
Big Data Network Flow Processing Using Apache Spark
Kamil Jeřábek and Ondřej Ryšavý

{ijerabek,rysavy}@fit.vutbr.cz
Brno University of Technology

Brno, Czech Republic

ABSTRACT
The increasing amount of traffic flows captured as a part of net-
work monitoring activities makes the analysis more complicated.
One of the goals for network traffic analysis is to identify mali-
cious communication. In the paper, we present a new system for
big data network flow classification and clustering. The proposed
system is based on the popular big data engines such as Apache
Spark and Apache Ignite. The conducted experiments demonstrate
the feasibility of the proposed approach and show the possible
scalability.

KEYWORDS
Big Data, Network flows, Apache Spark, Cassandra, Apache Ignite

ACM Reference Format:
Kamil Jeřábek and Ondřej Ryšavý. 2018. Big Data Network Flow Processing
Using Apache Spark. In Proceedings of Engineering Computer-based Systems
(Submitted to ECBS’19). ACM, New York, NY, USA, 9 pages. https://doi.org/
00.0000/0000000.0000000

1 INTRODUCTION
Network monitoring is an essential part of a comprehensive se-
curity solution for existing data communications infrastructure.
The devices collect various telemetry data that needs to be further
processed. One of the frequently used representation is Netflow,
which provides sufficiently detailed information about network
traffic and is relatively economical in storage capacity. However,
in some cases, it is required to store complete network communi-
cations in the form of packets captured. This is especially useful
in situations where the identified threat needs to be thoroughly
analyzed. The amount of packets captured is huge for today’s net-
working technologies, bringing many complications. In addition to
storage requirements, sufficient power is required to process stored
data.

Operators capture and analyze network traffic for several reasons,
including security threat identification, network troubleshooting,
performance optimization, and so on. Capturing network traffic is
usually more complex than obtaining other forms of digital data.
Network data is only available on a network device for a limited

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Submitted to ECBS’19, Sep 2-3, 2019, Bucharest, RO
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 000-0-0000-0000-0/00/00.
https://doi.org/00.0000/0000000.0000000

time. An inappropriate collection method may result in data corrup-
tion or incomplete capture. Messages exchanged between applica-
tions are divided into segments. It is important to collect all relevant
segments and combine them again into data flows. When collecting
data on shared lines, there may be a huge amount of traffic from
which only a fraction is relevant for analysis. In addition, many
different protocols are used that require the use of appropriate
decoding algorithms. Network packet analysis is therefore a com-
putationally challenging task. Data capture is often implemented
using special hardware. The processing of captured data is the task
of various software tools.

Apache Spark [17] is an open source computing framework that
offers a simple programming model suitable especially for batch
processing of data flows. The key concept is to provide abstrac-
tion for data sharing represented by Resilient Distributed Datasets
(RDD). Spark application performance is achieved by composing op-
erations into a workflow that allows for parallel data processing and
preserving data in memory whenever possible. Transformations
process the data represented by RDD. All operations on the RDD
are lazy. This allows Spark to analyze the entire graph representing
the process pipeline and generate an effective execution plan. RDD
can also be shared between calculations that provide significant
acceleration. Apache Spark is complemented with several useful
libraries, for instance, MLlib is machine learning library.

In this paper we deal with a system for processing large amounts
of network communication data with the possibility of interactive
querying. The system is focused on processing packets stored in
pcap files, creating network flows and extracting relevant infor-
mation from network IP flows. The main result of this work is a
demonstration of the ability to process packet files using Apache
Spark in combination with other technologies such as HDFS and
Cassandra. Apache Spark seems to be a suitable platform for pro-
cessing packet files. Each packet is a record that can be decoded
independently of each other, and thus parallel processing can be
used. Packets aggregate into streams based on a key calculated from
several fields in the packet header. For each flow, additional infor-
mation is usually extracted for further analysis, for example, the
smallest, largest, or average packet size. The analysis then consists
in searching for flows according to given criteria. Furthermore, it
is possible to use machine learning to classify individual flows.

The paper is organized as follows. Section 2 provides an overview
of related work. Section 3 introduces the system architecture and
provides selected details about the computing cluster and process-
ing pipeline settings. Section 4 describes the proposed experiments,
the method of evaluation and the measured values. The last section
discusses work results and identifies future research directions.

https://doi.org/00.0000/0000000.0000000
https://doi.org/00.0000/0000000.0000000
https://doi.org/00.0000/0000000.0000000


Submitted to ECBS’19, Sep 2-3, 2019, Bucharest, RO Kamil Jeřábek and Ondřej Ryšavý

2 RELATEDWORK
Network traffic analysis methods were implemented in a variety
of network security tools. General purpose tools include network
analyzers (Wireshark, TCP dump), IDS systems (Snort, Bro), finger-
printing tools (Nmap, p0f), and enterprise security analytics plat-
forms (IBM Security Intelligence1, RSA Security Analytics2 or Lo-
gRhythm’s Security Analytics 3). Traditional tools are implemented
for a conventional single machine computing architecture. Recent
systems employ cloud or cluster-based technology to cope with a
large amount of ingested data. Community projects Apache Metron
[2] and Apache Spot [3] aim at the development of an industrial-
strength solution for a complex network monitoring and security
analytics. They are both implemented as distributed frameworks
though using different technology. They can be used for security
analysis of IT threats. They process a variety of data sources, e.g.,
firewall and application logs, emails, intrusion-detection reports,
etc.

The need for big data analysis to security monitoring and threat
detection was identified about a decade ago. Promises and chal-
lenges of applications of big data analysis to security domain were
discussed since then [7]. Among other frameworks, the special
attention was focused on the use of Map-Reduce approach and in
particular, the Apache Spark platform. In the rest of this section,
we overview the works closest to our contribution.

Lee and Lee [12] presented a Hadoop-based traffic monitoring
system that performs IP, TCP, HTTP, and NetFlow analysis of multi-
terabytes of traffic achieving a throughput of up to 14 Gbps. In their
work [11], Kadam and Dhore also present a Hadoop-based traffic
monitoring system that performs multiple types of analysis on a
huge amount of Internet traffic in a scalable manner. Zhou et al.
[19] identified basic tasks of exploratory analysis process of Net-
Flow dataset and describe the possible realization in the Hadoop
framework. They also characterize the performance of the imple-
mented process in two commonly used Hadoop deployments. To
analyze the network traffic as big data, a scalable internet traffic
analysis system was presented in [13]. It was shown that the system
is capable of processing multi-terabytes packet dump files utilizing
Apache Spark for data processing. ENTRADA is a distributed sys-
tem that enables to store and interactively analyze network traffic
data [16]. It was demonstrated for analysis of DNS traffic being able
to process more than 100 TB of pcap files. SystemHobbits, a Hadoop
and Hive based traffic analysis tool for Internet Protocol (IP) and
Transport Control Protocol (TCP) analysis of large-sized Internet
traffic is presented in [10]. The system enables large-scale Inter-
net traffic analysis on original libpcap files without preprocessing.
The Hive-based interface simplifies writing analytical procedures.
Recently, a new framework called hcap for analyzing PCAPs on
Hadoop was presented [15]. Hcap aims to improve the performance
of the experimental hadoop-pcap library developed by RIPE-NCC.
In the study, the proposed framework was evaluated in terms of
preprocessing, data retention, and query response time.

1http://www-03.ibm.com/security/solution/intelligence-big-data/
2http://www.emc.com/collateral/data-sheet/security-analytics-overview-ds.pdf.
3https://logrhythm.com/solutions/security/security-analytics/

3 SYSTEM ARCHITECTURE
Our proposed system for classification utilizes one of the most
popular framework for big data processing – Apache Spark, which
extends the Map-Reduce model to support more computations
efficiently. Each Apache Spark application contains a driver process
that and one or more executor processes. The driver process is
primarily responsible for analyzing, distributing and scheduling
work across the executors. The executor is a processing unit that is
responsible for executing a task that the driver assigned to it and
reporting the state back to the driver. Apache Spark differentiates
two main node types, namely, the master node, and the worker
node. The worker nodes run at least one executor process.

The Apache Spark system provides low-level APIs and structured
APIs. The low-level APIs are represented by the data structure RDD
(Resilient Distributed Dataset). It is a base for storing data objects.
The structured APIs are represented by the Data Frame that is just
merely a table of rows with a specified schema. The data structures
are immutable. There are defined operations on the data structures
called transformations and actions. The transformations are abstract
operations among the structures that are subject to lazy evaluation.
Apache Spark builds a plan and it does not do any transformation
operation until action is triggered on the data structure. One of
such actions is count operation.

Apache Spark breaks data into chunks called partitions. Partition
is a collection of objects or rows depending on if we work with
RDDs or Data Frames. Partitions are distributed across the cluster
during the execution, and they are a subject to parallelism in Spark.
The operations on each partition are run in parallel if there are
enough cores. Nevertheless, if there is only one partition than Spark
have a parallelism of only one. The Apache Spark core is written in
Scala programming language, but we can write applications in other
programming languages such as Java, Python or R. It also provides
an opportunity to write SQL queries that are highly optimized [9].

The database for storing result data could be Apache Cassandra
or Apache Ignite that provides the key-value based data storage. The
Apache Cassandra database [1] is big data NoSQL distributed and
decentralized storage. It is highly available and scales horizontally.
It provides fault tolerance with the tunable consistency [8]. Apache
Cassandra is often used as data storage for big data solutions in
combination with Apache Spark.

Combining those technologieswe can create a processing pipeline
for the purpose of packet trace analysis. The design of the system
consists of two parts: (i) packet capture processing component (see
Figure 1) that decodes source packets and combines to network
flows and (ii) network flow analysis component (see Figure 2) that
performs firther analysis of identified conversations. divided into
two parts.

The input data are stored in multiple pcap files on a Hadoop
based distributed file system; in our case we use HDFS. The files are
loaded into Apache Spark, and the first step is to parse raw frames
into packets and group them to form network flows. In the next
step, we compute and extract the statistical features for each flow.
Result gives us a feature vector that can be stored in the database for
future processing. Also, it is possible to perform immediate queries
accessing data still available in the memory.



Big Data Network Flow Processing Using Apache Spark Submitted to ECBS’19, Sep 2-3, 2019, Bucharest, RO

Figure 1: First (current) part of the system.

In this paper, we primarily focus on the first part demonstrating
the capabilities of Apache Spark in network traffic processing. How-
ever, our goal is to implement the advanced traffic analysis system,
which will be mainly realized by the second part. The interface
between these two parts is represented by the distributed database
that contains the flows with extracted statistical features. In the
analysis, machine learning algorithms for flow classification and
clustering will be employed. At first, we will train a classification
model that will be able to distinguish malicious flows from nor-
mal flows. The malicious flows will be then clustered into different
groups based on the application protocol or by the type of attack.

To extend the functionality of the system, we will use Apache Ig-
nite [4]. The Apache Ignite provides multiple types of functionality.
It is a scalable and fault-tolerant solution that can grow horizon-
tally by adding new nodes. The Ignite can persist cache entries in
RDBMS, and it also supports NoSQL like Cassandra or MongoDB.

Figure 2: Second (future) part of the system.

The framework also provides Cache-as-a-Service for databases. One
of the other features is that it can serve as an accelerator for Hadoop,
and it also can share states in-memory across Spark jobs that is
by default not possible in Spark. Moreover, Apache Ignite can do
distributed computing and processing of never-ending streams of
data. Machine learning library is included in this framework and
provides a variety of configurable machine learning algorithms [18].
The Apache Ignite engine will serve as another framework in our
system.

3.1 Cluster Setup
The design of the cluster is based on the Docker [5] container archi-
tecture. Docker containers were chosen according to the simplicity
of deployment and environment isolation. The containers consume
minimal staging and system sources. The docker containers also en-
able us to switch between different versions of the used frameworks.
The platform utilized in experiments was Supermicro SuperTwin2
6026TT-TF server equipped with eight Intel (R) Xeon E5520 @ 2.26
GHz. The cluster consists of 4 nodes. Three nodes equipped with
the 48 GB RAM and 16 CPU cores. One node equipped with the 23
GB RAM and 16 CPU cores. All nodes have installed 1 TB SSD disks
that serve as a data storage for HDFS and Cassandra. We decided
to use Docker Swarm for cluster management. The Docker Swarm
is proprietary cluster manager for Docker. It is easy to set up and
merely tunable solution.

Figure 3: Docker cluster setup.

The spread of the images follows Figure 3. Each logical part of the
different framework has its container. The Spark Worker container
shares the same nodes with HDFS data node and a Cassandra node,
to provide a closer connection between the processing unit and the
data. This setup is set for three corresponding nodes. The last node
is equipped with HDFS Namenode, Spark Master, Spark Submit
container and Traefik container. The Spark Submit has its container
from which the application is started. Spark application can be
run in two modes, the client mode and cluster mode. In the client
mode, the Spark driver resides in the container from which the
application is started. The cluster mode runs the driver in one of the
worker nodes. Choice of the modes should primarily depend on the
distance of the spark submit from the cluster as the communication
between the driver and the executors should be a bottleneck. We are
running spark application in the client mode as the spark submit
container resides on the same cluster. The Traefik [6] is a reverse
proxy and load-balancer for the services running on the cluster. For



Submitted to ECBS’19, Sep 2-3, 2019, Bucharest, RO Kamil Jeřábek and Ondřej Ryšavý

experiments where we do the only query among extracted features,
the Cassandra containers are not deployed.

3.2 Processing Pipeline
The task that we are dealing with this paper is to process network
flows and get statistical features for further processing by the sys-
tem. The data (captured network traffic) are stored in a distributed
file system HDFS/IGFS. As the first step, we have to load files, ex-
tract raw frames (byte objects). The raw frames are then parsed and
transformed into packets. The packets contain the parsed network
and transport layer headers data together with other additional
information. We use spark-ndx, the part of the processing platform
presented in [14]. The spark-ndx module also provides a library
functions for reading pcap files from the HDFS. For packet parsing,
there are generated classes using Google Protocol Buffers. The only
relevant features are extracted from the parsed packets into POJO
class. Not relevant frames are filtered and deleted from the data set.
The input data may contain frames that do not carry IP data. We
are not interested in those.

The object containing packet information is aggregated into
bi-directional flows. The statistical features are computed on the
aggregated flows. The statistical features are then uploaded into
the Cassandra database.

Figure 4: Directed Acyclic Graph generated by Spark.

The task was divided by Spark into two separated processing
parts as it is depicted in Figure 4. The first part loads and works with
data in a practical fashion way as with RDD. The second part work
with data in the relational way hence the more suitable structure for
processing is Data Frame. The second part is primarily transformed
using Spark SQL.

4 EXPERIMENTS AND EVALUATION
This section describes experiments, measurement results and de-
tailed analysis of the system performance on specified tasks. The
tasks are of different level of complexity that begins from the most
basic to more complex. While solving problems and running exper-
iments we found some bottlenecks and places where the optimiza-
tion should be useful. The Spark generates directed oriented graph
with a sequence of operations divided into stages. The final DAG
generated for our task is described in the previous section.

Main features that can utilize the Spark job and that we were
utilizing are the usage of different programming languages, trans-
formations on the data, cache, the number of partitions, a spread
of workload between the different setup of executioners and cores.

The programming language we are using is Java. The differ-
ent transformations such as map, flatmap, mapPartitions can
lead to slower computation. The best results were obtained with
mapPartitions that work with the data in a partition directly. Dur-
ing this step, the data are also filtered, so nomore filtering afterward
is needed.

Another feature is the cache. We are using SQL query among the
packet attributes stored in Data Frame. There is a join in the SQL
query that joins two different views on the same data inData Frames.
Even it is the same set of data on which the views are computed, the
Spark generates two same stages as stage 0 for reading and parsing
the pcap files from HDFS. Another key is the distribution of packet
objects between the partitions. To prevent the data to be distributed
on demand during the computation, we prevent that behavior by
using a SQL query to distribute the packet rows by flowKey. The
flowKey is an identifier that uniquely identifies all packets within
the same bi-directional flow. The necessary data are redistributed.
At this moment, the data can be cached. We used a native Spark
cache that should keep the cached data in-memory. Alternatively, it
should be cached on disk, HDFS or other third party cache solution.
Among the cached data, we can do Spark queries effectively.

The partitions are directly related to the parallelism in Spark.
Hence, their utilization can influence the computation efficiency of
the job in different environments. The two parameters spark.de-
fault.parallelism together with spark.sql.shuffle.parti-
tions can tune default parallelism in spark. The first one applies
to RDD default partitioning. The second to inter Data Frame par-
titioning when using SQL, which is our case. The recommended
values are 1-3 times the total number of cores, while the default
Spark value is 200. For our query testing, we used the default value
of 200.

The testing set of pcap files counts 231 files with 125000 frames
each. The pcap files contain 27369774 packets collected from the
honey-pot. The size of those files is 10GB. Many of the flows con-
tain packets with no payload, which corresponds to some types of
attacks. Hence the size variation of the files is significant. None of



Big Data Network Flow Processing Using Apache Spark Submitted to ECBS’19, Sep 2-3, 2019, Bucharest, RO

the files is bigger than 128 MB which is the default block size used
in HDFS.

Time [s] Description
25.392 Read from HDFS + parse packet

+ create pojo object + transform to DF.
19.112 Read from HDFS + parse packet

+ create pojo object.
14.921 Read from HDFS + parse packet.
3.242 Read from HDFS.

Table 1: Stage 0 analysis.

We also tested files of 100 MB size with a different number of
frames. The results for stage 0 (covers reading files from HDFS
and parsing packets) were worse than with the files divided by

(a) Stage 0 (b) Stage 1

(c) Both stages

Figure 5: Measurement of multiple feature extraction from
flows of both stage 0 and stage 1 with different core utiliza-
tion.

the specified number of frames. To investigate this behavior, we
analyzed stage 0 in more detail.

The possible explanation of this behavior is that the bottleneck
in stage 0 (file processing) is packet parsing according to Table 1.
The results were measured using the count action on the different
parts of the stage; the number of executors was 6 with 36 number
of cores. The tested data were replicated to all data nodes. The
more packets are in the file, the longer time the parsing consumes.
The parsing should be simplified. The spark-ndx parser parses
frames up to the application layer. Parsing everything up to the
application layer would not be necessary for us in future processing.
However, as we are in the experimentation phase, we do not know
precisely what features will be useful. For now, we can extract more
information from packets if needed. However, this will be the place
for improvement.

The significant impact on the computation time of the task has
the setup of executors, cores and their numbers. The spread of the
docker containers for each node is provided in Figure 3. We use
those three fully equipped nodes for Spark workers, Cassandra and
HDFS data nodes. The third node is dedicated for Spark master,
HDFS name node, Traefik reverse proxy and Spark submit container.
All jobs were submitted in client mode. The Spark submit container
served as the driver for Spark.

Figure 5a shows the impact of the cores, its division between
executioners on the processing time of described stage 0. The mea-
surement starts with executioners that have only one core. The
graph points to the fact that with more cores we get better results
for reading and processing the data from HDFS. We can observe the
different processing speed on the same amount of data for the differ-
ent setup of executioners and cores assigned to them. As the stage
0 covers reading and parsing the frames from HDFS, we can see
that with all cores involved in Spark job there is still performance
improvement.

Name Description
proto Protocol
srcp Source port
dstp Destination port

packets Number of packets in flow
size Size of all packets in flow

paysize Total size of payload in all packets in flow
duration Flow duration
nopay Number of packets without payload
avgps Average packet size
minps Minimal packet size
maxps Maximal packet size
stddps Standard deviation of packet size

avgpays Average payload size
minpays Minimal payload size
maxpays Maximal payload size
stddpays Standard deviation of payload size
Table 2: Flow feature names and descriptions.

Figure 5b depicts the impact of the cores and its division between
executioners on the processing time of the described stage 1. The



Submitted to ECBS’19, Sep 2-3, 2019, Bucharest, RO Kamil Jeřábek and Ondřej Ryšavý

results were measured after stage 0 completion. In this stage, we
can see how well the application produces the output of the query.
The features extracted from the flows are described in Table 2.

(a) Stage 0 (b) Stage 1

(c) Both stages

Figure 6: Processing performance of query among multiple
feature extraction, both stage 0 and stage 1 with different
core utilization.

The whole job measurement for this task, the stage 0 together
with stage 1 are depicted in Figure 5c. We can see that the system
scale is nearly linear, except for the anomaly using only three
executioners. The fastest processing speed of the whole job working
on 10GB data with setup of 6 executioners eight cores each was
30.55 seconds.

As another task, we consider one more Spark query above the
previous one that selects only those flows that have content of
zero length. Task measurement is depicted in Figure 6. The Spark
optimizes those queries; hence there is no significant change in
processing time. The fastest processing speed of the whole job
working with 10GB data with setup of 6 executioners eight cores
each was 31.33 seconds.

Fast information extraction of the flows data is the first part
of our testing. This resulting data are provided to us once it is
processed. One further task is also to save those processed data
into persistent storage. It will enable us to perform queries later
without processing again. For this task, we have chosen Cassandra
distributed database. In this measurement, we perform a query for
extracting the flow features as in the first measurement. In advance,
when the data are processed, they are sent into Cassandra database.
The Cassandra is run in a separated container on each worker node
besides Spark Worker and HDFS Datanode.

Figure 7: Cassandra table schema.

The design of the Cassandra table schema was tuned based on
the flow features data extracted by the Spark job. The optimization
regarding partitioning and clustering keys were done. The scheme
is depicted in Figure 7.

The scheme had a significant impact on the speed of writes into
the database. The biggest bottleneck is the write to the database.
Multiple parameters can tune the speed of the connector.

Another point is that the write using the connector is blocking
operation. The Data-Stax connector for Cassandra is used. The
results were produced with the default setting values for the con-
nector. We observe that using the maximum number of cores can
lead to slow down the computation time than with fewer cores.
The slower computation time should be caused by involving the
Cassandra database into receiving and storing the data. Hence in
this setup should be better to use fewer cores.

The final result of the measurements put the stage 0 and stage 1
together to a single job, and it is depicted in Figure 8. The graph
correlates the previous deduction with the impact of the maximum
number of cores for the task. The best speed for this task was 74.22
seconds for 45 cores and nine executors (5 cores per executor).
However, in Figure 8a we see the change in case of usage 36 cores,
where the performance is the best for most of the executioners. The



Big Data Network Flow Processing Using Apache Spark Submitted to ECBS’19, Sep 2-3, 2019, Bucharest, RO

(a) Stage 0 (b) Stage 1

(c) Both stages

Figure 8: Processing performance of feature extraction with
storing data into Cassandra, both stage 0 and stage 1 with
different core utilization.

usage of more executioners decreases performance. It is caused by
Cassandra database residing on the same nodes and cores.

All of the previous measurements provided were tested on 10GB
file sizes. We want to test and provide a measurement that shows
how the system scales with the processing of different data amount.
We have chosen the same dataset for this test. The measurements
start on 2GB of data and increases every time by 2GB up to 50GB.
The dataset was divided into files that contained exactly 125, 000
frames each. The size of every file was less than 128MB which is
the default block size used in HDFS. The same query as in the first
measurement was used. As the setup for this test, we chosen 36
cores divided into six executioners (6 cores each). This setup was
chosen because of the previous measurement with storing data into
Cassandra database. We expect this setup for further usage together
with this persistent storage.

The results are depicted in the set of Figures 9. We can consider
that the system scales linearly with an increasing amount of data.

(a) Stage 0 (b) Stage 1

(c) Both stages

Figure 9: Processing performance of different file sizes, both
stage 0 and stage 1 with different core utilization.

Nevertheless, we are limited by the maximum amount of memory
used on the nodes. The Spark carries everything in-memory, to be
able to process the more massive amount of data the system has to
be extended with more RAM.

The Table 3 shows concrete values from the measurements. We
have chosen two setups to compare, the first one with 45 cores
and nine executioners is the fastest in summary. The second one
is the fastest in respect to stage 1 (data querying) and most stable
regarding the deviation of the measurements. Each measurement
was run five times, and the result is the average of the measured
values.

From the results, we can observe that using the setup with more
cores we can read and parse the data in higher speed, but the query-
ing is slower than with fewer cores in a different setup. Even in
more complicated tasks like more queries among the data we can
see significant speed improvement with fewer cores setup than
with more cores. The processing speed of both stages have closer



Submitted to ECBS’19, Sep 2-3, 2019, Bucharest, RO Kamil Jeřábek and Ondřej Ryšavý

Stage Setup Time [s] Throughput [Gbs]
Multiple features measurement

0 45 cores 9 exec 21.80 3.67
0 36 cores 6 exec 23.76 3.37
1 45 cores 9 exec 10.75 7.44
1 36 cores 6 exec 10.11 7.91

both 45 cores 9 exec 32.55 2.46
both 36 cores 6 exec 33.87 2.36
Query among the multiple features measurement
0 45 cores 9 exec 22.00 3.64
0 36 cores 6 exec 24.22 3.30
1 45 cores 9 exec 9.95 8.04
1 36 cores 6 exec 8.80 9.09

both 45 cores 9 exec 31.94 2.50
both 36 cores 6 exec 33.03 2.42

Cassandra storing measurement
0 45 cores 9 exec 25.39 3.15
0 36 cores 6 exec 26.54 3.01
1 45 cores 9 exec 48.83 1.64
1 36 cores 6 exec 48.73 1.64

both 45 cores 9 exec 74.22 1.08
both 36 cores 6 exec 75.27 1.06

Table 3: Best results of themeasurements with 10GB of data.

measurement time values with these more complex tasks, and re-
sults are more stable. Hence we decided to use 36 core setup with
six executioners for further processing.

The processing throughput of the whole system for multiple
feature extraction is 2.46 Gbs. The task with one query in advance
is 2.50 Gbs; the speed improvement is caused by query optimization
in Spark. The throughput of the last task with the Cassandra data-
base reaches only 1.08 Gbs in the best case with default Cassandra
connector setup.

5 CONCLUSION
A system for processing a large amount of captured network traffic
was presented in this paper. The system is divided into two logical
parts. The first part focuses on the feature extraction from the
aggregated packets from network flows. The input to this part
is pcap files, with the captured network traffic. The second part
is intended to take the extracted flow features and classify them
to decide whether the flow is malicious or normal. The Apache
Cassandra is chosen as the persistent storage for flow features.
This storage provides us an ability to use a different framework for
classification (Spark or Ignite).

The presented design relies on existing big data technologies. We
run the whole cluster on the docker container setup. This solution
has valuable benefits such as environment isolation, the simplicity
of deployment, and fast switching between different versions of
frameworks. The presented experiments identified a bottleneck
mainly in packet parsing algorithms that can be improved in the
future. The task was optimized, and the cluster resources were
utilized so that we were able to process multiple feature extraction
on 10 GB of pcap files (27369774 packets) in 32.55 seconds using 45

cores on nine executors (5 cores per executor). In advance, the sys-
tem was able to extract multiple features from the same amount of
data and store them into the Cassandra database in 74, 219 seconds
using the same amount of cores and executors. The system in this
setup of 3 nodes where workers reside on and one dedicated node
for spark driver etc. was able to process 2.46 Gbs for the extraction
case and 1.08 Gbs for Cassandra case.

There were some problems during the configuration of Ignite on
docker, so it was decided to optimize the solution in Spark together
with Cassandra primarily. The speed of the HDFS is fine and the
HDFS processed do not consume many resources when reading
the data, in case of IGFS it can be worse because it consumes more
RAM, which can interfere with data processing in Spark. On the
other hand, it would be a better solution to use Apache Ignite
instead of Cassandra as persistent storage. Apache Ignite is faster
for writing the data which is the current bottleneck of the first
stage. For future work, we plan to complete the implementation
of the second part, which aims at malicious flow classification and
clustering. Network traffic classification based on statistical features
computed for network flows was demonstrated to be promising for
malicious traffic identification and classification.

ACKNOWLEDGMENTS
This work was supported by Ministry of Education, Youth and
Sports of the Czech Republic from the National Programme of
Sustainability (NPU II) project IT4Innovations excellence in science
LQ1602; Ministry of Interior of the Czech Republic project Inte-
grated platform for analysis of digital data from security incidents
VI20172020062; and by BUT internal project ICT tools, methods and
technologies for smart cities FIT-S-17-3964.

REFERENCES
[1] 2016. Apache Cassandra. https://cassandra.apache.org/
[2] 2016. Apache Metron: Real-Time Big Data Security. https://metron.incubator.

apache.org/
[3] 2016. Apache Spot (incubating): A Community Approach to Fighting Cyber

Threats. https://spot.incubator.apache.org/
[4] 2018. Apache Ignite. https://ignite.apache.org/
[5] 2018. Docker. https://www.docker.com/
[6] 2018. Traefik. https://traefik.io/
[7] Alvaro a. Cardenas, Pratyusa K. Manadhata, and Sreeranga P. Rajan. 2013. Big

Data Analytics for Security. IEEE Security & Privacy (2013). https://doi.org/10.
1109/MSP.2013.138

[8] Jeff Carpenter and Eben Hewitt. 2016. Cassandra: The Definitive Guide: Distributed
Data at Web Scale. " O’Reilly Media, Inc.".

[9] Bill Chambers and Matei Zaharia. 2018. Spark: the definitive guide: big data
processing made simple. " O’Reilly Media, Inc.".

[10] Abdeltawab M. Hendawi, Fatemah Alali, Xiaoyu Wang, Yunfei Guan, Tianshu
Zhou, Xiao Liu, Nada Basit, and John A. Stankovic. 2016. Hobbits: Hadoop and
Hive based Internet traffic analysis. In 2016 IEEE International Conference on
Big Data, Big Data 2016. IEEE, 2590–2599. https://doi.org/10.1109/BigData.2016.
7840901

[11] Yogesh V Kadam and Prof Vaibhav Dhore. 2013. A Study on Scalable Internet Traf-
fic Measurement and Analysis with Hadoop. International Journal Of Engineering
And Computer Science (2013).

[12] Youngseok Yeonhee Lee and Youngseok Yeonhee Lee. 2013. Toward Scalable
Internet Traffic Measurement and Analysis with Hadoop. ACM SIGCOMM Com-
puter Communication Review 43, 1 (jan 2013), 5. https://doi.org/10.1145/2427036.
2427038

[13] Alexey Lukashin, Leonid Laboshin, Vladimir Zaborovsky, and Vladimir Mulukha.
2014. Distributed Packet Trace Processing Method for Information Security Analysis.
Springer International Publishing, Cham, 535–543. https://doi.org/10.1007/
978-3-319-10353-2_49

[14] Marek Rychlý andOndřej Ryšavý. 2018. Big Data Security Analysis with TARZAN
Platform. Journal of Cyber Security and Mobility 8, 2 (2018), 165–188. https:

https://cassandra.apache.org/
https://metron.incubator.apache.org/
https://metron.incubator.apache.org/
https://spot.incubator.apache.org/
https://ignite.apache.org/
https://www.docker.com/
https://traefik.io/
https://doi.org/10.1109/MSP.2013.138
https://doi.org/10.1109/MSP.2013.138
https://doi.org/10.1109/BigData.2016.7840901
https://doi.org/10.1109/BigData.2016.7840901
https://doi.org/10.1145/2427036.2427038
https://doi.org/10.1145/2427036.2427038
https://doi.org/10.1007/978-3-319-10353-2_49
https://doi.org/10.1007/978-3-319-10353-2_49
https://doi.org/10.13052/jcsm2245-1439.822
https://doi.org/10.13052/jcsm2245-1439.822


Big Data Network Flow Processing Using Apache Spark Submitted to ECBS’19, Sep 2-3, 2019, Bucharest, RO

//doi.org/10.13052/jcsm2245-1439.822
[15] Miguel Zenon Nicanor Lerias Saavedra andWilliam Emmanuel Yu. 2018. Towards

large scale packet capture and network flow analysis on hadoop. Proceedings
- 2018 6th International Symposium on Computing and Networking Workshops,
CANDARW 2018 (2018), 186–189. https://doi.org/10.1109/CANDARW.2018.00043

[16] M. Wullink, G. C. M. Moura, M. Muller, and C. Hesselman. 2016. ENTRADA: A
high-performance network traffic data streaming warehouse. In NOMS 2016 -
2016 IEEE/IFIP Network Operations and Management Symposium. 913–918. https:
//doi.org/10.1109/NOMS.2016.7502925

[17] Matei Zaharia, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker,
Ion Stoica, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, and Shivaram Venkataraman. 2016.
Apache Spark. Commun. ACM 59, 11 (oct 2016), 56–65. https://doi.org/10.1145/
2934664

[18] Michael Zheludkov, Timur Isachenko, et al. 2017. High Performance in-memory
computing with Apache Ignite. Lulu. com.

[19] X Zhou, M Petrovic, T Eskridge, M Carvalho, and X Tao. 2014. Exploring Net-
flow Data using Hadoop. In 2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY
Conference. 1–10. https://doi.org/q

https://doi.org/10.13052/jcsm2245-1439.822
https://doi.org/10.1109/CANDARW.2018.00043
https://doi.org/10.1109/NOMS.2016.7502925
https://doi.org/10.1109/NOMS.2016.7502925
https://doi.org/10.1145/2934664
https://doi.org/10.1145/2934664
https://doi.org/q

	Abstract
	1 Introduction
	2 Related Work
	3 System Architecture
	3.1 Cluster Setup
	3.2 Processing Pipeline

	4 Experiments and Evaluation
	5 Conclusion
	Acknowledgments
	References

