Effective FPGA Architecture
for General CRC

Lukés Kekely'®) | Jakub Cabal', and Jan Korenck?

! CESNET a.l.e., Zikova 4, 160 00 Prague, Czech Republic
{kekely,cabal}@cesnet.cz
2 IT4Innovations Centre of Excellence, FIT BUT,
Bozetéchova 2, 612 66 Brno, Czech Republic
korenek@fit.vutbr.cz

Abstract. As throughputs of digital networks and memory interfaces
are on a constant rise, there is a need for ever-faster implementations of
error-detecting codes. Cyclic redundancy checks (CRC) are a common
and widely used type of codes to ensure consistency or detect accidental
changes of transferred data. We propose a novel FPGA architecture for
the computation of the CRC values designed for general high-speed data
transfers. Its key feature is allowing a processing of multiple independent
data packets (transactions) in each clock cycle, what is a necessity for
achieving high overall throughput on very wide data buses. The proposed
approach can be effectively used in Ethernet MACs for different speeds,
in Hybrid Memory Cube (HMC) controller, and in many other technolo-
gies utilizing any kind of CRC. Experimental results confirm that the
proposed architecture enables reaching an effective throughput sufficient
for utilization in multi-terabit Ethernet networks (over 2 Tbps or over
3000 Mpps) on a single Xilinx UltraScale+ FPGA. Furthermore, a bet-
ter utilization of FPGA resources is achieved compared to existing CRC
implementation for HMC controller (up to 70% savings).

Keywords: FPGA - CRC - High-speed processing + Ethernet - HMC

1 Introduction

© Springer Nature Switzerland AG 2019
M. Schoeberl et al. (Eds.): ARCS 2019, LNCS 11479, pp. 211-223, 2019.
https://doi.org/10.1007/978-3-030-18656-2_16

kekely@cesnet.cz

®

Check for
updates

The Cyclic Redundancy Check (CRC) codes are widely deployed in digital com-
munications and storage systems to detect accidental error introduced into data.
The binary data are divided into transactions (packets) and each transaction is
subjected to a CRC which results in a fixed-length binary check sequence. The
computed check sequence value is then attached to the original data to deter-
mine its correctness. After being transferred /processed, the data are subject to
the same CRC computation one more time and the new result is compared with
the older attached CRC value. In case of a match, the data transaction is most
likely not corrupted. Because of their simple implementation in hardware and
good characteristics, the utilization of CRCs is very popular [5,6].

212 L. Kekely et al.

The computation of CRC codes is based on the remainder of a polynomial
division where coefficients are elements of the finite field GF'(2). There are many
different CRC codes, each defined by a specific dividing polynomial and output
(code) width. The mathematical background of CRC and forms of its hardware
representation have been extensively studied in various works like [10,11,13] and
is not the primary focus of this paper. All we need to know is that an approach
capable of processing multiple input bits in parallel exists and is based on XOR
equations set up for each output bit. A specific set of these equations (CRC
table) can be easily constructed for any given dividing polynomial and input data
word width. Furthermore, multiple results of these CRC tables can be aggregated
(accumulated) together to obtain code value of longer data transaction.

Although basic CRC computation can be easily represented, practical pro-
cessing of high-speed data is much harder. The data packets usually have variable
lengths and are not completely aligned with data bus words. Unaligned ends and
starts must be handled correctly, which requires additional logic and more com-
plex architecture than a single CRC table. Furthermore, as the data bus width is
growing to raise throughput, transfers of multiple packets per clock cycle (data
bus word) must be supported. This challenge must be addressed in practical
high-speed CRC implementation and that is indeed the main focus of our work.

We propose a novel FPGA architecture for practical computation of CRC
codes for general high-speed transfers of data packets with variable lengths. The
architecture enables effective computation of multiple values per clock cycle in
a single pipeline thus allows handling of multiple packets in each data bus word.
Furthermore, it supports configurable pipelining (before synthesis) so optimal
tradeoff between frequency (throughput) and utilized resources can be selected.
When fully pipelined, the CRC architecture achieves unprecedented throughput
of over 2 Thps or 3000 millions of packets per second (Mpps) in a single FPGA.

2 Related Work

The mathematical background of CRC computation has been extensively stud-
ied in many previous works like [7,10,11, 13] and it is not the focus of this paper.
Rather, we want to use the results and proposed effective hardware represen-
tation of basic CRC calculations from these papers as primary constructional
blocks of a new architecture. However, the challenge of practical high-speed
CRC computation for variable-length data packets is more complicated.

Some attempts to address this additional challenges are made in [4]. Archi-
tectures arranging basic CRC calculation into more complex structures are pro-
posed to enable processing of unaligned packets ending. However, the proposed
architectures are shown to scale well only up to throughputs around 10 Gbps
(256 b wide bus) what is insufficient for current high-speed data handling.

More advanced general CRC implementations are described in many papers
like [1,3,15]. All of them use a kind of advanced pipelining and parallelization to
achieve higher frequencies (throughputs) than other simpler solutions. The Eth-
ernet CRC-32 implementations by these architectures use input data widths of

kekely@cesnet.cz

Effective FPGA Architecture for General CRC 213

64 to 512 bits and can run at hundreds of MHz. This leads to reported through-
puts sufficient for wire-speed traffic processing of up to 100 Gbps Ethernet. But
scaling for higher speeds is not properly addressed in any of these works and
would bring exponential growth in required FPGA area or significant degrada-
tion of effective throughput on short packets (i.e. data rate limited by packet
rate). Furthermore, the extension of these architectures to allow multiple packets
per clock cycle (i.e. sufficiently increasing their packet rate) would be non-trivial.

Interesting CRC architecture [8,9] uses pipelining similar to the above works
to achieve high throughput and focuses primarily on reconfigurability of CRC
polynomial, but it also partially addresses the challenge of limited packet rate on
short packets. The architecture can process parts of two subsequent packets in a
single clock cycle (data bus word). A maximal throughput of 40 Gbps reported
in the paper can be thus easily scaled up to 100 or even 200 Gbps. But because
the parallel processing is structurally limited to only two packet parts, further
scaling would again hit the same obstacles as mentioned above.

Fastest commercially available CRC architecture is part of Ethernet MAC
IP core [14]. In the product description, its authors claim to be able to achieve
up to 400 Gbps line-rate processing of packets using only a small portion of
FPGA area. But no throughput measurements nor exact resource requirements
are provided to back up those claims. Furthermore, any details about their CRC
architecture or its parameters (e.g. frequency, data bus width) are also lacking.

3 Architecture Design

Here we describe the proposed CRC architecture. First, data bus format with
multiple packets per clock cycle is defined. This is crucial for efficient scaling
above 100 Gbps. After that, basic utilized CRC computing blocks are introduced.
Finally, the architecture itself is presented in serial and parallel versions.

3.1 Input Bus Format

To enable multiple packets per clock cycle, we define the input data bus word
format as illustrated in Fig.1. The figure also shows an example of possible
packet placement under the proposed format. One should notice that without
the support of multiple packets per clock cycle, each of the depicted data frames
should occupy separate word on the bus (5 words would be required), but word
sharing enables more dense packing (only 3 words are needed in the example).
The proposed bus format is shown at the bottom of the figure, each data word is
divided into several regions. These restrain the maximum number of data packets
per word as at most one packet can start and one end (can be a different one) in
each region. Each region is further separated into multiple blocks of basic data
elements (items) to constraint possible positioning of packet starts. Notice that
each packet must start aligned with the start of a block, but can end on any
data element (packets A and B both end in the middle of a block).

kekely@cesnet.cz

214 L. Kekely et al.

To support the described bus format, additional metadata must accompany
each data word. For each region the following information must be given:

— a flag for the presence of a packet start (SOP),
a flag for the presence of a packet end (EOP),
a position of packet start if present (SOP_POS),
a position of packet end if present (EOP_POS).

Packet A Packet B

Packet C

Packet D Packet E (part)

Item ;i _Item _ltem i Item i Item :_Item :_ ltem ;i Item
Block Block Block Block
Region Region
Word

Fig. 1. Data bus format illustration. Fig. 2. CRC end realizations possibilities.

The proposed data word format enables definitions of multiple bus versions with
different parameters. We describe them by these four attributes:

— Number of regions (n) match the maximal number of packets per word.
Region size (r) defines the number of blocks in a region.

Block size (b) states the number of elements in a block.

— Element width (e) defines the size of the smallest piece of data in bits.

Using these attributes, we derive bus word width in bits like dw =n xr x b x e.

3.2 CRC Computation Blocks

In both versions of the proposed architecture, we utilize 4 basic computational
units: (1) basic CRC table for fixed input width, (2) accumulation logic capable
of aggregating multiple intermediate CRCs, (3) correction of input data based on
packet start position, and (4) finalization of CRC based on packet end position.

As already mentioned in the Introduction, based on given dividing polyno-
mial and input width a specific implementation of basic CRC table can be
easily generated [13]. It has a form of parallel XOR equations on input bits, one
equation for each output (code) bit. In FPGAs, these XORs are implemented
in LUTs. The CRC table basically only converts the input data word into an
intermediary CRC code value without regard to packet borders.

Specific CRC accumulation can be similarly generated for any polynomial.
It has a form of parallel XOR equations and it aggregates two or more interme-
diary CRC values computed from separate parts of data (e.g. by CRC tables).
This enables to divide handling of longer data packets in multiple smaller steps.

kekely@cesnet.cz

Effective FPGA Architecture for General CRC 215

Correction of CRC start based on packet position can be achieved by mask-
ing—the part of the input before packet start is filled with zeros. CRC com-
putations are based on XOR operations and zero is a necutral value for them
(0 zora = a for any a). Therefore, it is possible to show that extension of any
data by prepending any number of leading zeros has no effect on computed CRC
value, which remains the same as for original data [7]. Note, that also the initial
(intermediary) value of CRC register must be shifted and applied accordingly.

Finally, correct handling of CRC end is a bit more complicated. Masking
similar to start correction cannot be directly applied, as appending trailing zeros
to data will change the computed CRC value. A workaround is to use a barrel-
shifter to shift the last data part so that the end of the packet is aligned with
the end of the region. This way, the masking operation is converted from trailing
zeros into leading zeros and can be applied in the same way as in CRC start.
Another possible type of approach is to utilize some arrangement of multiple
smaller CRC tables [4]. Hllustration of these arrangements for 32 bit wide region
and e = 8 are shown in Fig.2. On the left, we can see a serial version, where
multiple tables are pipelined each processing one input data element and correct
output code is selected afterward based on packet end position. In the middle,
there is a parallel version, where each possible position of the end has its own
accordingly wide table. These basic approaches do not scale well for wider data
buses —depth of the pipeline (critical path) in (a) or amount of resources in (b).
To issue the scaling challenge a more sophisticated approach illustrated as (c)
can be used. Each pipeline step corresponds to one layer of a binary search tree
and performs CRC computation with a gradually halving table width which
can be applied or bypassed. The binary tree is evaluated for a given packet end
position (MUX ctrl) and bypass multiplexors at each pipeline step are controlled
accordingly. At the end an implicit CRC finalization table with width e is present.
For example, for the computation of 24 bit long packet end only the middle 8 bit
table is bypassed, and for 16 bit end the top 16 bit table is bypassed.

Thanks to division and encapsulation of all basic CRC computations into
the described blocks, the subsequently designed architecture will be general and
easily usable for any given division polynomial. Because, the change of the poly-
nomial only requires re-generation of used CRC tables (XOR equations) in these
blocks and will not affect structure of the whole architecture.

3.3 Serial and Parallel Architectures

Both versions of the proposed CRC architecture divide processing of input data
word between n submodules—one for each region. Each submodule can process
an independent packet in each clock cycle or they can cooperate together and
handle longer packets. Serial and parallel version differ primarily in the distribu-
tion of intermediate CRC values between these submodules. Figure 3 shows top
level structure of the serial implementation. One region of the input bus (width
rw = r X b X e) is connected to each submodule. The submodule calculates final
CRC value if an end of the packet is present in his part of input bus. To support
cooperation on longer packets, each submodule is passing its intermediate CRC

kekely@cesnet.cz

216 L. Kekely et al.

CRC_ACC]i]

; ™o
INPUT BUS CRC SERIAL | CRC OUT [0] SOP[i] |
SUBMODULE] SOP_POS] J(h
| | Ccrec|
Gresmm ool oy | reeet)| R
START
: “v{cre| | CRC_oUT]
CRC SERIAL | CRC OUT [2] 5 END
SUBMODULE 1
1 | Unfinished
. packet
CRC SERIAL |[CRCOUT[3] EOPI [
SUBMODULE EOP_POSJi]
] CRC_ACCIi+1]
Fig. 3. Serial top level architecture. Fig. 4. Serial submodule internal structure.

result to the next submodule. The last submodule is passing its result to the
first over a register, so the calculation can continue in the next data bus word.

In Fig. 4 we can see internal structure of one serial submodule. It is composed
of several logic stages and optional registers for better timing. Base CRC table
of width rw is used as a core computational block and handling of corrections
required for starting, ending or continuing packets is realized by multiple separate
blocks around it. They are controlled by metadata about packet positioning in
the assigned region of the bus. The CRC start block masks input data before
the packet start so that subsequent base CRC calculation is performed correctly
for starting packets. If no start of a packet is present, the input data word is not
altered. If a packet continuing from the previous words is present in the input
data, the output value of CRC table is aggregated with an intermediate CRC
value from the previous submodule in accumulation block. Otherwise (starting
packet), the input CRC value is masked and no aggregation is performed —only
locally computed result is passed. The output of accumulation block is used as
intermediate CRC value on the input of the next submodule. Finally, CRC end
block performs CRC calculation for packets ending in data region assigned to
this submodule. When the whole packet data (start and end) are present in the
region of this submodule, the final CRC value is calculated only from masked
input data. Otherwise, output CRC value is calculated from the intermediate
result from the previous submodule and unaltered input data.

The serial implementation has a weak point —long critical path from the out-
put of the CRC register, through CRC aggregation in all submodules, and back
to the register (Fig.3). This critical path cannot be resolved using pipelining
as correct CRC intermediate value must be present in the register when pro-
cessing of the next word starts. That is why, we propose the parallel version of
CRC aggregation. In Fig.5 we can see that, the output value of CRC submod-
ule is shared with each subsequent submodule not just with the next one. In
Fig.6 we can see internal structure of CRC submodule accommodated for the

kekely@cesnet.cz

Effective FPGA Architecture for General CRC 217

parallel aggregation. There are several major changes present. The output value
of CRC accumulation block now serves only for the final CRC calculation in the
CRC end block of the next submodule. So, the intermediate CRC results are
not accumulated in steps through the whole pipeline of submodules. Now, each
CRC accumulation block must independently aggregate intermediate CRC val-
ues from all previous submodules including value stored in the top-level register.
The other parts of the parallel implementation remain the same as in the serial
one. This version has significantly improved critical path and allows to achieve
much higher operating frequencies. On the other hand, it requires considerably
more logic resources as more complicated CRC accumulation modules are used.

CRC_TMPJi downto 0] CRC_ACCIi]
SOPJi downto 0]
INPUT BUS CRC PARALLEL |CRCOUT [0] :
SUBMODULE -) ll
Ff ,—f 1 SOP_POS]i] 7]
MUXs
CRC PARALLEL |CRCOUT[1] - "|cre
SUBMODULE : Accl]
rf d. ri. l DATA[Ii]
CRC PARALLEL | CRC OUT [2] L ,
SUBMODULE B CRc| | CRC_OUTI]
— END
1 l 1 1 l " Unfinished
) acket
CRC PARALLEL | CRCOUT 3] EOP] [LP
SUBMODULE EOP_POSIi]
CRC_TMP[i+1] CRC_ACC[i+1]

Fig. 5. Parallel top level architecture. Fig. 6. Parallel submodule internal structure.

4 Measured Results

We evaluate the proposed CRC architecture in two high-speed cases: Ethernet
networks and HMC controller. CRC ensures consistency of data packets in both
cases, but different polynomials are used. A detailed evaluation is performed
for the networking case, where effects of various architecture parameters are
explored. In HMC case we directly select the best configurations and compare
them with existing CRC implementation in the OpenHMC controller.

4.1 Ethernet Based Networks

Ethernet uses CRC with the CRC-32 division polynomial [6] as a frames check
sequence. As already discussed in the Related Work, published architectures
can be effectively used for Ethernet traffic processing at speeds up to 200 Gbps
and commercially available solutions promise throughputs of up to 400 Gbps.
Their scaling towards higher speeds is limited by insufficient packet rates on
the shortest packets for wider data buses. The proposed architecture addresses
exactly this issue and should be able to scale well even at higher throughputs.

kekely@cesnet.cz

218 L. Kekely et al.

When adjusting the proposed architecture for Ethernet, the parameters of
the bus format should be configured to appropriate values. Ethernet operates
with bytes (octets) as the smallest data elements—therefore e = 8. Lower layers
of Ethernet (PCS/PMA layers) usually operate with frame starts aligned at
8 B lanes—so b = 8 is convenient. Size of a region should correspond with the
size of the smallest allowed packets (64B)—so r = 64/b = 8. Smaller regions
would needlessly allow more packets per word than possible and larger regions
would reduce bus saturation for the shortest packets. Using these attributes
(r = b = e = 8) and considering the shortest packets to be 64 B long, the bus
format impose no more than b — 1 = 7 bytes of alignment overhead per packet.
Furthermore, as lower layers of Ethernet operate with larger overhead per packet
(20 B of preamble and IFG), our bus enables us to achieve effective throughput
sufficient for wire-speed processing of Ethernet packets even in the worst case.

80000 = S s 1 800007 = > Uee 1 T T IT T T T T T
91024, USH ! Noyopab usel ! 1 L1
—_ ! -l — ’ e | I M |
= 60000 1o 2048b, Us+,” | 600000 o048, Us+” T\ 7 X |
D 11°4096b, USH | D 112409b, US| A |
S 40000F = -1— = - - - S 40000 = 1= =T - - - A
8 | | 8 | | | Al - |
7 ! 5 2 I
200007 — <= = 7~ = 200007 — =7~ T % -5
| | 4 | . |
ok — - o _1l__i__J b — I =TT L

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

Input bus throughput [Gbps]

Fig. 7. Throughput and logic of S-S.

Input bus throughput [Gbps]

Fig. 8. Throughput and logic of S-T.

e e N e i i
| | | A % | | | | | K |
—_ [TR W __E_ _ — Lo -l __
5 60000, I éﬁg%g ? AT Al S 60000, | & £ I
S I I Y AR I I S I i N A
Sa40000F - - -I--—-A--—-—t+-----4 S 40000 = = —i= el |
g | gogu *512b, US+ 8 | ’ *512b, US+
= | | | I = | | I
9 20000; — BT - = - - 1024b, US+, B 200001 21024b, US+
! | | |o2048b, USH| ! 1°2048b, US+,
o- 2 I _ _ 1 _ _ _ L _1£4096b, USHy ol = Ci_ _ _ 1 _ _ _ L _1£4096b, USH

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

Input bus throughput [Gbps] Input bus throughput [Gbps]

Fig. 9. Throughput and logic of P-S. Fig. 10. Throughput and logic of P-T.

Evaluation for Ethernet compares four versions of the proposed architecture:
(1) S-S —serial architecture with shifter CRC end, (2) S-T — serial architecture
with tree CRC end, (3) P-S — parallel architecture with shifter CRC end, and (4)
P-T —parallel architecture with tree CRC end. For each, we measure results for
different data bus widths (dw = 512, 1024, 2048, 4096) and various combinations
of pipeline registers. In all cases, we use data bus parameters r = b = e = 8 that
are sufficient for wire-speed processing of even the shortest frames, only the value

kekely@cesnet.cz

Effective FPGA Architecture for General CRC 219

of n is changing with the width of the bus. The results of all the combinations
form the state space of CRC implementations with different throughput, working
frequency, latency and resource usage. All values are obtained for the Xilinx
Virtex-7 XCVHST70T or UltraScale+ XCVU7P FPGAs using the Vivado 2017.3.

Figures7, 8, 9, and 10 compare the four versions of Ethernet CRC archi-
tecture. They show resource utilization and achieved throughput on the Ultra-
Scale+ FPGA. Each point represents one specific implementation with a differ-
ent combination of parameters (data width and pipeline enabling). The resources
utilization linearly increases with the achieved throughput in both parallel ver-
sions (Figs.9 and 10). Unfortunately, in both serial versions (Figs.7 and 8) the
resources increase considerably faster with throughput. In the case of the P-S
and the P-T implementations, we are able to reach effective throughputs of well
over 2 Thps (over 3000 Mpps). Achieved throughputs for the S-S and the S-T
implementations are notably worse while the used resources remain similarly
high. This is because the serial CRC generators reach notably lower frequencies
due to an expected longer critical path.

80~ =~ ~—=—=— - -—7--F-—5--3 80— ————— R Tl ST
fegizo,use 1+~ T - T T fxgrzp,use 1~ 17 7T A" 07k, 7
l“t024b,us+ l“1024p,Us+ || —zféAﬁA—ﬁ-ﬁ— |
70020480, U8+ T T T T T T 200020480, U+ " " A A i By
= 124096b, US+) | | A BA = 1124096b, US+ 1 © AR
g40|———|———|——-r——1-——%—%——| Q40 — —1- = - AL - -
o} N Y S | > O I

© M VA ® i)

— 1 N | 1 | g |
& : 20 = 7 O -7
| | |
OI___I___I__J.__J___I___I___I

00 100 200 300 400 500 600 700
Input bus throughput [Gbps]

Fig. 11. Throughput and latency of S-S.

0 100 200 300 400 500 600 700
Input bus throughput [Gbps]

Fig. 12. Throughput and latency of S-T.

—_———— e e e = = = - 50— — — —— — — —j— — — = — — = == = = =
1x512p, US+ ! I I I I ix512p, us+ !
'51024b, US+! S |- —21024b, US+
0 1©2048b, US+ 0 1°2048b, US+
= 12 4096b, US+j = 124096b, US+]
[&] [&] | |
8 I3 +* gﬁ R
3 3 50~ AR AA
2 1o - __Q-_A ___13
| | | | | |
OI____I____I____I____I____I OI____I____I____I____I____I

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

Input bus throughput [Gbps]

Input bus throughput [Gbps]

Fig. 13. Throughput and latency of P-S. Fig. 14. Throughput and latency of P-T.

Figures 11, 12, 13, and 14 bring the latency into the picture. Generally, the
latency depends on the number of enabled pipeline registers in CRC implemen-
tations and achieved working frequency. From the graphs, we can see that the
latencies of the serial implementations are increasing notably as the achieved

kekely@cesnet.cz

220 L. Kekely et al.

throughput (word width) is rising. On the other hand, the latencies of the paral-
lel implementations remain approximately within the same bounds. This is again
due to the higher frequency of parallel implementations even for wider buses.

Figure 15 shows the evaluated four versions of Ethernet CRC implementa-
tions together. Only Pareto optimal set of results in resource utilization and
achieved throughput space is selected for each implementation version. From the
graph, we can more clearly see the difference between the serial (dashed lines)
and the parallel (full lines) implementations in achieved throughput. The par-
allel implementations are able to reach the effective throughput of over 2 Tbps,
while the serial implementations cannot reach significantly more than 600 Gbps.
Furthermore, parallel-tree has slightly better resource utilization than parallel-
shifter.

Figure 16 shows Pareto optimal results of latency to achieved throughput
for the four evaluated versions of Ethernet CRC implementations. Again, we
can see the notable difference between the serial (dashed lines) and the parallel
(full lines) implementations. The latency of the serial implementations steeply
increases with the throughput (bus width), but the latency of parallel implemen-
tations raises only rather slowly. Better parallel implementation version in terms
of latency is the parallel-shifter one. This is due to smaller number of registers
in CRC end module for shifter version compared to tree version.

Figure 17 compares results between different FPGAs—magenta for the Ultra-
Scale+ and blue for the Virtex-7 FPGA. It shows the best parallel implemen-
tations in resource utilization to achieved throughput space. To compensate for

60000 ~ =~ ;T T T T T T T T T T T 40i____i____i____i__t's's"'gs—:]i
I [N] | | | | [il
T5OOOO| | | |) iy iy A PT'US+,1
S 40000F — — —l—1— — 4 — — — Z - @7 I I I S-S, US+
> I I ;' I I = o I I C S-T,US+ i
S 30000k — - -1 - -4 - -t - ————H e e i Bl el
8 20000 _’1 | —P-S, US+ i % | '/': | | | |
= [I Ay /A B R WU fi |) | L+
@ | | _PT'US+| _I10I___/T__I____I____I____I
10000 ~ [~~~ 77 T T 1SS USH | 1 | | | |
0|____|___J___L__':_§.'I-19—S_i_'| b - — =l o __]

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

Throughput [Gbps] Throughput [Gbps]

Fig. 15. Best throughput x logic results. Fig. 16. Best throughput x latency results.

T e

— |

ST N S PTVT

7! | | | n P-S, US+ I

(=

= | | | | CP-S,V7_

Q20 — —=t————1~ - - — == ==1—-==-4

-T, 2 | | , | | |

T, N I et et e

g L e R [

2 ’ | i | | | |

OL___I___J___L__L_E-'_S—'_\L7_—_'I] e i
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

Throughput [Gbps] Throughput [Gbps]

Fig. 17. Throughput x logic, varied chip. Fig.18. Throughput x latency, varied chip.

kekely@cesnet.cz

Effective FPGA Architecture for General CRC 221

the 1.5-2 times lower achieved frequencies on the Virtex-7 chip compared to the
UltraScale+, nearly 2times larger implementations must be used when trying
to achieve the same throughputs. The stairs in the graphs are caused by the
changing data bus width. Finally, Fig. 18 compares latencies of the best parallel
implementations of Ethernet CRC generator between different FPGAs. Again,
we can see the positive effect of the higher frequencies and sparser registering
on the UltraScale+4, where the latency is nearly 2 times better.

4.2 OpenHMC Controller

Hybrid Memory Cube (HMC) is a high-performance RAM interface that uses a
32 bit version of CRC with the CRC-32K (Koopman) division polynomial [2,12].
Again, an appropriate adjustment of the data bus format parameters should be
considered first. HMC operates with data divided into 128 bit wide ‘flits” as the
smallest data elements, therefore e = 128. Each data transaction (packet) is a
continuous sequence of 1 or more flits, so » = b = 1. Finally, the number of
regions n depends on the width of the memory interface, commonly used widths
are 4, 6 or 8 flits. This kind of bus arrangement leads to a considerably simplified
computation in each submodule. As packets start and end only aligned to the
region borders, CRC start and CRC end blocks are not needed.

Table 1. Comparison of OpenHMC CRC implementation to the proposed.

Bus width | Implementation | LUTs | FFs | Fmax
512 OpenHMC 4988 | 2477 | 700 MHz
proposed 2262 | 1858 | 807 MHz
768 OpenHMC 12071 | 3778 | 594 MHz
proposed 3935 | 2791 | 802 MHz
1024 OpenHMC 23599 | 5125 | 517 MHz
proposed 6340 | 3728 | 798 MHz

An existing opensource controller implementation of HMC interface is called
OpenHMC controller [2]. Tt utilizes its own specific implementation of CRC
architecture capable of handling multiple flits per clock cycle. The CRC imple-
mentation is a critical part of the whole controller, as it consumes the majority
of all FPGA logic required. We compare this default implementation to our pro-
posed CRC architecture in the parallel version for different data widths. The
results for the UltraScale+ FPGA are provided in the Table 1. While our archi-
tecture is configured to have the same latency and throughput as the OpenHMC
default CRC implementation, a clear difference in resource utilization is visible.
Our implementation requires less than half of the logic and around 75% of regis-
ters for 512 b (4 flits) wide bus. Resource saving increases even further for wider
data buses, up to only a quarter of logic and around 70% of registers. Achieved

kekely@cesnet.cz

222 L. Kekely et al.

frequency is also better in our implementations, it especially scales considerably
better with rising bus width compared to default OpenHMC implementation.

5 Conclusion

This paper introduces and elaborates a novel FPGA architecture of general CRC
computation that enables achieving very high processing throughputs. The pro-
posed architecture is able to process multiple packets per clock cycle and offers
good scalability even for very wide data buses. Thanks to a well defined and
configurable structure, the architecture can be easily adjusted for CRC compu-
tation based on any given polynomial. Furthermore, we can optimize achieved
parameters for specific application requirements in terms of processing latency,
FPGA resources utilization, and total computational throughput.

Our experimental evaluation shows, that when computing CRC (FCS) for
Ethernet frames in high-speed networks the proposed concept enables to achieve
unprecedented wire-speed throughput. At a cost of just a few percents of total
resources available in a single UltraScale+ FPGA, the achieved throughput can
be as high as 2.4 Tbps (over 3500 Mpps). That is, to our knowledge, consider-
ably higher than in any other published work. It is especially thanks to favorable
frequency scaling of the designed parallel version of the proposed architecture.
The second part of the measurements shows results of our CRC architecture
adjusted for high-speed HMC interface. Our approach achieves much better
results than default CRC implementation inside OpenHMC controller in terms
of both resources as well as frequency (throughput). For the same data width
(number of parallel flits), we can save up to 73% logic and 27% registers.

The proposed architecture has been verified in simulations and is also cur-
rently tested on a real FPGA as part of our semi-finished implementation of
400 GbE MAC. As part of our future work, we want to propose a feasible app-
roach to high-speed RS-FEC computation in a single FPGA. RS-FEC is based
on similar mathematical principles as CRC (finite fields) and is required part of
400G Ethernet implementation.

Acknowledgments. This research has been supported by the MEYS of the Czech
Republic project Reg. No. CZ.02.1.01/0.0/0.0/16.013/0001797, the IT4Innovations
excellence in science project I'T4l XS—LQ1602, and by the Ministry of the Interior
of the Czech Republic project VI20172020064.

References

1. Bajarangbali, Anand, P.A.: Design of high speed CRC algorithm for ethernet on
FPGA using reduced lookup table algorithm. In: IEEE India Conference (2016)

2. Computer Architecture Group and Micron Foundation: OpenHMC: a configurable
open-source hybrid memory cube controller. University of Heidelberg (2014)

3. Hamed, H.F.A., Elmisery, F., Elkader, A.A.H.A.: Implementation of low area and
high data throughput CRC design on FPGA. Int. J. Adv. Res. Comput. Sci. Elec-
tron. Eng. 1(9) (2012)

kekely@cesnet.cz

10.

11.
12.

13.

14.

15.

Effective FPGA Architecture for General CRC 223

Henriksson, T., Liu, D.: Implementation of fast CRC calculation. In: Proceedings of
the Asia and South Pacific, Design Automatation Conference, pp. 563-564 (2003)

. HMC Consortium: hybrid memory cube specification 2.1. Altera Corp. (2015)

IEEE Computer Society: Amendment 10: media access control parameters, phys-
ical layers and management parameters for 200 Gb/s and 400 Gb/s operation.
IEEE Standard 802.3bs-2017, pp. 1-372 (2017)

. Kennedy, C., Reyhani-Masoleh, A.: High-speed parallel CRC circuits. In: 42nd

Asilomar Conference on Signals, Systems and Computers, pp. 1823-1829 (2008)
Mitra, J., Nayak, T.K.: Reconfigurable concurrent VLSI (FPGA) design archi-
tecture of CRC-32 for high-speed data communication. In: IEEE International
Symposium on Nanoelectronic and Information Systems, pp. 112-117 (2015)
Mitra, J., Nayak, T.: Reconfigurable very high throughput low latency VLSI
(FPGA) design architecture of CRC 32. Integr. VLSI J. 56, 1-14 (2017)

Pei, T.B., Zukowski, C.: High-speed parallel CRC circuits in VLSI. IEEE Trans.
Commun. 40(4), 653—657 (1992)

Perez, A.: Byte-wise CRC calculations. IEEE Micro 3(3), 40-50 (1983)

Schmidt, J., Bruning, U.: OpenHMC: a configurable open-source hybrid memory
cube controller. In: ReConFigurable Computing and FPGAs. IEEE (2015)

Shieh, M.D., Sheu, M.H., Chen, C.H., Lo, H.F.: A systematic approach for parallel
CRC computations. J. Inf. Sci. Eng. 17(3), 445-461 (2001)

Tamba Networks: Datacenter Ethernet. Tamba Networks, LLC (2018). http://
www.tambanetworks.com /products/datacenter-ethernet/

Walma, M.: Pipelined cyclic redundancy check (CRC) calculation. In: International
Conference on Computer Communications and Networks, pp. 365-370 (2007)

kekely@cesnet.cz

