
EA-based refactoring of mapped logic circuits
Jitka Kocnova and Zdenek Vasicek

Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence, Brno, Czech Republic
Email: ikocnova@fit.vutbr.cz, vasicek@fit.vutbr.cz

Abstract—The increasing complexity of the designs and prob-
lematic scalability of original representations led to a shift in
internal representations used in logic synthesis and optimization.
Heterogeneous representations were replaced with homogeneous
intermediate representations. And-inverter graph (AIG) has been
identified as the most promising structure for scalable logic
optimization and many efficient algorithms were implemented on
top of it. However, the inability of AIG to efficiently represent
XOR gates together with heuristic nature of logic optimization
algorithms leads to some inefficiency causing that the logic can
be further minimized even after it has been mapped. This paper
presents an optimization technique based on refactoring targeting
mapped combinational circuits. It iteratively selects large cones
of logic, optimizes them and returns them back to the original
structure provided that there is an improvement in some metric.
Performance of the method is evaluated on a set of complex
academic and industrial benchmarks. We show that a 9.2%
reduction in area can be achieved in average compared to the
highly optimized results obtained using the academic state-of-
the-art synthesis tool. In average, more than 14% reduction was
observed for arithmetic circuits.

I. INTRODUCTION

The goal of the logic optimization is to transform a subop-
timal solution into an optimal gate-level implementation w.r.t.
given synthesis goals, while technology mapping transposes
it onto its best standard cell implementation. The circuit is
typically represented by a suitable internal representation dur-
ing the logic optimization. Current state-of-the-art logic syn-
thesis tools, such as ABC, represent circuits using a directed
acyclic graph composed of two-input AND nodes denoted as
and-inverter graph (AIG). This representation is simple and
scalable, and leads to simple algorithms. The optimization of
AIGs is based on rewriting algorithm which minimizes size
of AIG by iteratively selecting subgraphs rooted at a node and
replacing them with smaller precomputed subgraphs [1].

Unfortunately, the AIGs suffer from an inherent bias in
representation. While eight of ten possible two-input logic
gates may be represented by means of a single AIG node,
XOR/XNOR gates require three AIG nodes each. The effi-
ciency of synthesis is then limited as it mostly fully relies
on transformations disallowing to increase the number of AIG
nodes. Also, the synthesis algorithms typically do not treat
XORs explicitly – they rely on identification of XORs during
the technology mapping phase which works independently on
the logic optimization phase. The ability to capture XOR gates
is, however, essential for efficient representation of arithmetic
and XOR-intensive circuits [2].

To address this problem, e.g. binary decision diagrams
(BDDs) can be employed [3], [4]. Due to their limited scal-
ability, Amaru et al. employed a two step synthesis process
based on a selective and distinct manipulation of AND/OR

and XOR-intensive portions of the logic circuit [5]. Fiser et
al. introduced XOR-AIGs to explicitly support XOR gates [6].
Haaswijk et al. employed XOR majority graphs (XMGs) to
extend the capabilities of exact synthesis oriented on area
optimization.

Other authors tried to avoid intermediate representation.
Optimization based on a variant of Genetic Programming
(GP) conducted directly at the level of common gates is
able to provide significantly better results compared to the
state-of-the-art synthesis operating on AIGs [7]. Optimization
is done implicitly without any structural biases. In average,
the method enabled a 34% reduction in gate count on an
extensive set of IWLS benchmark circuits when executed for
15 minutes. A similar approach was successfully applied even
to synthesis of conventionally hard to synthesize circuits [8].
The proposed method is able to optimize the circuits for
which conventional synthesis completely fails. However, the
efficiency of the evolutionary approach deteriorates with the
increasing number of gates because of various scalability
issues inevitably connected with the usage of GP.

The recent methods need to perform a preprocessing or cir-
cuit decomposition [5] or precomputation of ideal solutions[6];
other methods rely on XOR-avare transformations or presence
technology cells (eg. XMGs). In order to eliminate the need
for circuit preprocessing, we propose a novel logic synthesis
methodology that implicitly targets XOR-intensive logic cir-
cuits.

II. BACKGROUND

All circuits can be represented by a Boolean network –
a directed acyclic graph (DAG) with nodes represented by
Boolean functions [9]. The sources are the primary inputs
(PIs) of the network and the sinks are the primary outputs
(POs). The output of a node may be an input to other nodes
called fanouts. The inputs of a node are called fanins. An edge
connects two nodes in fanin/fanout relationship.

A. Limiting the scope of Boolean networks

Network scoping is a key operation to ensure a good
scalability of synthesis tools when working with large Boolean
networks. Windowing and cut computation have been proposed
to limit the scope of logic synthesis to work only on a small
portion of a Boolean network [9].

The windowing algorithm takes a node and two integers:
the number of logic levels on the fanin/fanout sides of the
node to be included in the window. Leaf set and root set are
produced. The window is the subset of nodes of the network
containing nodes from root set together with all nodes on paths
between the leaf set and the root set. The nodes in the leaf

978-1-7281-0397-6/19/$31.00 ©2019 IEEE

set are not included in the window [9]. It is hard to predict
how many logic levels have to be traversed to get a window
of the desired size and required number of leaves. Hence, an
approach based on k-feasible cuts is preferred. A cut of a
node (root node) is a set of nodes of the network (leaves),
such that each path from PI to the root node passes through
at least one leaf. A cut is k-feasible if the number of nodes
(i.e. cut size) in the cut does not exceed k. The volume of
a cut is the total number of nodes encountered on all paths
between the root node and the cut leaves. To maximize the
cut volume, a reconvergence-driven heuristic is applied. The
problem is that the cut computed using a naive breadth-first-
search algorithm may include only few nodes and leads to
tree-like logic structures that do not lead to any don’t cares in
the local scope of the node and attempting optimization using
such a cut would be wasted time [9].

A simple and efficient cut computation algorithm producing
a cut close to a given size while heuristically maximizing the
cut volume and the number of reconvergent paths subsumed
in the cut has been introduced in [9]. Our work is based on
the reconvergence-driven cuts and we discuss this algorithm
more in the section III.

B. Synthesis of Boolean networks using EAs

Evolutionary algorithms (EAs) have been used to synthesize
logic circuits since late nineties [10], [11]. Miller et al.,
the author of Cartesian Genetic Programming (CGP) [11], is
considered as a pioneer in the field of logic synthesis of gate-
level circuits. Despite of many advantages of this technique,
only small problem instances were typically addressed. The
scalability of CGP has been significantly improved by a SAT-
based CGP simulator driven by counterexamples produced by
the SAT solver [12] [7]. In this area, a linear form of CGP is
preferred today. CGP models a candidate circuit having ni PIs
and no POs as a linear 1D array of nn configurable nodes.
Each node has na inputs and corresponds with a single gate
with up to na inputs. To avoid a feedback, the inputs can
be connected either to the output of a node placed in the
previous L columns or directly to PIs. The function of a node
can be chosen from a set of nf functions. Depending on the
function of a node, some of its inputs may become redundant.
Moreover, the fixed number of nodes nn does not mean that
all the nodes contribute to the POs. These key features allow
redundancy and flexibility of CGP. For details of candidate
circuits encoding, please see [11].

CGP is a population oriented approach operating with 1+λ
candidate solutions. The initial population is seeded by the
original circuit. Every new population contains the best circuit
from the previous population, that has not served as a parent
yet and its λ offsprings created using a mutation operator
that randomly modifies up to h integers. Selection of the
individuals is typically based on a cost function (e.g. number
of active nodes). Considering the CGP encoding, a single
mutation causes either reconnection of a gate, reconnection of
primary outputs or change in function of a gate. This procedure
is typically repeated for a predefined number of iterations.

III. THE PROPOSED METHOD

Let C be a combinational circuit described at the level of
common gates represented by a Boolean network N consisting
of |N | nodes. Each node corresponds with a single gate in
C. The pseudo-code of the proposed optimization procedure
based on evolutionary resynthesis is shown in Algorithm 1.

Algorithm 1: EA-BASED REFACTORING

Input: A Boolean network N , maximum cut size cutsize
Output: Optimized network N ′, cost(N ′) ≤ cost(N)

1 N ′ ← N
2 while terminated condition not satisfied do
3 m← identify the best candidate root node m ∈ N ′

4 C ← ReconvergenceDrivenCut(m, cutsize)
5 W ← ExpandCutToWindow(m, C)
6 if W is not a suitable candidate then
7 continue

8 W ′ ← OptimizeNetworkUsingEA(W)
9 if cost((N ′ \W) ∪W ′) < cost(N ′) then

10 N ′ ← (N ′ \W) ∪W ′

11 return N ′

Firstly a node which may lead to the best improvement
of N is determined. Identification of this node is a nontrivial
problem, so some heuristic needs to be implemented – the size
of transitive fan-in cone, level of the node or a more complex
information can be used. A window is then extracted from the
Boolean network. This procedure starts with computation of
the reconvergence-driven cut (see Section II-A) and is followed
by expansion of the cut C into a window W . In addition to
the nodes inside the cut, we consider also all nodes that are
not contained in the cut but have fanins inside the cut. Our
expansion is similar to that employed in the resubstitution [9]
where transitive fanout of C is considered, but we do limit the
number of included nodes or their maximum level.

Resynthesis is then applied to the window. Each window
potentially leading to no improvement is skipped in order to
eliminate execution of a relatively time-consuming resynthesis.
Identification of suitable windows can be based on the size of
W or a combination of size of C and W (small and thin
windows are skipped). We can also use the information about
the difference among level of the root node and leaves of C.

The expansion leads to the set of internal nodes I , the set
of leaves L and the set of root nodes R. L contains nodes
serving as PIs of the temporary network used in the subsequent
optimization. R contains nodes whose outputs have to be
connected to POs. R contains the root node m and also other
nodes with fanouts outside of the window. It holds that C ⊆ L
since the expansion may cause that some leaves of C become a
fanout of a node inside the window. Two situations can happen
for a leaf node. If all fanins are inside the window, the leaf
can be simply removed from L. Otherwise, all fanins of the
original leaf node need to be added to L. This procedure is
repeated iteratively to ensure that there are no leaves having
a fanin already included the window.

The resynthesis is performed by means of the CGP. The
evolutionary optimization is executed for a limited number
of iterations.The more iterations are allowed, the higher im-
provement can be achieved. However, many iterations on a
small window mean a waste of time. Finally, the optimized
logic network W ′ is evaluated w.r.t. N ′ and if it performs
better, it replaces all non-leaf nodes included in W . The
whole optimization algorithm is terminated when a predefined
number of iterations or a given runtime is exhausted.

IV. EXPERIMENTAL EVALUATION

A. Experimental setup

Our goal is to evaluate performance of the proposed
method w.r.t. the state-of-the-art EA-based method (denoted
as global) applied to the whole Boolean network and to
compare both methods to the best result produced by the ABC.
Both methods operate at the level of optimized and mapped
Boolean networks to avoid the bias of AIG representation.
The procedure OptimizeNetworkUsingEA is based on the
CGP implemented as described in Section II-B with following
parameters: na = 2, λ = 1, h = 2, nn = |W |. A single
call of this procedure is executed for the global method. On
contrary, several calls of this procedure are executed in the
proposed method. The global method terminates after niters
iterations. The proposed method uses a simple divide-and-
conquer strategy. The proposed method is allowed to create
ncuts cuts. For each cut, the OptimizeNetworkUsingEA is
allowed to perform niters/ncuts iterations. In total, niters
evolutionary iterations are evaluated in both cases. This naive
strategy supposes that the computation effort does not depend
on the window size but it helps to fairly evaluate the impact
of the proposed method. In this paper, we use niters = 109

iterations. The cutsize limit is set to 104. Only windows with
more than 10 nodes are accepted. The root node m is chosen
randomly.

This setup was considered the best amongst other setup
combinations of the cutsize (5, 10, 20, 35, 50, 75, 100, 150,
200, 250, 103, 104) and niters (103, 105, 107, 109). Experimen-
tal results showed a convergence of the number of removed
cells after approximately niters = 107. cutsize = 104 cells
ensures the possibility of the biggest possible cut creation w.r.t
the root cell placement.

This strategy simplifies the problem but may lead to degra-
dation of the performance if many unacceptable windows are
produced. The only criterion we consider is the area on a
chip expressed as the number of gates. For each method and
each benchmark, five independent runs were executed to obtain
statistically significant results.

B. Results

The proposed method was implemented in C++ and inte-
grated in Yosys open synthesis suite. Tab. I summarizes the
experimental results. The goal was to improve the size of
mapped benchmark circuits optimized at the level of AIG by
ABC. In particular, we took 19 highly optimized circuits from

IWLS’05 Open Cores benchmarks and 9 highly optimized
large arithmetic circuits1.

The circuits were mapped to gates using a library of
common 2-input gates including XORs/XNORs (ABC: ’map’).
After mapping, optimization by the proposed and global
method was executed and final number of mapped gates in
circuits was examined. The circuits were then transformed to
AIG representation (ABC: ’strash’) and compared to the results
from ABC-only optimization. All of the optimized circuits
were formally verified w.r.t their original form (ABC: ’cec’).

Many iterations of resyn script were applied in ABC on the
original verilog benchmarks as described in [13] in order to
obtain the best results for AIG optimization.

The first three columns of Tab. I contain information related
to the benchmarks (name, number of PIs and POs). The next
two columns contain number of nodes and depth of circuits in
the AIG form after application of ABC resyn script. The other
two columns show parameters of the mapped circuits and those
numbers serve as a baseline for our comparison – the number
of gates and logic depth is provided. Then, the achieved
results expressed as the relative reduction w.r.t. the baseline are
reported for the proposed and global method. For each method,
we report the average and the best obtained improvement.
These numbers are calculated from five independent runs.

The best results are very close to the average ones which
suggests that the both EA-based methods are stable although
they are in principle non-deterministic. According to the
number of highlighted cases showing the better results, the
proposed method performs substantially better considering the
average as well as the best results. It wins in 22 out of 28 cases.
The average reduction on the IWLS’05 benchmarks is slightly
better in favor of the global method, but it is affected mostly
by five cases where the global method provides substantially
better results. Looking at the arithmetic circuits, the global
method is able to slightly improve only two circuits. In other
cases, the reduction is negligible. We analyzed the five cases
where the global method outperformed the proposed one and
concluded that the global method works well especially for
small instances (less than 104 gates) that have a reasonable
depth (10 to 25 levels). The global optimization of circuits
with large depth performs unsatisfactory. Compared to ABC, a
substantial improvement is achieved on the arithmetic circuits.
The number of gates is reduced by nearly 15% in average. The
highest reduction, 30.1%, is recorded for hamming benchmark.
The detailed analysis revealed that this was possible due to
better handling of XORs/XNORs and also by a relatively
huge redundancy of the original circuit optimized by ABC.
The relative number of AND/OR/NAND/NOR gates remained
nearly the same (around 74%). The number of XORs/XNORs
increased from 10% to 15%.

Our second experiment evaluates efficiency of the AIG
representation. The last two columns of Tab. I show what
happens when we convert the optimized gate-level netlists to
AIGs. This section contains the relative size improvement for

1All the benchmarks are taken from https://lsi.epfl.ch/MIG

TABLE I: Comparison of the proposed and global method (sec. Impr. proposed, Impr. global) w.r.t. the initial number of mapped gates (sec. ABC(mapped))
and the best result of ABC (sec. ABC(AIG)). Section ABC(AIG) / ABC(mapped) contains parameters of the optimized circuits before and after mapping (D
is logic depth, G is the number of gates). Last section shows the size of AIG(relative to ABC) when the gate-level circuit is mapped back to AIG.

ABC(AIG) ABC(Mapped) Impr. proposed Impr. global [7] Impr. at AIG level

Benchmark PIs POs AIG D gates D gates avg gates best gates avg gates best proposed global [7]

DSP 4223 3792 39958 41 43491 45 3.6% 3.6% 0.0% 0.0% 0.1% 0.0%
ac97 ctrl 2255 2136 10497 9 11433 10 2.9% 2.9% 1.4% 1.4% 0.7% 1.3%
aes core 789 532 20632 19 21128 20 2.9% 2.9% 0.6% 1.7% -0.8% -0.3%
des area 368 70 5043 24 5199 25 6.0% 6.1% 2.1% 2.3% 3.6% 1.0%
des perf 9042 1654 75561 15 78972 16 1.8% 1.8% 0.0% 0.1% -2.7% -6.8%
ethernet 10672 10452 56882 22 60413 23 0.5% 0.5% 0.0% 0.0% 0.1% -0.1%
i2c 147 127 1009 10 1161 12 9.2% 9.2% 10.0% 10.7% 4.8% 8.1%
mem ctrl 1198 959 9351 22 10459 24 7.0% 7.0% 24.8% 25.4% 2.4% 26.0%
pci bridge32 3519 3136 16812 18 19020 21 3.5% 3.5% 0.5% 0.6% 0.4% 0.5%
pci spoci ctrl 85 60 994 13 1136 15 18.3% 18.5% 34.8% 35.7% 13.4% 33.0%
sasc 133 123 657 7 746 8 6.2% 6.2% 2.4% 2.8% 0.0% -0.2%
simple spi 148 132 770 10 822 11 5.5% 5.7% 4.4% 4.6% 1.1% 0.8%
spi 274 237 3430 24 3825 26 5.6% 5.6% 13.5% 20.2% 1.7% 16.0%
ss pcm 106 90 381 6 437 7 5.7% 6.7% 2.3% 2.3% -0.3% 0.3%
systemcaes 930 671 11014 31 11352 27 11.9% 12.3% 0.0% 0.0% 3.3% -0.4%
systemcdes 314 126 2495 21 2601 25 4.8% 5.0% 9.1% 9.9% 2.2% 5.2%
tv80 373 360 7838 35 8738 39 6.6% 6.9% 11.1% 11.3% 2.9% 12.4%
usb funct 1860 1692 13914 20 15405 23 5.8% 5.9% 2.6% 2.6% 1.4% 2.8%
usb phy 113 73 380 7 452 9 13.9% 14.0% 12.2% 12.2% 3.9% 5.8%

average (IWLS’05 benchmarks) 14611 18 15620 20 6.4% 6.5% 7.0% 7.6% 2.0% 5.5%

mult32 64 64 8903 40 8225 42 16.5% 16.6% 0.0% 0.0% -1.5% 0.0%
sqrt32 32 16 1353 292 1462 307 22.3% 24.3% 3.0% 3.0% 4.2% -4.2%
diffeq1 354 193 21980 235 20719 218 11.5% 11.5% 0.0% 0.0% 0.7% -7.3%
div16 32 32 5111 132 5847 152 15.7% 15.8% 0.0% 0.0% 2.1% -12.0%
hamming 200 7 2607 73 2724 80 28.6% 30.1% 14.6% 14.6% 11.0% -0.6%
MAC32 96 65 9099 54 7793 55 7.7% 7.8% 0.0% 0.0% -9.7% -13.0%
revx 20 25 7516 162 8131 171 14.5% 14.5% 0.0% 0.1% 1.2% -13.0%
mult64 128 128 26024 186 21992 190 7.4% 7.4% 0.3% 0.5% -5.4% -1.0%
max 512 130 2964 113 3719 117 5.3% 5.3% 0.7% 0.8% 0.8% -0.4%

average (arithmetic benchmarks) 9506 143 8956 148 14.4% 14.8% 2.1% 2.1% 0.4% -5.7%

the best results produced by the proposed and global method
w.r.t. size of the AIGs produced by ABC. We can see that
the average reduction is substantially lower compared to the
reduction achieved on the gate level representation. In many
cases, the AIG of the optimized circuit is even larger than the
original one. However, such a behavior is expectable because
this happens if the number of XORs increases but the overall
number of removed gates is relative small. On the other hand,
when the reduction at the level of gates exceeds a certain level
the reduction is visible also on AIGs. This is evident especially
on the IWLS benchmarks where the global method produces
solutions that clearly dominate. From the perspective of AIGs,
the global method completely failed on arithmetic benchmarks.
The number of AIG nodes substantially increased in almost all
cases. As discussed in the introduction, this simple comparison
demonstrates the limited capabilities of otherwise efficient
AIG representation.

Tab. II shows the average number of leaves, roots and
volume of windows produced by the windowing algorithm on
some benchmarks. Despite using a simple selection strategy,
the parameters are relatively good. The number of leaves |L|
determining the number of primary inputs of the refactored
subcircuit is substantially higher compared to the sizes of cuts
used during rewriting. Number of cut nodes is also satisfactory.
Compared to rewriting, a relatively complex portions of the
original circuits are chosen for subsequent optimization. This
could explain the reason, why the proposed method is able to
achieve such reduction. Detailed analysis revealed that the size

of the windows is typically higher for the arithmetic circuits.

TABLE II: Average parameters of all windows and windows that led to a
reduction (col. successful windows) generated during the refactoring.

all windows successful windows
Benchmark |L| |R| size |L| |R| size

mem ctrl 27 25 38 28 26 44
pci spoci ctrl 14 13 21 18 19 32
systemcaes 22 15 35 14 13 26

mult32 20 16 34 26 21 52
sqrt32 33 29 62 20 17 37
diffeq1 30 27 53 28 26 55
div16 32 28 50 25 24 44
hamming 30 26 44 26 24 45

V. CONCLUSION

Compared to the conventional logic synthesis, state-of-the-
art EA-based optimization is able to produce substantially
better results at the cost of a higher run time that grows
with the increasing complexity of the Boolean networks. This
paper addresses this problem by combining the EA-based
optimization with refactoring that allows to work on a smaller
portions of the original Boolean network. Despite using a very
simple strategy of root node selection which may degrade the
capabilities of the refactoring, the proposed method is able to
outperform the AIG-based as well as the original EA-based
optimization applied to the whole Boolean networks.

ACKNOWLEDGMENTS

This work was supported by Czech Science Foundation
project 19-10137S.

REFERENCES

[1] A. Mishchenko, S. Chatterjee, and R. Brayton, “Dag-aware aig rewriting:
a fresh look at combinational logic synthesis,” in 2006 43rd ACM/IEEE
Design Automation Conference, July 2006, pp. 532–535.

[2] P. Fiser and J. Schmidt, “The observed role of structure in logic synthesis
examples,” in 18th Int. Workshop on Logic and Synthesis, 2009, pp. 210–
213.

[3] C. Yang and M. Ciesielski, “BDS: a BDD-based logic optimization
system,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 21, no. 7, pp. 866–876, Jul 2002.

[4] N. Vemuri, P. Kalla, and R. Tessier, “Bdd-based logic synthesis for lut-
based fpgas,” ACM Trans. Des. Autom. Electron. Syst., vol. 7, no. 4, pp.
501–525, Oct. 2002.

[5] L. Amaru, P. E. Gaillardon, and G. D. Micheli, “Mixsyn: An efficient
logic synthesis methodology for mixed xor-and/or dominated circuits,”
in 2013 18th Asia and South Pacific Design Automation Conference
(ASP-DAC), 2013, pp. 133–138.

[6] P. Fiser, I. Halecek, and J. Schmidt, “Sat-based generation of optimum
function implementations with xor gates,” in 2017 Euromicro Confer-
ence on Digital System Design (DSD), 2017, pp. 163–170.

[7] Z. Vasicek, “Cartesian GP in optimization of combinational circuits with
hundreds of inputs and thousands of gates,” in Proceedings of the 18th
European Conference on Genetic Programming – EuroGP, ser. LCNS
9025. Springer International Publishing, 2015, pp. 139–150.

[8] P. Fiser, J. Schmidt, Z. Vasicek, and L. Sekanina, “On logic synthesis of
conventionally hard to synthesize circuits using genetic programming,”
in 13th IEEE Symposium on Design and Diagnostics of Electronic
Circuits and Systems, 2010, pp. 346–351.

[9] A. Mishchenko and R. Brayton, “Scalable logic synthesis using a simple
circuit structure,” in Int. Workshop on Logic and Synthesis, 2006, pp.
15–22.

[10] J. D. Lohn and G. S. Hornby, “Evolvable hardware: Using evolutionary
computation to design and optimize hardware systems,” IEEE Compu-
tational Intelligence Magazine, vol. 1, no. 1, pp. 19–27, 2006.

[11] J. Miller and P. Thomson, “Cartesian Genetic Programming,” in Proc.
of the 3rd European Conference on Genetic Programming EuroGP2000,
ser. LNCS, vol. 1802. Springer, 2000, pp. 121–132.

[12] Z. Vasicek and L. Sekanina, “Formal verification of candidate solutions
for post-synthesis evolutionary optimization in evolvable hardware,”
Genetic Programming and Evolvable Machines, vol. 12, no. 3, pp. 305–
327, 2011.

[13] L. Amaru, P. E. Gaillardon, and G. D. Micheli, “Majority-inverter
graph: A new paradigm for logic optimization,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 35,
no. 5, pp. 806–819, 2016.

