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Abstract—The state-of-the-art approaches employ approximate
computing to reduce the energy consumption of DNN hardware.
Approximate DNNs then require extensive retraining afterwards
to recover from the accuracy loss caused by the use of ap-
proximate operations. However, retraining of complex DNNs
does not scale well. In this paper, we demonstrate that efficient
approximations can be introduced into the computational path
of DNN accelerators while retraining can completely be avoided.
ALWANN provides highly optimized implementations of DNNs
for custom low-power accelerators in which the number of
computing units is lower than the number of DNN layers. First,
a fully trained DNN (e.g., in TensorFlow) is converted to operate
with 8-bit weights and 8-bit multipliers in convolutional layers.
A suitable approximate multiplier is then selected for each
computing element from a library of approximate multipliers
in such a way that (i) one approximate multiplier serves sev-
eral layers, and (ii) the overall classification error and energy
consumption are minimized. The optimizations including the
multiplier selection problem are solved by means of a multiob-
jective optimization NSGA-II algorithm. In order to completely
avoid the computationally expensive retraining of DNN, which
is usually employed to improve the classification accuracy, we
propose a simple weight updating scheme that compensates the
inaccuracy introduced by employing approximate multipliers.
The proposed approach is evaluated for two architectures of DNN
accelerators with approximate multipliers from the open-source
”EvoApprox” library, while executing three versions of ResNet
on CIFAR-10. We report that the proposed approach saves 30%
of energy needed for multiplication in convolutional layers of
ResNet-50 while the accuracy is degraded by only 0.6% (0.9%
for the ResNet-14). The proposed technique and approximate
layers are available as an open-source extension of TensorFlow
at https://github.com/ehw-fit/tf-approximate.

Index Terms—approximate computing, deep neural networks,
computational path, ResNet, CIFAR-10

I. INTRODUCTION

Providing an energy efficient implementation of the infer-
ence engine of DNNs becomes crucial to enable efficient
data processing on smart devices or IoT edge nodes where
the energy resources are typically limited. The state-of-the-art
works [1], [2] clearly indicate that neural networks feature an
intrinsic error-resilience property which can be exploited by
adopting the principles of approximate computing to develop
energy-efficient hardware accelerators [3] of DNNs.

Research Questions: In this work, we explore whether it is
possible to achieve energy savings in the computational path
(CP) of DNN hardware accelerators by means of introducing
approximate arithmetic operators, but without performing
any time-exhaustive retraining. The retraining is also impos-
sible for proprietary NNs where the training set may not be
available. We also ask whether there is a computationally inex-
pensive way to adapt the weights of an already trained DNN to

its particular approximate implementation. Another question is
whether we have to apply the approximations uniformly across
all the layers or search for a suitable approximation for each
layer separately.

Approximations of DNNs: The energy optimization of
CP in DNN accelerators by means of approximations can be
introduced on various levels [2] (see Fig. 1). The state-of-
the-art Tensor Processor Unit (TPU) accelerator accomplishes
a satisfactory accuracy with 8-bit integer operations. If the
precision is fixed, different approaches can be applied to
make the computing more effective, e.g., pruning [4], [5],
which involves removing some connections from the DNN
or introducing approximate components into the CP [6], [7].

Fig. 1. Illustration of typical approximations of computational path of DNNs.
The methods targeted in this work are marked red.

In the prior research, significant energy savings resulting
from introducing various approximations in the computational
path were documented. For the multi-layer perceptron (MLP)
NNs, the analysis helps to determine the candidate neurons for
the approximations or pruning. But it turns out that compu-
tational structures are non-uniform. In contrast with that, the
approximate convolutional NNs utilized a uniform structure
where all layers employ the same components. Considering
the fact that the layers differ in the error resilience [8], the
goal of the proposed methodology is to find the right approx-
imation level for the convolutional layers separately. In order
to eliminate the error introduced by the approximations, the
retraining (based on a feedback from a training set) is typically
used to adapt the NNs to these approximations. However, as
the simulation of approximate hardware components does not
usually scale well, the simulation of the entire DNN is thus
slowed down in one order of magnitude for CPU and in
three orders for GPU (see Sect V). Regarding to the results
presented in [6], the retraining on an approximate NN with
50 layers employing arbitrary approximate components would
take 89 days. This issue was partly addressed by Sarwar et
al. [7] by using a very limited set of approximate components
(having limited efficiency) whose simulation scaled well. If
one is going to use arbitrary approximate components in
DNNs, avoiding of the retraining is necessary and it becomes
one of the major research challenges addressed by this paper.

Hyperparameters Tuning: The second challenge is how
to automatically and effectively select the right approximate
implementation for each relevant component (e.g., layer). The



majority of modern DNN architectures was constructed manu-
ally by designers. With the increasing computational resources,
automated methodologies for hyperparameters tuning based on
the grid search, random search, Bayesian optimization, and
genetic algorithms (GA) become popular. Xie and Yuille [9]
proposed a GA-based tool for optimization of basic building
modules of a large network. The generated DNN structures
often perform better than the standard manually designed ones.
Another GA-based tool, CoDeepNEAT [10], which develops
the NEAT approach for evolving MLP structures, provides a
different abstraction — it connects layers instead of neurons
and tune the layer parameters (e.g., activation functions, kernel
sizes etc.). Each candidate solution (represented by a graph)
is transformed to a DNN. The training of candidate DNNs
is performed by means of standard learning algorithms. The
extended version [11] allows to optimize multiple objectives
(overall accuracy and complexity of the resulting NNs).

Novel Contributions: In this paper, we aim at developing
ALWANN framework that takes a trained (frozen) NN and a
set of approximate multipliers as inputs and generates Pareto
set of approximate neural networks (AxNNs) that trades off
accuracy and the energy.

The proposed methodology is inspired by the hyperparame-
ter tuning algorithms and genetic algorithms. It optimizes two
main design criteria for DNNs — the overall DNN accuracy
and the energy consumed by the approximate layers. It satisfies
all constrains induced by a particular DNN accelerator, e.g., at
most T approximate execution units can be used, or the units
can be power-gated or pipelined.

To avoid the time-critical or unavailable retraining process,
we proposed a fast weight tuning algorithm that adapts the
layer weights to the employed multipliers and allows for
improving the accuracy of NN by 4% in the average. Thanks
to the relatively fast evaluation of candidate implementations,
the proposed methodology allows to significantly extend the
complexity of the NNs that can be approximated — up
to 120M multiplications (ResNet-50) in contrast with 200k
multiplications in LeNet-6 [6].

The proposed approach enables to approximate DNNs with
the results comparable to the results obtained by other au-
tomated approximation methods, but for more complex NNs
and without retraining. Moreover, the proposed approach is
capable of constructing more energy-efficient NNs than the
approach based on a layer removal followed by a training
from scratch [12].

An open-source library of approximate convolutional layers
is provided at https://github.com/ehw-fit/tf-approximate. The
library extends the widely used TensorFlow framework with
approximate layers and an example of layer replacement is
provided.

II. BACKGROUND AND RELATED WORK

A. Approximate neural networks

A straightforward approach for the automated construction
of NNs with approximate CP is to optimize the bit precision
for the data structures used in NN [13]; a recent research shows

that in specific cases one bit can be sufficient to represent the
weights [14]. Let us suppose that the bit width is fixed to n
bits due to architectural constraints. There are several ways
how to improve the energy efficiency of the n-bit arithmetic
operations (Fig. 2).

Ventkatamani et al. [4] identified error-resilient neurons
based on gradients calculated during the training process of
a MLP. For these neurons, an approximation based on the
precision modification and simplifying of activation functions
was applied. Due to these modifications additional retraining
of the approximate MLP was required.

Zhang et al. [5] used a different approach for the critical
neuron identification. A neuron is considered as critical, if
small jitters on the neurons computation introduce a large out-
put quality degradation; otherwise, the neuron is resilient. For
the resilient neurons, the memory access skipping, precision
scaling or arithmetic operation approximations are applied. To
increase the overall accuracy, the resulting neural networks
were retrained. This approach was only evaluated on a MLP.

In the case of CNNs, Mrazek et al. [6] introduced approx-
imate multipliers to convolutional layers of the LeNet neural
network. They showed that the back-propagation algorithm
can adapt the weights of CNN to the used approximate
multipliers and significant power saving can be achieved for a
negligible loss in accuracy. Approximate multipliers based on
the principles of multiplierless multiplication were introduced
to complex CNNs in [7]. The authors modified the learning
algorithm in such a way that only those weights could be used
for which an efficient implementation of approximate multipli-
cation exists. The authors showed that the approximations can
provide significant power savings in the computational path
even for deep neural networks. However, the major limitation
of this approach is that arbitrary approximate multiplier cannot
be introduced to the NN.

Fig. 2. Complexity and properties of the recently publishedn NN CP
approximation methods compared to the proposed algorithm (see Sec. IV
for details). *) The number of approximate components is reported for 8-bit
inputs.

Although the aforementioned approximation methods de-
crease the accuracy of the NNs, the resulting NNs can be
beneficial for other approaches, for example, in progressive
chain classifiers (PCCs) [15]. In PCCs, there is a chain of
classifier models that progressively grow in complexity and
accuracy. After evaluating a stage it is checked whether its
confidence is high; if so the remaining stages of the PCC are
not evaluated.

B. Neural network accelerators
Numerous accelerator designs have been proposed for ac-

celerating DNN inference [16]–[19]. Almost all of these
accelerators mainly focus on accelerating the dot product
operation, which is the fundamental operation in the convo-
lutional and fully-connected layers of the NNs, i.e., the most



computationally and memory intensive layers in NNs [16].
Accelerators like TPU [17] and Flexflow [19] perform layer-
wise computations while others like DaDianNao [16] focus
on a pipelined implementation of a network for achieving
significant efficiency gains as compared to CPUs and GPUs.

DaDianNao [16] is a promising architecture which makes
use of distributed memory to reduce the high energy costs
related to main memory accesses. The memory units are
deployed near Neural Functional Units (NFUs), where the
NFUs are pipelined version of the computations required in
NN layers. An NFU has three main pipeline stages, i.e., (1)
multiplication of weights with input activations; (2) additions
of products; and (3) application of an activation function on
the generated outputs. An illustration of the NFU is shown in
Fig. 3a. An NFU combined with four banks of eDRAM forms
a processing element (PE) (see Fig. 3b) where multiple PEs
are connected together to form a node/chip (see Fig. 3c). The
chips are then interconnected to form a system (see Fig. 3d)
which is then used for deploying complete NNs.
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Fig. 3. DaDianNao accelerator design [16]: (a) Neural Functional Unit (NFU);
(b) Processing Element; (c) Chip/Node; and (d) Interconnected chips.

From approximations point of view, the computational units
in the NFUs can be approximated to improve the energy/power
efficiency of the system. There can be multiple scenarios
for employing approximations in the computational units: (1)
a single chip contains more than one type of approximate
computational units, however, at run-time, only one type is
selected for operation while all the rest are power-gated; and
(2) a single chip contains a specific type of approximate
computational units. Both the highlighted scenarios are in line
with the concept of heterogeneous approximate computing
units proposed in [20]. Exemplar hardware architectures for
both the scenarios are illustrated in Fig. 4. Note that a layer of
an NN can be mapped to one or more chips, which are jointly
referred as tile from henceforth. Moreover, in this work we
assume that a layer can have only one type of approximation,
therefore, all the chips in one tile are assumed to have the
same configuration as highlighted in Fig. 4b.
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Fig. 4. (a) Scenario 1: All the chips are homogeneous, however, each PE
has multiple approximate variants of NFUs installed in it out of which one is
selected and rest are power-gated. (b) Scenario 2: Each PE contains a single
approximate NFU and all the NFUs in a chip are of a specific approximations
type, however, approximation type can vary across chips.

Note that here we consider approximate computational units
with fixed approximations, i.e., not configurable approximate
modules like the one proposed in [21]. This is due to the fact
that the efficiency gains of the configurable modules are signif-
icantly affected by the required configurability characteristics.

III. PROPOSED METHODOLOGY

A. Overview

ALWANN requires the following inputs from the user:
already trained NN being subject of the approximation, a
library of basic approximate components (adders, multipliers,
MACs) and knowledge of the architecture of the final HW
accelerator. Two HW-based architectures (as discussed in the
previous section) are considered in this work: pipelined and
power-gated arrays. For simplicity, the MAC units will be
implemented using accurate addition and approximate mul-
tiplication, but approximate addition can be introduced as
well in general. Let L = {L1, L2, ...} be a set of indexes
of convolutional layers of NN and M be a set of available
approximate w-bit multipliers. The user should specify the
number of different tiles |T | the accelerator will consists of.
Typically, |T | < |L| and w = 8 is sufficient. Each tile’s NFU
consists of the array of the same MAC units. Each layer Li

is supposed to be executed on a single tile Tj .
The method outputs a set of AxNNs (modified original

NN together with the corresponding configuration of the HW
accelerator tiles) that are Pareto optimal w.r.t. the energy
consumption and classification accuracy. The approximations
are introduced to the original NN by replacement of the
accurate convolutional layers by approximate ones together
with weight tuning. Considering the structure of the HW-based
accelerator, two task are solved simultaneously. We are looking
for the assignment of the approximate multipliers to MACs in
SA tiles T = {T1, T2, ...}, i.e., mapping mapTM : T → M ,
and for the assignment of the convolutional layers to SA tiles,
i.e., mapping mapLT : L→ T . The weights in each layer are
updated according to the properties of a particular multiplier
assigned to the tile which computes the output of the layer.

The overall architecture of the proposed framework is shown
in Figure 5. The framework expects that a fully specified
NN is available (typically in protobuf format). If not already
done, the NN is firstly quantized to avoid floating point MAC



Fig. 5. Overall architecture of ALWANN framework

operations. The protobuf specification of the quantized NN
is then edited and all convolutional layers are replaced by
approximate ones. This step is necessary to have the ability to
specify which multiplier should be used to calculate the output
of the MACs separately for each layer. To obtain a Pareto
set of various AxNNs, we propose to use multi-objective
genetic algorithm (NSGA-II) [22]. The algorithm maintains
a population of |P | candidate solutions represented as a pair
(mapTM ,mapLT ). The search starts from an initial popula-
tion which is generated either deterministically or randomly.
The candidate solutions are iteratively optimized with respect
to the accuracy of AxNN and energy required to perform
one inference. For each candidate solution, a corresponding
protobuf is created. This step includes the assignments of
the multipliers to each approximate layer according to the
mapTM and mapLT and refinements of the weights in each
approximate layer depending on the chosen multiplier. Then,
energy as well as quality of the obtained AxNN is evaluated
on a subset of training data. The usage of the subset of
training data reduces the testing time and it simultaneously
avoids over-fitting. At the end of the optimization process
when a terminating condition is met (typically the maximum
number of allowed iterations is exceeded), the quality of the
candidate solutions is evaluated using the complete training
set. Solutions whose parameters are dominated by at least one
other solution are filtered out.

B. Weight tuning

Weight tuning represents one of the essential steps and key
advantage of the proposed framework. Updating the weights of
approximate NN helps us to avoid a time consuming retraining
which is typically inevitable to restore the accuracy of NNs
after introducing approximate components [4]. The objective
of the weight tuning is to replace weights with different values
layer by layer in such cases where the new weights will
potentially lead to better overall accuracy. As this problem
itself is nontrivial, the potential candidates for replacement
are determined according to the properties of the multipliers
assigned to each layer independently on the structure of the
NN or data distribution. We exploit the fact that the value of
the second operand is constant for each multiplication while
the value of the first operand differs depending on the input
data. It is hypothesized that the lower arithmetic error of the
multiplier for a particular weight leads to higher accuracy of
the whole AxNN.

Weight tuning is based on the knowledge of a weight
mapping function mapMi precalculated offline for each ap-

proximate multiplier Mi ∈ M . Let W ⊂ N be the range of
weight values and I ⊂ N be the range of data values (typically
W = I = {0, ..., 2k − 1} for a k-bit quantized NN), mapMi

is then determined as

∀w ∈W : mapMi(w) = argmin
w′∈W

∑
a∈I

|Mi(a,w
′)− a · w|.

It means that for each weight w, a weight w′ is determined
that minimizes the sum of absolute differences between the
output of the approximate and accurate multiplication over all
inputs a ∈ I . As the size of I is constant, mean error distance
(MED) is in fact minimized. If Mi is an accurate multiplier,
then the equation implies that w′ = w.

The update weight procedure works as follows. Each weight
w in layer l ∈ L is replaced by the output of mapMi

(w), where
Mi = mapTM (mapLT (l)). Since |I| = 2k, this approach
is applicable approximately to k ≤ 12 because of memory
requirements.

C. Representation of candidate AxNNs

Each candidate solution is uniquely defined by a pair
(mapTM ,mapLT ). We propose to use an integer-based encod-
ing. The first part, mapTM is encoded using |T | integers where
each integer corresponds with index i of multiplier Mi ∈M .
Similarly, the second part is encoded using |L| integers where
each integer determines index i of a tile Ti ∈ T that will
be used to compute the output of the corresponding layer.
Depending on the structure of the chosen HW accelerator,
additional restrictions may be applied. For the power-gated
architecture there are no additional requirements either on
mapTM or mapLT because only one tile is active at any
moment. The remaining tiles are suspended. On the other
hand, all |T | tiles are requested to have a workload in the
pipelined architecture. This requirement puts a constraint on
mapLT . If we divide the encoding into chunks consisting of
|T | integers, each chunk must encode a permutation of the
set {1, 2, . . . , |T |}. An example of AxNN encoding for both
architectures is given in Figure 6.

D. Design space exploration

All AxNNs that are generated by (mapTM ,mapLT ) pairs
give arise a large search space which is unfeasible to be
enumerated exhaustively. Suppose we have a typical NN which
consists of 50 layers and a library of 20 approximate multi-
pliers. Let |T | = 4, for example. Then there exists more than
1.2 ·1022 different AxNNs for pipelined architecture and more
than 2.0 · 1035 different AxNNs for power-gated architecture.
Hence, we propose to employ a heuristic algorithm for the
design space exploration. Because we are looking for AxNNs
optimized for two criteria (energy and accuracy), the multi-
objective genetic algorithm is naturally a method of the first
choice.

We are primarily interested in AxNNs belonging to a Pareto
set which contains the so-called nondominated solutions. The
dominance relation is defined as follows. Consider two AxNNs
N1 and N2. Network N1 dominates another network N2 if:



Fig. 6. Example of two encodings of different AxNNs for NN with |L| = 7
approximate convolution layers for (a) pipelined and (b) power-gated HW
accelerators, both with |T | = 3 tiles. For each AxNN, the corresponding
execution plan is shown. For better clarity, only the computation of the
convolution layers is depicted. The data dependencies are shown for the
first step using red arrows. Grey area in (b) indicates that the corresponding
tile is switched off. The white area indicates no workload due to pipeline
dependencies (a) or time required to switch the tile on (b). As shown, all tiles
are always (except of the last step) active in (a). In (b) the architecture allows
to reuse the same tile more than once (see the allocation of L6 and L7).

(1) N1 is no worse than N2 in all objectives, and (2) N1 is
strictly better than N2 in at least one objective. According
to the literature, the most powerful optimization method for
a small number of design objectives is a Non-dominated
Sorting Genetic Algorithm (NSGA-II) [22]. In each iteration,
NSGA-II maintains a population of candidate solutions Pt

of fixed size. The current population Pt is used to generate
a set of offspring Qt that are subsequently evaluated. All
Pt∪Qt individuals are then sorted according to the dominance
relation into multiple fronts (see Fig. 7). The first front F1

contains all non-dominated solutions along the Pareto front.
Each subsequent front (F2, F3, . . . ) is constructed similarly
but from individuals that are not included in the previous
fronts. The first fronts (F1 and F2 in Fig. 7) are copied to
the next population Pt+1. If any front must be split (F3 in
Fig. 7), a crowding distance (please see [22] for details) is
used for the selection of individuals that are copied to Pt+1.
The key advantage of this algorithm is that it re-constructs the
Pareto front in each iteration and tries to cover all possible
compromise solutions.

Fig. 7. Creating of a new population in NSGA-II algorithm [22]

To generate Qt offspring from Pt candidate solutions, we
propose to use uniform crossover operator followed by muta-
tion operator. The crossover randomly picks two individuals
(so called parents) from Pt and produces a single candidate
solution which combines information from both parents. In our

case, a new string of integers is produced where each integer
is chosen from either parent with equal probability. Then, with
small probability pmut one integer in the obtained candidate
solution is randomly changed respecting the constraints.

IV. EXPERIMENTAL SETUP

To evaluate ALWANN, we extended TensorFlow frame-
work to support approximate quantized layers. The tool
flow is shown in Figure 8. At the beginning, the common
QuantizedConv2D layers are replaced with newly intro-
duced AxConv2D layers. The remaining part follows the
scheme already described in Section III. For the evaluation,
ResNet networks (v1 with non-bottleneck blocks) [12] were
chosen and trained to recognize images from CIFAR-10
dataset. The reasons are threefold – we want to demonstrate
the scalability of ALWANN (ResNet consists of many layers
and multipliers), evaluate the quality drop of the obtained
AxNNs (ResNet offers a reasonable classification accuracy)
and finally, compare the parameters of AxNNs with various
ResNet instances because this NN can be naturally approxi-
mated by reducing the number of convolution layers. Three
ResNet instances with different number of layers were con-
structed and trained in 105 epochs. The resulting NNs were
frozen, quantized and convolutional layers were replaced by
approximate multipliers by means of transform graph tool.
Table I shows the number of convolutional layers, the number
of multiplications executed in these layers for inference of one
input image (32× 32 RGB pixels), the classification accuracy
of the floating-point NN and the accuracy after quantization.

TABLE I
PARAMETERS OF RESNET NNS CONSIDERED IN EXPERIMENTS

ResNet # conv. # accuracy accuracy
instance layers mults. (floating-point) (qint-8)

ResNet-8 7 21.1M 83.42% 83.26%
ResNet-14 13 35.3M 85.93% 85.55%
ResNet-50 49 120.3M 89.38% 89.15%

The library of approximate multipliers consists of all 36
eight-bit multipliers from the publicly available EvoApproxLib
library [23]. The energy of each multiplier was computed using
Synopsys DC and 45 nm fabrication technology with uniform
input distribution.

Fig. 8. Our toolflow for retraining-less approximation of ResNet neural
network.



The search is initialized with the population of |P0| = 36
different AxNNs with uniform architecture (each AxNN uses
exactly one of the 36 multipliers in all layers). In each itera-
tion, |Pi| = 50 best solutions are chosen and |Qi| = 50 new
candidate AxNNs are generated. The probability of mutation
is pmut = 10%. The experiments are run separately for power-
gated and pipelined HW architecture having 2 ≤ |T | ≤ 4 tiles
for AxResNet-8 (approximate implementation of ResNet-8)
and AxResNet-14, and 3 ≤ |T | ≤ 6 tiles for AxResNet-
50. The energy of candidate AxNNs was estimated as the
number of multiplications in the layer multiplied by the
average energy of multiplication in the layer. First 1, 000 out of
10, 000 validation images were used by the search algorithm
which was executed for 30 iterations. Finally, the inference
was executed for the full validation set. All the experiments
were performed on Intel E5-2630 CPU running at 2.20 GHz.
Training of the initial ResNet neural network took 48 hours
in the average.

V. RESULTS

A. Impact of weight tuning

First, we analyzed how MED of approximate multipliers
and accuracy of AxResNet-8 are influenced when we apply
the proposed weight mapping method on the value fed to
the second input of the multiplier. Figure 9 illustrates how
the output values and errors are changed (with respect to
the exact multiplication) after applying the mapping for two
chosen approx. multipliers. For mul8u 7C1, 39 weights are
changed by ±1 which reduced MED from 87.3 to 69.7 (-
20%). The MED of the multiplier mul8u L40 was improved
from 1011.3 to 647.7 (-36%). The computation of the optimal
mapping mapM takes around 0.10 seconds in the average.
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Fig. 9. Output values (1st and 3rd columns) and differences to accurate
multiplier (2nd and 4th columns) of approximate multiplier mul8u_7C1 (first
two columns) and mul8u_L40 before (upper row) and after (lower row)
applying weight-mapping to the weight. The red lines show the mapping
mapmul8u 7C1 = {0 → 0; . . . ; 7 → 8; 10 → 9; . . . ; 247 → 248} and
mapmul8u L40 = {0→ 0; . . . ; 7→ 8; 10→ 11; . . . ; 237−255→ 240}.

When the mapping is applied to various manually (algo-
rithmically) created configurations of AxResNet-8 (one layer
approximated and the rest remains accurate; one layer is accu-
rate and the rest is approximated; all layers are approximated;
the same approx. mult. used in all approx. layers), the average
improvement of the classification accuracy of 370 out of
510 AxNNs was 8.2%. In the remaining cases, the accuracy
dropped by 1.4% in the average. Considering all AxNNs, the
average change of the accuracy was +5.0%.
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Fig. 10. Comparison of AxResNet-8 approximate neural networks constructed
by means of proposed algorithm and NNs having a regular structure.

B. Quality of the generated AxNNs

Figure 10 shows the quality of AxNNs obtained using
ALWANN from the original ResNet-8. The results are com-
pared with three configurations of AxNNs mentioned in the
previous section. The proposed method delivers significantly
better AxNNs compared to the manually created AxNNs. The
uniform structure (all layers approximated) widely used in the
literature (see e.g., [6], [7]) achieves results comparable to
AxNNs with all but one approximated layers. In contrast to
that, AxNN with one approximate layer leads to significantly
worse results because of small energy saving. The proposed
method provides better trade-offs between the accuracy
and energy consumption in comparison with the uniform
NN architectures reported in the state-of-the-art works.
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Fig. 11. Evolution of candidate AxNNs (ResNet-8, pipelined arch., 4 tiles)
over generations (g). Red crosses show the initial (uniform) AxNNs.

Figure 12 illustrates the impact of the architectural con-
straints (pipelined or power-gated, the number of tiles) on the
quality of resulting AxNNs. In contrast to pipelined architec-
tures, the power-gated architectures allow us to construct more
energy-efficient AxNNs because there is no constraint on the
tiles load balance. For instance, there are 103× more possible
options for PG AxResNet-14 (1011× for AxResNet-51) with
|T | = 3 than for PL architectures. Similarly, increasing
the number of tiles leads to more options in selecting the
approximate multipliers and thus more effective solutions.
Figure 11 shows the evolution of candidate solutions for one
selected hardware configuration. The search converges towards
better solutions and the most important changes are introduced
in first iterations of the search algorithm.

We also analyzed the multipliers employed in the result-
ing AxNNs. We considered NNs having the classification
accuracy > 80% only. In AxResNet-50 and AxResNet-14
NNs, four approximate multipliers (mul8u 19DB, mul8u NGR,
mul8u 2HH, mul8u QJD) have appeared in 78% and 71% lay-
ers respectively. In AxResNet-8 more different approximate
multipliers have occurred; four the most frequent multipliers
(mul8u 185Q, mul8u 2AC, mul8u CK5, mul8u GS2) are employed in
64% of layers. These multipliers consume 52–90% of energy,
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Fig. 12. Accuracy and energy of the best AxNNs constructed for both acceleratos architectures — pipelined (PL) and power-gated (PG) with various tiles
count (|T |). The AxNNs are compared with the original accurate, but quantized NN (QNN).

MED after tuning is 0.015–0.9%, the error probability is
higher than 90% (except one multiplier in each set) and the
mean relative error varies from 0.5 to 4.5%. It is remarkable
that the worst-case error distance is 0.05–1.2% (0.5% in the
average) for the smallest network, but the larger network only
shows half error: 0.06–0.6% (0.29% in the average).

A bottleneck of the algorithm is the expensive simulation
of approximate multipliers on CPU. Although the multipli-
ers were cached, our single core application has 10x lower
performance than vectorized accurate multiplication. Table II
gives the time spent on a single CPU to evaluate (i.e., to
run the inference) of one and all AxNNs in the search and
validation parts and the total time to obtain one Pareto front of
AxNNs for the given configuration. Note that we run multiple
configurations on one multi-core CPU. Almost the whole
execution time is spent in the inference part; requirements
of the other procedures of the tool flow are negligible. The
slow inference can effectively be solved by using an approx-
imate reconfigurable accelerator. If we assume that such an
accelerator can accelerate the inference more than 1400x (4x
faster than GPU [24] which has 35x better performance that
our CPU employed in the experiments where we utilized only
one core out of 10), the approximation of ResNet-50 would
take 10 minutes only.

TABLE II
TIME REQUIREMENT FOR ALWANN ALGORITHM

AxNN Searching Validation Total
one eval. total one eval. total

AxResNet-8 25 sec 10.4 h 7.4 min 6.2 h 0.7 days
AxResNet-14 100 sec 41.7 h 14.5 min 12.1 h 2.3 days
AxResNet-50 322 sec 134.2 h 54.5 min 45.4 h 7.5 days

C. Overall results
Table III gives some parameters of the best AxNNs con-

structed using the proposed tool. The following parameters
are reported for each network: relative accuracy, total and
relative energy of convolutional operations. The relative values
are calculated with respect to the original quantized (8-bit)
ResNet. The quality of the obtained AxNNs for ResNet-50 is
very promising. If a target application is able to tolerate 1%
accuracy drop (from 89.15% to 88.1%), for example, we can
save more than 30% of energy. The evaluation across different
architectures shows that it is not advantageous to use AxNNs
having more than 4% (2% for AxResNet-14) degradation of
accuracy for AxResNet-50, because AxResNet-14 (AxResNet-
8) exhibit the same quality but lower energy.

TABLE III
PARAMETERS OF SELECTED AXNNS

AxNN Accuracy Relative accuracy Relative energy Total energy

A
xR

es
N

et
-5

0

89.15 % 100.00 % 100.00 % 120.27 M
89.30 % 100.17 % 83.29 % 100.17 M
89.08 % 99.92 % 78.47 % 94.37 M
88.69 % 99.48 % 77.97 % 93.77 M
88.58 % 99.36 % 70.02 % 84.21 M
88.10 % 98.82 % 69.12 % 83.13 M
87.77 % 98.45 % 67.36 % 81.02 M
85.00 % 95.34 % 57.74 % 69.45 M

A
xR

es
N

et
-1

4 85.55 % 100.00 % 100.00 % 35.33 M
85.87 % 100.37 % 80.32 % 28.38 M
85.42 % 99.85 % 74.34 % 26.27 M
84.77 % 99.09 % 70.85 % 25.04 M
83.82 % 97.98 % 64.64 % 22.84 M

A
xR

es
N

et
-8 83.26 % 100.00 % 100.00 % 21.18 M

83.16 % 99.88 % 84.31 % 17.86 M
81.79 % 98.23 % 70.23 % 14.87 M
79.11 % 95.02 % 59.95 % 12.70 M
75.71 % 90.93 % 56.04 % 11.87 M

Complete overview of the the best obtained AxNNs hav-
ing accuracy higher than 65% is provided in Figure 13. In
addition to the parameters of the AxNNs for three ResNet
architectures discussed so far, we included also the parameters
of all possible ResNet architectures up to 62 layers (see the
dots), namely ResNet-20, -44, -56 and -62, that have been
trained in the same way as the remaining ResNet NNs. These
NNs have been obtained by reducing the number of layers
by multiples of six, i.e., at block boundaries. In total, 7
different ResNet architectures are included. As evident, our
method is able to produce significantly more design points;
more than 40 points are produced from a single ResNet.
Moreover, majority of the design points are unreachable by
simple reduction of the number of layers (see the blue crosses
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Fig. 13. Comparison of proposed AxNNs (crosses) with accurate quantized
NNs (points) — the energy reports the energy of multiplications in the convo-
lutional layers while Em is energy of one multiplication. Gray points represent
quantized networks that were not approximated (complexity reduction).



TABLE IV
COMPARISON OF AUTOMATED NN APPROXIMATION METHODS:

ARCHITECTURAL PARAMETERS, ENERGY AND ACCURACY REDUCTION
REPORTED ON CIFAR-10

Approach Retrain. / Unif. / Depth Energy / Accuracy

Venkataramani [4] yes / no / low -22% / -0.5%
-26% / -2.5%

Sarwar [7] yes / yes / high -33% / -1.8%

-12% / -1.2% 50→44

He [12] yes / yes / high -71% / -4.0% 50→14

-48% / -2.7% 14→8

-30% / -0.6% AxRN-50
This paper no / no / high -30% / -0.9% AxRN-14

-30% / -1.7% AxRN-8

vs. dot symbols). Considering the computational complexity,
each ResNet instance must be trained separately. For complex
structures, training of a new structure can took several days
or weeks on computer clusters.

D. Comparison with SoA

Table IV compares the proposed approach with the state
of the art approaches for reducing the energy of NNs that
have been evaluated on CIFAR-10 dataset. Table IV in-
cludes reported energy reduction and accuracy degradation.
The requirement for retraining, uniformity of the architecture
and complexity of NN are also provided. In contrast with
multiplier-less multiplication where only 4 different architec-
tures were proposed [7], our approach allows to find a new
design points with high granularity without retraining. Besides
that, our approach enabled us to find AxNNs with low energy
exhibiting low accuracy, e.g., <80%. Even these solutions can
be beneficial, for example as one of initial stages of some
Progressive Chain Classifier [15].

In [6], where arbitrary approximate multiplier could be
employed, there were 10 retraining steps taken to improve
quality of LeNet-6 (∼278k mults.). Since ResNet-8 network is
75x larger, we can assume, that evaluation of one AxNN would
take 15 days instead of 25 seconds needed in ALWANN.
The ResNet-50 network (431x larger) would be evaluated in
89 days instead of 322 seconds. During the search, we had
to evaluate 1,500 candidate solutions. It is clear, that it is
unfeasible to perform retraining for large AxNNs employing
arbitrary approximate multipliers.

VI. CONCLUSION

The proposed methodology ALWANN allows us to approx-
imate hardware accelerators of convolutional neural networks
and thus optimize the energy consumption of the inference
path of DNNs. We achieved better energy savings with the
same accuracy as the other algorithms that employ retrain-
ing. The retraining typically results in (i) approximation of
significantly smaller networks (limited scalability) [5], [6], or
(ii) limited set of considered approximate components [7]. The
proposed fast weight-mapping algorithm allows us to adapt the
network to the approximation errors without any processing of
the input data. The proposed methodology can enable us in the

future to improve the energy efficiency of DNN hardware in
real-time.
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