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| Motivation
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| Testing of face biometric algorithms 1.

e Face detection algorithms

e Parametric shape models (e.g. AAM, holistic model)

e Non-parametric shape models (e.g. deep learning)

e Face recognition algorithms U
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| Testing of face biometric algorithms Il.

e Qur own databases
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e Available datasets
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| Testing of face biometric algorithms 1.

e 3D = 2D generator — SYDAGenerator |

Pitch

e Position
* Orientation (RYP) &

e |llumination

e Resolution
e Background
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| 3D face acquisition

e 3D cameras

e Mobile phone / tablet
and photogrammetry
software

e U-ramp or unique device
for police capturing of

suspect people (patent
submission running)
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| Enhancement of low-resolution images |.
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| Enhancement of low-resolution images 1.
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We use pre-trained and modified face detection algorithms
in combination with correlation methods (general head

profile search) & S E

We use our own algorithm for head position |
(RYP) estimation — approx. 72 % reliability

We use professional face comparison
algorithms (e.g. MegaMatcher from Neuro-
technology) for frontal face images

We are working on an algorithm for non-frontal image
comparison, based on 2D and 3D data (shape similarity
comparison and correlation based methods)

Results not available in any form for publishing, the most
data from police are confidential
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| Race, gender, age and mood estimation I FIT)

e Keras and Tensorflow (generally deep learning frameworks)

e The pre-trained models are based on available datasets
which are often not annotated (possible mistakes)

e Age categorization into 8 groups (0-2; 4—6; 8-13; 15-20; 25—
32; 38-43; 48-53; 60+)

Input Fear Anger Disgust  Happy Sad Surprise Contempt

Age Morphing Gender Morphing

Race Morphing
https://www.computer.org/csdl/journal/tp/2014/12/06810000/13rRUwWfZC1F
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| Lost children/person search using 3D model
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Thank you for your attention !




