sev-
eral encountered challenges and explains how the analysis
of encapsulated satellite traffic was solved.

4.1 Generic Stream Encapsulation
Network protocol Generic Stream Encapsulation (GSE) was
defined by the Digital Video Broadcasting Project (DVB), and
it offers a way to transport IP traffic over generic physical
layer, usually over DVB physical infrastructure [8, p. 6]. GSE,
as a native IP encapsulation protocol on DVB bearers, was
introduced with the second-generation satellite transmission
system called DVB-S2 (Figure 5). Generic data transmission
on the first generation of DVB standards was formerly pos-
sible using theMulti-Protocol Encapsulation (MPE) on MPEG-
TS packets. However, MPE suffered significant overhead.
GSE is also included in Satlabs System Recommendations
for DVB-RCS terminals [22].
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DVB-S2, GSE
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Figure 5. This example scenario is presenting a profes-
sional application of DVB-S2 and GSE. This architecture
offers point-to-point or point-to-multipoint connections over
a satellite link in both directions. Traffic between Site A and
Site B is carried using Generic Stream Encapsulation. The
figure is based on the GSE implementation guidelines [6].

Outline ofGSEProcedures Operation of GSE allows trans-
mission of variable size generic data encapsulated into base-
band frames. GSE can encapsulate not only IPv4 traffic but
a wide range of other protocols including IPv6, Ethernet,
ATM, MPEG, and others. It supports addressing using 6-Byte
MAC addresses, 3-Byte addresses, and even a MAC address-
less mode [8, p. 6]. Encapsulation and decapsulation proce-
dures performed by the DVB broadcast bearers are transpar-
ent to the rest of the network topology and the carried traffic.
Shall a network layer PDU be transmitted over a satellite
connection, GSE packets serve as a data link layer (Figure 5).
This GSE layer provides encapsulation, fragmentation, and
slicing. Created GSE packets are then carried in baseband
frames, e.g. DVB-S2, on the physical layer (Figure 6). The re-
ceiving side performs a reassembly process, integrity check,
and a final decapsulation of transmitted PDUs [4].

Moreover, it is also possible to transport GSE packets over,
for example, standard IP network infrastructure. In this case,
the DVB-S2 traffic can be carried like a generic payload
on the application layer with the use of User Datagram Pro-
tocol (UDP) as a transport layer. Therefore, given UDP data-
grams carry DVB-S2 baseband frames, which further carry
GSE packets encapsulating selected protocol communica-
tion. This approach effectively establishes an overlay net-
work infrastructure, because IP traffic can practically carry
GSE packets, which can carry another layer of IP traffic. At
this point, the UDP/IP layer below GSE can be considered
the carrier (encapsulating) traffic while, for example, the IP

PDU

DVB-S2 
baseband 
frames

GSE 
packets

PDUs PDU PDU

Figure 6. The figure shows the encapsulation of network
layer PDUs into GSE packets and transmission of GSE pack-
ets inside physical layer baseband frames. GSE packets and
baseband frames consist of a header (shown as a grey block)
and a data field (shown as white space). GSE packet carrying
the last fragment also contains CRC-32 (shown as a block
with pattern). The figure is based on GSE protocol specifica-
tion [8, p. 10].

ICMP

GSE

IPv4

DVB-S2

UDP

IPv4

Ethernet

Lower IP 
network

Upper IP 
network

Overlay 
technology

Data link 
layer

Figure 7. Example of IP traffic encapsulated in GSE layer,
which is carried by another IP traffic. The resulting virtual
topology can be characterized as an established overlay net-
work.

layer above GSE can be described as the carried (encapsulated)
traffic. This approach is presented in Figure 7.
According to specifications and recommendations pub-

lished by SatLabs, implementation of a receiver with Eth-
ernet interface can be divided into demodulation/decoding
device, and a device focused on baseband processing. In such
case, L3 Mode Adaptation Receiver Header can be prepended
to received data [21, p. 10]. The receiving device would then
process DVB-S2 L3 Mode Adaptation Receiver Header, DVB-
S2 baseband frame, and GSE packets to analyze transmitted
communication.

Fragmentation, Slicing, Padding and Reassembly Pro-
cess As noted earlier, GSE procedures can encapsulate dif-
ferent protocol data units in one or more GSE packets. In gen-
eral, GSE packets have variable length, and they can be sent
in different baseband frames individually or in a group. There-
fore, fragmentation, slicing, padding and reassembling can
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occur. In this context, fragmentation refers to a situation
when a PDU and Extension Header is fragmented into mul-
tiple GSE packets (Figure 6). Slicing indicates a case when
a GSE packet itself is divided into several contiguous base-
band frames [8, p. 8]. Noted slicing, therefore, refers to phys-
ical layer fragmentation, which shall be transparent to the
GSE layer [6, p. 27]. Concerning DVB-S2 applications, GSE
slicing (fragmentation into baseband frames) does not oc-
cur [6, p. 31].

Shall a single PDU be fragmented into several GSE packets,
each packet is assigned a Fragmentation Identifier (Frag ID)
label in the GSE header [8, p. 17]. Frag ID is used to match
fragments belonging to the same original PDU. This ap-
proach enables the simultaneous transmission of fragments
from up to 256 different original PDUs. GSE packets carry-
ing a complete PDU and GSE packets with PDU fragments
can be distinguished using start and end flags in the GSE
header. The protocol of carried PDU is indicated by Pro-
tocol Type/Extension field in the GSE header of the first
fragmented packet and every not fragmented packet. The
packet with the last PDU fragment further carries a CRC-32
field used to check integrity after the reassembly process
(Figure 6). It is important to note that for example, DVB-S2
allows multiplexed transmission of multiple streams, each
identified by its Input Stream Identifier (ISI ) [6, p. 32] in base-
band header [7, p. 20]. The reassembly process has to be
carried out independently for each received stream [8, p. 21].
Some of the possible GSE packet formats are presented in
the technical specification [8, pp. 31–32].
Concerning GSE addressing modes noted earlier, an ad-

ditional fourth mode called label re-use can be used when
multiple GSE packets are carried in a single baseband frame.
Shall label re-use be indicated, current GSE packet without
address belongs to the same address as the last previously
processed GSE packet. More detailed analysis of GSE proto-
col is beyond this paper’s scope. GSE packet format is defined
in the protocol specification [8, p. 12]. Further information
can be found in standards, recommendations, and guidelines
covering GSE and DVB-S2 [8], [9], [10], [6], [11].

Implementation Outline Our main goal was to success-
fully decapsulate and process GSE protocol used as an over-
lay network technology (Figure 7). Main challenges were
represented by correct decapsulation of fragmented traffic
including timeout detection and also including support for
recursive encapsulation. As outlined earlier, this approach
represents the transmission of following protocols layered
on top of each other:

• upper IP as an overlay network layer,
• GSE packets transmitted inside a DVB-S2 baseband
frame with Mode Adaptation Header,

• lower IP and UDP as a network and a transport layer,
• Ethernet as a data link layer.

BaseBandHeaderModeAdaptationHeaderL3 GsePacket

<<Interface>>

IFragment

GseHeader

PmFrameEncapsulated

PmFrameBase

1..*Fragments

BaseBandFrame

0..*
UserPackets

0..* DecapsulatedFromFrames

EncapsulatedFrames

0..*

PDU

Figure 8. Extension of object model focused on the process-
ing of GSE-encapsulated frames (simplified).

Design of the extension of the object model concerning
the processing of encapsulated communication (Figure 8)
is quite straightforward and reflects above-described pro-
tocol layers. Instance of BaseBandFrame composes of Mod-
eAdaptationHeaderL3, BaseBandHeader, and several user pack-
ets. These user packets are, in this case, GSE packets. The
instance of GsePacket includes GseHeader and carries the en-
capsulated PDU. Properties of these instances store values
of specific protocol fields from the processed frame, e.g.,
address label, length, fragment ID, encapsulated protocol
type, checksum, etc. All designed model classes make use
of factory methods for parsing corresponding instances from
network traffic. These Parse methods, therefore, take an in-
stance of PDUStreamReader, which is responsible for provid-
ing a correct sequence of bytes belonging to the lower PDU,
as described above.
Because GSE packets can represent fragments of the en-

capsulated PDU, GsePacket class implements IFragment in-
terface utilized during reassembly procedures. With the chal-
lenge of correct reassembly and decapsulation, a new type
of network traffic frame was introduced. Class PmFrameEn-
capsulated inheriting from PmFrameBase represents a frame
encapsulated in one or more carrier datagrams. Carrier data-
grams can be either baseband frames or encapsulation pack-
ets. The instance of PmFrameEncapsulated has references
to individual fragments which form the given frame.
Processing of GSE-encapsulated communication is man-

aged by L7DvbS2GseDecapsulatorBlock (Figure 9) dynami-
cally connected to the frame processing pipeline, which was
described in Figure 4. This TPL block aims to decapsulate
frames fromGSE packets used as an overlay network technol-
ogy. Connection to the pipeline is established using Broad-
castBlock, which is capable of forwarding L7Conversations
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from the L7ConversationTrackerBlock to the StoreL7Conver-
sationBlock (as in the standard pipeline topology presented
in Figure 4) and also to the noted L7DvbS2GseDecapsulator-
Block (Figure 9). Due to the possible amount of false positive
detections of GSE layer, decapsulation procedures are op-
tional. Main Netfox Detective application settings include
such option to enableDecapsulation during capture file import
for communication of Generic Stream Encapsulation (GSE)
inside DVB-S2 baseband frames with Mode Adaptation Header
L3 sent as Layer 7 PDU. Shall this option be enabled, Con-
trollerCaptureProcessor instantiates and connects L7DvbS2-
GseDecapsulatorBlock to the pipeline.

L7ConversationBroadcaster

L7DvbS2GseDecapsulator

DecapsulatedFrames

StoreL7ConversationBlock

L7ConversationTrackerBlock

L7Conversation

L7Conversation L7Conversation

PmFrameEncapsulated

Database

L7Conversation

Figure 9. Scheme illustrating the connection
of L7DvbS2GseDecapsulatorBlock to the frame pro-
cessing pipeline using BroadcastBlock placed between
L7ConversationTrackerBlock and StoreL7ConversationBlock.
Standard pipeline topology is shown in Figure 4.

Because GSE packets, which can encapsulate IP traffic, can
be transmitted inside another UDP/IP, recursive encapsula-
tion can happen. In such an edge case, several GSE overlay
networks could be created on top of each other. That implies
that a frame decapsulated from GSE packets must be sepa-
rately processed and analyzed for the presence of another
GSE layer. The challenge of recursive encapsulation is han-
dled by ControllerCaptureProcessor, as well. Shall the frame
processing pipeline finishwith some decapsulated frames, an-
other pipeline is established, and these decapsulated frames
are further processed.
The decapsulation procedure performed by L7DvbS2Gse-

DecapsulatorBlock is following. Instantiated PDUStreamReader
handles reading bytes of the input conversation and then
parsing of a GSE layer is attempted. Upon successful de-
tection of GSE layer, DVB-S2 baseband frames are passed
to the GseReassemblingDecapsulator. It outputs frames which
have type PmFrameEncapsulated and are ready for further
processing by consequential blocks.

The GseReassemblingDecapsulator manages decapsulation
of frames encapsulated inside GSE packets, which are car-
ried in baseband frames. The decapsulator is capable of re-
assembly procedure according to the specification [8, p. 21].

Reassembling distinguishes single input stream and multiple
input streams based on ISI explained earlier. The reassembly
procedure utilizes GseReassemblyBuffer for each fragment ID
and for each stream identifier processed. The decapsulator,
therefore, decapsulates frames from GSE packets in base-
band frames. In the case of GSE fragmentation, given GSE
packet (fragment) is added to the corresponding reassembly
buffer. Upon successful reassembly, the carried frame is then
decapsulated, too. Each GseReassemblyBuffer holds a counter
of processed baseband frames, which is used to detect a PDU
reassembly time-out error, as defined in the specification [8].

4.2 Evaluation
Every layer of decapsulated traffic is subject to further net-
work forensic analysis performed by the Netfox Detective.
The information is presented in the GUI. The view informs
the user whether the current frame in encapsulated or not. It
is also possible to navigate between views showing individ-
ual encapsulating frames (see Figure 10) and encapsulated
frames (see Figure 11).

The implementation has been evaluated on publicly avail-
able datasets 2, and results (amount of correctly identified
and extracted GSE communications) were comparable to the
reference Wireshark implementation. A set of integration
tests was implemented that verify the correct processing
of GSE traffic in future releases and prohibit regression bugs
from being introduced.

Figure 10.View of the frame content of theNetfox Detective
presenting a frame carrying eight other encapsulated frames.
It is possible to navigate between encapsulated frames using
shown links labeled with GUID of the target frame.

The main goal was to process GSE traffic used as the tun-
neling protocol in satellite communication networks. The
current implementation of GSE processing module does not
support for DVB-S2 baseband frames that can be used as
the physical layer. The decapsulation procedure also does
not handle GSE labels, because of the limitation of the Net-
fox Framework tool that does not support tracking multiple
L1 conversations. Stream ID and fragment ID is correctly
2https://wiki.wireshark.org/DVB-S2 (last accessed 2019-04-17).

https://wiki.wireshark.org/DVB-S2
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Figure 11. Frame content view of Netfox Detective (as in Fig-
ure 10) analyzing a frame that was decapsulated from another
frame of the lower layer.

utilized during GSE reassembling. However, the stream ID
value is not used to separate L1 conversations.

5 Conclusion
Network traffic analysis is often conducted as a part of dig-
ital investigation. In most cases, Internet communication
is analyzed, but sometimes the interesting communication
is encapsulated in some tunneling protocol because of the
network technology used. In this paper, we have presented
the analysis of GSE protocol and the implementation of foren-
sic data extraction enabling to access the encapsulated In-
ternet traffic. The proposed implementation was evaluated
against the Wireshark tool, the only available implementa-
tion of GSE analysis module in common NSM tools. The
forensics tool Netfox Detective is publicly available (https:
//github.com/nesfit/NetfoxDetective) for all network foren-
sic practitioners to use, including open-source source codes
that can be freely modified, or integrated into other newly
implemented tools.
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