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Abstract— Randomness testing is an important procedure that
bit streams, produced by critical cryptographic primitives such
as encryption functions and hash functions, have to undergo.
In this paper, a new hardware platform for the randomness
testing is proposed. The platform exploits the principles of genetic
programming, which is a machine learning technique developed
for the automated program and circuit design. The platform is
capable of evolving efficient randomness distinguishers directly
on a chip. Each distinguisher is represented as a Boolean
polynomial in the algebraic normal form. The randomness testing
is conducted for bit streams that are either stored in an on-chip
memory or generated by a circuit placed on the chip. The
platform is developed with a Xilinx Zynq-7000 All Programmable
System on Chip that integrates a field programmable gate array
with on-chip ARM processors. The platform is evaluated in terms
of the quality of randomness testing, performance, and resources
utilization. With power budget less than 3 W, the platform
provides comparable randomness testing capabilities with the
standard testing batteries running on a personal computer.

Index Terms— Evolutionary computation, field-programmable
gate arrays (FPGAs), random sequences.

I. INTRODUCTION

CRYPTOGRAPHIC primitives, such as encryption func-
tions, one-way hash functions, pseudorandom number

generators, and hardware random number generators [exploit-
ing a suitable physical process to obtain a truly random
bit stream (RBS)], are often implemented as electronic cir-
cuits directly on a chip. Ideally, the output bits they pro-
duce should be statistically indistinguishable from the outputs
of a truly random number generator. However, this crucial
property can be partly lost because of various unpredictable
faults, changes in the environment or hidden design flaws.
Randomness testing is, thus, an important procedure that
critical cryptographic primitives should regularly undergo.
Various statistical test suites (STSs) such as National Insti-
tute of Standards and Technology (NIST) STS, Dieharder,
and TestU01 are routinely employed for randomness testing.
However, they are primarily intended for an offline testing
conducted on a common processor.
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Recently, a new randomness testing procedure has been
proposed [1]. As this procedure is based on creating spe-
cific Boolean functions acting as randomness distinguishers,
there is a great potential to develop its efficient circuit
implementation. The design of desired distinguishers is based
on searching in the space of Boolean functions represented
in an algebraic normal form (ANF), i.e., as polynomials
with product terms summed by means of an exclusive-
OR operator. A heuristic approach utilizing a brute force
search method was employed to obtain desired Boolean func-
tions by means of a software implementation [1]. Recent
work [2] showed that machine learning techniques, particu-
larly genetic programming (GP), can also provide high-quality
Boolean distinguishers, but with a lower computational effort
invested in comparison with the brute force algorithm.

In this paper, we propose a hardware implementation of the
GP method [2] that enables us to evolve efficient randomness
distinguishers directly on a chip. The objective is to find
Boolean functions (so-called distinguishers) that successfully
distinguish a given bit stream from an RBS. These bit streams
are either stored in an on-chip memory (as a result of some
on-chip computation) or generated “on the fly” by a cryp-
tographic primitive (circuit) implemented on the chip. The
fitness function, determining the quality of candidate solutions,
is based on the so-called Z-score (see Section III-B) which is a
numerical outcome of a statistical randomness test comparing
two data sequences.

The platform has been developed with a Xilinx Zynq-
7000 All Programmable System on Chip that integrates a
field programmable gate array (FPGA) with on-chip ARM
processors. The platform consists of three main components:
1) configurable Boolean distinguishers (CBDs) implemented
as digital circuits in the FPGA; 2) a search algorithm imple-
mented in an on-chip ARM core and used to generate can-
didate distinguishers that are evaluated in CBDs; and 3) a
memory subsystem storing the data sequences undergoing the
randomness testing if they are not directly generated by a
circuit component. If multiple instances of CBDs exist, several
candidate distinguishers can be evaluated in parallel. The
platform was evaluated in terms of the quality of randomness
testing (by means of the data sets produced by several cryp-
tographic primitives), performance, and resources utilization,
and compared with a relevant hardware implementation of
randomness testing.

The main contribution of this paper is that the algorithm
and the software implementation described in [2] can be
implemented as an embedded solution for sensitive on-demand
statistical test requiring a fraction of energy in comparison to

1063-8210 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9399-9313
https://orcid.org/0000-0002-2693-9011


MRAZEK et al.: EFFICIENT ON-CHIP RANDOMNESS TESTING UTILIZING MACHINE LEARNING TECHNIQUES 2735

a personal computer. The design tool reports less than 3 W
for the Zynq chip. This paper also provides a detailed analysis
of the tradeoffs between the area occupied in the FPGA and
the randomness testing time.

The rest of this paper is organized as follows. Section II
introduces the principles of statistical randomness testing of
cryptographic primitives and its hardware implementations,
evolutionary algorithms (EAs), GP, hardware implementations
of GP (by means of evolvable hardware), and relevant appli-
cations of EAs in the domain of this paper. The idea of
Boolean distinguishers and the methods based on the brute
force search and the evolutionary search of Boolean distin-
guishers are presented in Section III. The proposed hardware
platform, capable of evolving efficient Boolean distinguishers
in FPGA, is introduced in Section IV. Section V deals with the
experimental evaluation of the platform. Section VI provides
the use case in which randomness testing is conducted online,
for a pseudorandom number generator implemented on a chip.
Conclusions are given in Section VII.

II. RELATED WORK

A. Cryptographic Primitives and Randomness Testing

Cryptographic primitives such as encryption functions,
one-way hash functions, and pseudorandom number gener-
ators (RNGs) are well-established, low-level cryptographic
algorithms (or hardware components) that are used as build-
ing elements of cryptographic protocols in computer appli-
cations. Designing a new cryptographic primitive is a very
time-consuming job even for experts. These primitives have
to be tested well by the cryptologist community before their
routine deployment. The history carries many examples of
serious flaws in cryptographic algorithms [3]–[5]. Cryptanaly-
sis conducted by a skilled human cryptanalyst is by far the
most successful approach to assess the overall security of an
algorithm.

Some automation is, however, possible in the first phases
of the cryptanalysis, e.g., by using randomness testing suites
such as the NIST STS [6] or Dieharder [7]. These tests can
be applied to check whether the produced bits are correct
in terms of statistical properties and to reveal a potentially
undesired behavior indicating a deviation from randomness.
Such a defect signalizes a potential flaw in the algorithm
design. As these testing suites are limited only to the testing
of predefined patterns on certain statistical defects, others
potential flaws will remain unnoticed.

In some cases, statistical testing is also periodically con-
ducted during the deployment of the primitives. For exam-
ple, superseded standard FIPS 140-1 [8] required on-demand
statistical RNG test using four statistical tests. New standard
FIPS 140-3 [9] requires additional continuous testing of the
RNG using simple continuous random bit generation (RBG)
test or RBG entropy source test. As summarized in [2],
a standard statistical test examines randomness of data by
looking at a specific feature (e.g., the number of ones, the num-
ber of ones in blocks, and so on). The empirical tests of
randomness are typically based on the statistical hypothesis
testing.

These tests evaluate the null hypothesis, i.e., “data being
tested are random.” Each test computes a specific statistic
of bits or block of bits. A test checks whether the observed
test statistic for analyzed bit stream happens to be in the
extreme (tail) parts of the null distribution (distribution of test
statistic of random data). In such a case, the hypothesis is
rejected, and the data are considered as nonrandom. Formally,
a test statistic is transformed to a p-value (using the null
distribution) representing the probability that a perfect random
number generator would have produced a bit stream “less
random” (i.e., more extreme according to the analyzed feature)
than the tested bit stream [6]. A small p-value (below 0.01) is
typically interpreted as the tested data not being random.

In general, the empirical tests of randomness are based on
the following steps. First, a histogram of patterns for the given
data set is computed by the test. Then, the histogram is reduced
into a single value representing its “randomness” according to
the analyzed feature. Finally, p-value is typically calculated
from the observed test statistic using the null distribution.

Tests are grouped to testing suites (also called batteries) to
provide more complex randomness analysis. NIST STS [6],
Dieharder [7] (an extended version of the Diehard), and
TestU01 [10] are the most commonly used batteries for the
statistical randomness testing. Although test batteries consist
of a set of tests, their testing ability is limited since the feature
being examined is fixed for each test. However, it is believed
that by using suitable type and amount of features, randomness
can be confirmed with a desired level of confidence.

Recent work [1], [2], [11] showed that carefully con-
structed Boolean functions can provide comparable results, yet
much faster and using lower data volumes in comparison with
the commonly used STSs. This approach will be elaborated
on in detail in Section III.

B. Evolutionary Algorithms and Cryptography

Genetic algorithms, GP, evolutionary strategies, and other
search methods inspired in the Darwinian theory of evolu-
tion and in the principles of neo-Darwinism are collectively
referred to as EAs. They are traditionally used to solve hard
optimization problems by means of a parallel search in the
space of all feasible solutions. In order to do so, EAs employ
a set of candidate solutions (the so-called population), new
candidate solutions are created by bioinspired operators such
as crossover and mutation, and the search is driven by an
objective function, called the fitness function. GP can also be
seen as a machine learning technique that can automatically
design computer programs without requiring the user to know
or specify the form or structure of the solution in advance [12].
As logic networks can also be treated as candidate solutions,
GP has been employed to automatically design digital circuits,
for example, using a version of GP denoted as Cartesian
GP (CGP) [13]. By evolvable hardware, we mean a circuit
evolution conducted directly on a chip, typically by means of
GP [14].

In the context of cryptography, EAs have been applied to
solve quite a diverse set of problems, yet all showing a com-
mon property—they can be formulated as a search problem.
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Picek’s tutorial [15] provides a list of tasks where EAs proved
successful in cryptology.

Pseudorandom generators have traditionally been evolved
by the EA community (e.g., [16], [17]). One of the require-
ments for their use for cryptographic purposes is a low
implementation cost. CGP was employed to produce such type
of pseudorandom generators [18].

Boolean functions with specific properties (for example,
highly nonlinear and balanced functions) are introduced
to cryptographic primitives because they make a possible
attack on them more difficult. Genetic algorithms (e.g.,
for S-Box generation [19]) as well as GP (e.g., for bent
function [20] and high correlation immunity function [21]
designs) were successfully applied, improving the state-of-
the-art results. A general scheme for the design of block
ciphers by means of GP was introduced in [22]. To best of
our knowledge, there has been no research related to evolvable
hardware dealing with randomness testing.

C. Circuit Evolution in FPGAs

FPGAs have always been an attractive platform for the
on-chip circuit evolution because they provide electronic cir-
cuits that can relatively easy be configured and evolved by
means of EAs (see [14, Ch. 2]).

Evolvable hardware systems based on FPGAs have been
developed for more than 2 decades, see a recent survey [23].
In the FPGA-based evolvable hardware, EA (GP) generates
candidate configurations (the so-called chromosomes in the
EA terminology) that are used to configure the reconfigurable
blocks of the FPGA. Once a new candidate circuit is estab-
lished on the basis of this configuration, it is evaluated to
obtain the fitness score. The evaluation is performed for all
candidate circuits in the population either sequentially or in
parallel. New populations are created using genetic operators
which can be implemented in the software or as circuits. The
process is repeated until a required solution is obtained or
a predefined number of generations is exhausted. From the
designer perspective, the key decisions (determining the area
on a chip, performance, and flexibility) are how candidate
circuits will be implemented and reconfigured and where EA
will be implemented.

The circuit reconfiguration can directly be performed at
the level of the configuration bit stream for some FPGA
families. The concept of dynamic partial reconfiguration
(DPR) is then used which allows designers to modify a part
of the FPGA while other parts of the FPGA can operate
unaffected [24]–[27]. There is a configuration port (e.g., Inter-
nal Configuration Access Port in Xilinx Virtex chips) that
enables to accomplish the partial reconfiguration from a device
(e.g., a processor) located inside the FPGA. The elementary
unit of the FPGA which can undergo the reconfiguration is
represented by the so-called frame. As one frame typically
contains thousands of bits, the reconfiguration time is long
even if only a minimal change in the FPGA configuration
is requested. There are many constraints imposed on the
configuration process in order to perform the reconfiguration
safely. Hence, DPR is relatively a time-demanding operation.

A different approach is to reconfigure a virtual recon-
figurable circuit (VRC) that is built on the top of the
FPGA using multiplexers and application-specific process-
ing elements [28], [29]. Here, the reconfiguration means just
writing a set of registers that holds the control signals for
the multiplexers. VRCs have been developed in order to
avoid slow and not-well-supported reconfiguration mecha-
nisms existing in former FPGAs. An obvious disadvantage
is that the multiplexers needed to ensure the reconfiguration
introduce the additional area and delay overhead in the result-
ing circuits. A recent trend is to combine DPR with VRC
to gain benefits from both the approaches and eliminate their
disadvantages [26], [30].

The EA is implemented either outside the FPGA (e.g.,
in a personal computer [24]) or inside the FPGA. The second
option is currently a preferred solution as the EA is, in fact,
a software which can be executed in on-chip processors such
ARM or MicroBlaze [27], [30], [31]. Another approach is to
implement the EA as a specialized circuit using resources
available in the FPGA. However, this solution is useful only in
very specific applications. The EA implemented in software is
easy to modify and configure. Its performance is usually suffi-
cient because executing the genetic operators typically requires
a fraction of the time with respect to the candidate circuit
evaluation which is typically accelerated in the programmable
logic (PL).

In the context of FPGA-based evolvable hardware systems,
various implementation options for the circuit evaluation,
fitness calculation, and genetic operators were surveyed and
analyzed [23], [27], [30]. The state-of-the-art approach is to
implement the EA as a program executed in an on-chip
processor and evaluate candidate circuits by means of DPR,
VRC, or their combination. This approach is also suitable for
Xilinx’s reconfigurable Zynq chip [32]. Zynq integrates a PL,
a dual-core ARM Cortex A-9 processor and numerous I/O
subsystems and memories. It also utilizes new reconfigura-
tion options by means of a processor configuration access
port (PCAP) which can manage reconfigurations from the
embedded ARM cores. PCAP has been used for the purposes
of evolvable hardware, for example, in [26] and [30].

D. Hardware Implementation of Randomness
Testing Methods

General-purpose state-of-the-art randomness testing frame-
works (such as FIPS, NIST STS, and Dieharder) are typically
implemented on common processors and used for the off-line
randomness testing. Full hardware implementations of these
frameworks are quite rare. Four tests of the first version of the
FIPS 140-2 standard were implemented on the Actel Fusion
FPGA [33]. Four overlapping tests out of 16 Diehard battery
tests required 16 518 LUTs of the Xilinx Virtex 5 FPGA chip
running at 151 MHz. Almost complete hardware implementa-
tion of the NIST STS suite was presented in [34], where the
authors employed DPR to squeeze 14 tests of NIST STS into a
Xilinx Virtex II Pro FPGA V2P30 chip. Their implementation
of all tests would require 32 230 LUTs (estimated according
to [34]); thanks to the use of DPR, the tests were executed on
an FPGA containing only 27 392 LUTs.



MRAZEK et al.: EFFICIENT ON-CHIP RANDOMNESS TESTING UTILIZING MACHINE LEARNING TECHNIQUES 2737

Other FPGA-based implementations of randomness testing
are focused on revealing specific weaknesses in the (pseudo or
true) random data streams produced directly on a chip. One of
these approaches is to implement only a subset of a commonly
used test battery (such as NIST STS tests [35], [36]). The
objective is to provide fast and compact, but, in principle,
simplified on-the-fly randomness testing. It has to be noted
that although the hardware implementation of some tests
is simplified with respect to the standard software version,
no experimental analysis of the quality of testing on the real
data was reported in these papers. Another approach in this
direction is developing completely new hardware architec-
tures for randomness testing. A new architecture suitable for
learning cumulative distribution functions that were applied to
nonparametric runtime testing for bias in RNGs was presented
in [37]. The authors pointed out that “a notable drawback
of our algorithm is that in order to function optimally it
requires the stream under analysis to generate variates in
a time-independent manner.” In addition to statistical ran-
domness testing, some implementations also test the internal
quality of the entropy source in the case of True RNGs [38],
but these approaches are out of the scope of this paper.

We can conclude this section by emphasizing the fact that
the on-the-fly simplified implementations discussed in the
previous paragraph cannot be considered as implementations
of general-purpose randomness testing frameworks. As the
randomness testing showing the quality comparable with NIST
STS is needed in various on-chip applications and in low-cost
portable systems and existing implementations of this type are
obsolete [33], [34], [39], we propose a new FPGA implemen-
tation based on Boolean distinguishers in this paper.

III. BOOLEAN FUNCTIONS AS RANDOMNESS

DISTINGUISHERS

Based on constructing suitable Boolean functions, Sys
et al. [1] introduced a method looking for distinguisher of
a (tested) bit stream (TBS) and an RBS. These Boolean
functions are represented in an ANF and evaluated by means
of the Z-score. This section introduces ANF for Boolean
functions, Z-score and two methods developed for constructing
desired Boolean distinguishers.

A. Algebraic Normal Form

ANF is a canonical polynomial representation of a Boolean
function. Formally, every Boolean function f : {0, 1}n →
{0, 1} can uniquely be represented by a polynomial in n
variables

f (x1, . . . , xn) =
⊕

I∈P(M)

aI x I =
⊕

I∈P(M)

aI

∏

i∈I

xi

where ⊕ is the exclusive-OR operator, P(M) denotes the pow-
erset of M = {1, . . . , n}, n denotes the number of variables,
and aI ∈ {0, 1}. The product x I is denoted as monomial. The
algebraic degree of f , denoted by deg( f ), is the maximum of
the degrees of the monomials in f . Considering ANF repre-
sentation and lexicographically ordered powerset P(M), every
Boolean function can uniquely be represented by the binary

sequence (a0, a1, . . . , aM ) of length 2n , where the coefficient
a0 corresponds with the empty set and aM corresponds to the
set M .

For example, Boolean function g(x1, x2, x3) = x1 ⊕ x1x3 ⊕
x2x3 is in ANF, its algebraic degree is deg(g) = 2 and it con-
sists of three monomials (|I | = 3). This function is uniquely
determined by I = {{1}, {1, 3}, {2, 3}} ⊆ P({1, 2, 3}) and
it can be represented as (a0, a1, a2, a3, a12, a13, a23, a123) =
(0, 1, 0, 0, 0, 1, 1, 0).

The reasons for choosing ANF for representing a Boolean
distinguisher are: 1) a logic expression in ANF can easily be
interpreted by human (which is important for cryptanalysts)
and 2) the search space induced by the ANF representation
is naturally constrained for a given n by the requirements
imposed on the ANF.

B. Z-Score

The quality of a Boolean distinguisher is measured in terms
of the so-called Z-score, which is a generalization of the
Monobit test that counts the number of ones (#1) and zeros
(#0) in the analyzed TBS and examines whether the numbers
are close to each other as it would be expected for random
data. The N-bit data stream to be analyzed is divided to B
nonoverlapping blocks consisting of n bits (N = B · n). The
blocks serve as inputs for Boolean function f (x1, . . . , xn).
The sum #1 of results of f when applied to the blocks,
is computed. The #1 together with the probability of evaluating
f to one for random input (denoted as p) is used to compute
Z-score

Z-score = #1 − pB√
p(1 − p)B

. (1)

Fig. 1 shows how Z-score is computed by a three-input
Boolean distinguisher when sequences TBS (T ) and RBS
(R) contain B = 4 blocks. Z-score was employed as it
normalizes a binomial distribution of #1 [1]. In addition to
that, it defines the statistical distance between observed and
expected numbers of ones for random data.

Sys et al. [1] proposed to use the computed test statistic
directly as the measure of the strength of distinguishers. The
Z-score of the tested data is compared with the Z-score
calculated for a random data that serves as a baseline for ran-
domness comparison. A bigger (absolute) difference of these
Z-scores then indicates a stronger randomness distinguisher
and conversely.

C. Brute Force Method

A heuristic method, based on the brute force search, was
proposed to find suitable Boolean distinguishers, i.e., n-
input Boolean functions represented in ANF [1]. The method
consists of two phases. The goal of the first phase is to
enumerate all monomials whose degree is less or equal to
d , where d is very small (usually d = 3) to make the
enumeration feasible. From all these results, a set of top 10 (or
100 or 1000, depending on experiment) monomials showing
the best Z-score is selected. In the second phase, more complex
distinguishers are constructed from the top monomials, again
by enumeration. The monomials are combined together to
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Fig. 1. Determining the fitness score (Z-score) of Boolean distinguisher g
represented using logic function x1 ⊕ x2x3 ⊕ x1x3. Test sequence T and
random sequence R consist of B = 4 samples.

obtain a Boolean distinguisher in the form f = b1 ⊕ · · · ⊕ bk ,
where b is a preselected monomial and k ≤ 3. Although this
algorithm significantly reduced the set of distinguishers that
are considered by the evaluation, it was shown in [1] that
resulting distinguishers can reveal nonrandomness of various
difficult TBSs.

BoolTest1 [11] is a software implementation of the brute
force search method. The performance (strength and speed) of
the BoolTest significantly depends on the used parameters (k,
d). BoolTest provides comparable randomness testing to the
NIST STS test suite in terms of strength (comparable number
of rounds for 20 tested cryptographic functions) as stated
in [1], but the time is radically decreased. The randomness
analysis of 100 Mib of data (regardless of its randomness
quality) with the NIST STS (default setting) takes 8.5 min
on ordinary laptop.2 BoolTest with four very simple config-
urations (k, d ∈ {1, 2}, but with larger n ∈ {384, 512}) used
in [1] takes 5, 6.6, 3.8, and 3.9 s, respectively. However, for
a more challenging configuration with n = 128, k = 3, and
d = 3, the time needed to process 100 Mib of data is about
1.1 min. This underlines the necessity to employ an efficient
heuristics such as EA.

In summary, BoolTest can be used as a fast alternative to
existing batteries and/or to complement their results. More-
over, with decreasing amount of the available data, BoolTest
outperforms NIST STS battery more and more. The direct
interpretability of a Boolean function-based distinguisher adds
benefit for a human cryptologist interested in the more detailed
analysis of weaknesses present in inspected cryptographic
function. Among others, the previously unknown bias in the
output of C rand() and Java Random generators was discovered
using BoolTest [1].

D. Evolutionary Design of Distinguishers

The EA presented in [2] is based on a (1 + λ) search
strategy known from CGP [13]. In this algorithm, λ offspring

1github.com/crocs-muni/booltest
2Processor Intel(R) Core(TM) i5-8250U CPU at 1.60 GHz.

individuals are created by a point mutation from one parent—
the highest scored individual of the previous population.

In order to encode a Boolean function containing up to k
monomials with degree d , a string of genes (integers) consist-
ing of d × k items is employed. The items are divided into k
tuples. Each tuple is associated with a single monomial and
defines its inputs. The positive value of a gene determines
the index of the input variable involved in the monomial. The
negative value means that this item is ignored. For example,
a candidate Boolean function

g = x1x5x40 ⊕ x20x75 ⊕ x99x76 ⊕ x56

is encoded as

(1, 5, 40; 20, 75,−30; 99,−55, 76; −1, 56,−112)

for n = 128, d = 3, and k = 4. When the mutation operator
is applied, up to h genes can be modified. The mutation either
inverts the sign of a chosen gene or replaces its value by a
randomly generated, but valid integer.

Mrazek et al. [2] compared the aforementioned EA (denoted
EVO in [2]), the two-stage brute force approach (denoted
BF/BF) and the brute force approach combined with EA,
in which either the first or the second stage was performed by
EA (denoted EVO/BF and BF/EVO). The best results were
reported for the EVO approach that was tested for d ≤ 10
and k ≤ 20. On seven complex data sets analyzed in [2],
EVO provided better distinguishers and the execution time
was, in practice, reduced 40 times with respect to the BF
approach. Moreover, EVO enabled to construct more complex
distinguishers utilizing higher polynomial degrees, which is
intractable by the brute force approach.

IV. EVOLUTIONARY DESIGN OF BOOLEAN

DISTINGUISHERS IN FPGA

This section presents a new Zynq-based platform for the
evolutionary design of randomness distinguishers. As Fig. 2
shows, after the random initialization, the platform automat-
ically generates candidate polynomials (randomness distin-
guishers) that are evaluated (simulated) using the test and
RBSs available on the platform. The evaluation is accelerated
in the FPGA. The Z-score is calculated for each candidate
distinguisher and the best of them (α) is compared against the
best-scoring distinguisher (p) obtained so far. The globally
best-scoring distinguisher is used as the parent for the next
generation of distinguishers. The process is repeated for a
predefined number of iterations. Details of the mapping of
this process on the resources available in the Zynq chip are
provided in Sections IV-A–IV-D. Together with the hardware
implementation, a purely software implementation in C has
been developed in order to find suitable parameters of EA
and tune the performance before a real hardware design is
conducted.

We have developed two use cases for the platform. It can
be applied for:

1) offline randomness testing of bit streams stored in a local
memory (use case I) or
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Fig. 2. Basic functionality of the platform developed for on-chip randomness
testing.

2) online randomness testing of bit streams generated by
an on-chip component (use case II).

Use case I is motivated by the need to create a portable and
low-power general-purpose randomness testing system (i.e.,
neither laptop-based testing nor simplified test batteries are
acceptable) that could be used as a component in an FPGA (or
eventually in an application specific circuit—ASIC) for ran-
domness testing of various sequences produced or processed
on a complex chip. Hence, we suppose that the data are created
somewhere on a chip and available in a local memory. One of
the applications of such a system is online testing of (pseudo)
random data generated by RNGs which is the use case II (i.e.,
no local memory is used). However, the local memory can also
work as a buffer if the data generated on the chip are produced
much faster or much slower than Boolean distinguishers can
process. While this section deals with use case I, use case II
is presented in Section VI.

A. Platform Overview

The concept of the Boolean distinguishers is, in principle,
well suited for a hardware implementation because a candidate
Boolean distinguisher can straightforwardly be implemented
in a reconfigurable combinational circuit in order to ensure
its fast evaluation. As the structure of the distinguishers
is strictly dictated by ANF, we propose to implement the
distinguisher as a combinational pipelined circuit and employ
the multiplexers to select the inputs of the monomials. This
strategy, corresponding to the VRC principles, supports fast
data processing (because of pipelined circuits) and fast recon-
figuration (by means of writing to the configuration register).
Moreover, if the FPGA is sufficiently large, several VRCs can
be implemented on the chip to enable a parallel evaluation of
the entire population.

In use case I, both bit streams—TBS (tested) and RBS
(reference random)—are stored in a local memory (called
BlockRAM or BRAM) of the FPGA. With respect to available
resources on the Zynq chip, the chosen size of TBS as well
as RBS is N = 800 kbits, i.e., the total memory capacity
allocated for bit streams is 2 × 100 kB.

Fig. 3. Platform for evolutionary design of Boolean distinguishers in the
XC7Z020 Zynq chip. A pair of CBDs is devoted to the evaluation of a
single candidate distinguisher. Multiple CBD pairs are used to evaluate more
distinguishers in parallel (shown for λ = 2).

Fig. 3 shows the proposed implementation of the platform,
which can evolve Boolean distinguishers with up to 128 inputs
in the FPGA. In order to process TBS and RBS in par-
allel, there are two independent copies of the configurable
Boolean distinguisher (CBD and CBD2) implemented in the
PL. They are configured to operate identically, i.e., both copies
implement the same candidate Boolean distinguisher whose
configuration is generated by EA. Each of them is equipped
with a simple counter (CNT) of ones as the number of ones
is needed to calculate the Z-score. These counters are enabled
by TEN and REN signals if CBD is outputting logic 1. The
memory holding TBS and RBS is organized in such a way
that 128 bits can be fetched from each bit stream in one clock
cycle.

If the FPGA capacity is sufficient, multiple CBD pairs
can be instantiated to evaluate more individuals in parallel as
shown in Fig. 3. A common utilization of the platform is that
the number of CBD pairs equals the number of offspring (λ).
TBS and RBS stored in BRAM are then shared by the CBD
pairs (see Section IV-C).

The ARM core is employed to calculate the Z-score from
the results produced by candidate distinguisher(s). The ARM
core also implements the EA and configures CBDs according
to evolved configurations.

B. Configurable Boolean Distinguisher

According to its configuration, CBD is designed to imple-
ment one Boolean distinguisher from a set of Boolean dis-
tinguishers that are determined by three parameters (n, d, k),
where n is the number of input bits of Boolean distinguisher,
d is the maximum degree, and k is the maximum number of
monomials in the corresponding ANF.

With respect to available resources in Zynq and typical
sizes of Boolean distinguishers analyzed in [2], CBD is imple-
mented as a combinational circuit for n = 128, d = 6,
and k = 6. Fig. 4 shows that six monomials (k1, . . . , k6)
are processed in parallel and their outputs are summed in
a six-input exclusive-OR gate. A monomial is implemented
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Fig. 4. Configurable Boolean distinguisher for n = 128, d = 6, and k = 6.
Configuration register CONF controls the inputs of the exclusive-OR (6 bits)
and six monomials (6 × (6 + 6 × 7) bits). One monomial needs 6 bits to
control the inputs of the AND gate and, for each input, 7 bits are needed to
select one of the 128 DATA inputs by the multiplexers. The OR gates enable
to disconnect a particular variable in a monomial.

with a six-input AND gate whose inputs are selected from the
128-bit input vector by means of six 128-input multiplexers.
A single 128-input multiplexer is implemented using 34 LUTs
and 28 embedded multiplexers (the so-called F7 and F8 mul-
tiplexers in Zynq).

Six OR gates used in each monomial are capable of discon-
necting appropriate inputs from the AND gates. This ensures
that each AND can effectively process from 0 to 6 inputs,
i.e., the whole monomial can eventually be disconnected. If all
the inputs are disconnected, the AND generates logic 1. The
inputs of the exclusive-OR can analogically be disconnected.
If all the inputs are disconnected, the exclusive-OR gate
generates logic 0. In order to support pipelined processing,
several stages of D registers are inserted into CBD. One
stage of D registers is also included to the implementation of
128-input multiplexers.

One pair of CBDs is configured using a configuration
register containing the control bits for multiplexers and config-
uration gates. The configuration register size is 294 bits, where
6 bits control the inputs of the exclusive-OR and 6×(6+6×7)
bits control six monomials. One monomial needs 6 bits to
control the inputs of the AND gate and, for each input, 7
bits are needed to select one of the 128 primary inputs
by the multiplexer. If λ CBD pairs are employed, the total
configuration register size is 294λ bits.

C. Evolutionary Algorithm

We adopted the search method (1+λ) used in [2] and similar
FPGA-based accelerators of EA (see [13], [26]). As Algo-
rithm 1 shows, the search method that is implemented in the
ARM core, starts with a randomly generated population of
candidate Boolean distinguishers (line 1), each of them rep-
resented using 294 bits. The population is evaluated in CBDs
either sequentially or in parallel, depending on the number of
CBD pairs on the chip (line 2). The Z-score, representing the
fitness value, is assigned to each individual. The best-scored
individual (α) is selected as a parent of the new population

Algorithm 1 Search Algorithm

(lines 6–8). λ offspring are then generated from the parent by
means of the mutation operator modifying h genes (integers)
of the chromosome and evaluated (lines 9–10). The body of
the while loop is repeated ng times, where ng is a predefined
number of generations. The highest scored individual is the
result of the EA.

The execution time of EA is dominated by the number
of evaluations (ng × λ) because creating a new population
and other supporting tasks conducted by the processor are
negligible in the total execution time.

D. Accelerated Evaluation of Distinguishers

Let us assume that only one CBD pair is instantiated in the
FPGA. In order to evaluate a candidate Boolean distinguisher,
the following steps are performed. The processor sends the
chromosome to the configuration registers of both CBDs
in 294/32 ≈ 11 clock cycles. It has to be noted that the
processor can send only 32 bits/clock cycle (at 100 MHz) to
PL. In PL, the evaluation is finished in 10+ N/n clock cycles,
where 10 is the initial latency of CBD (i.e., the number of
stages in the pipeline), N is the bit stream length and n is the
number of inputs bits of the distinguisher. The outcome of the
evaluation (i.e., the number of ones in TBS and in RBS) is sent
back to the processor (in 2 clock cycles) in which the resulting
Z-score is determined and assigned as the fitness value to the
chromosome.

If λ CBD pairs are available in the FPGA, the evaluation
time (10+ N/n clock cycles) remains unchanged, but λ distin-
guishers instead of one distinguisher are now evaluated within
this time. The configuration time and the result storing time
are, however, increased proportionally with λ (see Section V-A
for detailed evaluation).

V. RESULTS

This section summarizes the results of synthesis and exper-
imental evaluation of the proposed implementation. It deals
with use case I in which the bit streams are stored in on-chip
BRAM memory blocks.

A. Implementation and Synthesis Results

The proposed platform was described in VHDL language,
synthesized with Xilinx Vivado 2018 and implemented on the
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TABLE I

NUMBER OF CLOCK CYCLES (REQUIRED FOR CONFIGURATION, EVALUATION, AND STORING THE RESULT), THE EVALUATION TIME
FOR λ DISTINGUISHERS, AND THE TOTAL EA EXECUTION TIME IF 40 000 CANDIDATE INDIVIDUALS ARE GENERATED

AND EVALUATED USING 1–5 CBD PAIRS

ZC702 Evaluation Kit containing XC7Z020-CLG484-1 chip.
The EA was implemented in the ARM core with parameters
adjusted according to [2]: λ = 4, h = 5, and ng = 104.
If not explicitly stated otherwise, all results are reported for
distinguishers that can fit into a CBD configured with n = 128,
d ≤ 6, and k ≤ 6.

Due to the pipeline processing, PL can operate at 250 MHz.
Up to five CBD pairs can be instantiated in PL. For N =
800 000 and n = 128, the evaluation time of a single candidate
distinguisher using one CBD pair (see λ = 1 in Table I)
requires 10 + 800 000/128 = 6260 clock cycles which
corresponds with 25 μs. Some additional time is required
for the CBDs configuration (11 clock cycles) and storing
the result to the processor (2 clock cycles). The execution
time of EA that produces and evaluates ng × λ = 40 000
candidate distinguishers is then 1.0068 s. Table I summarizes
these numbers if 1–5 CBD pairs evaluating 1–5 candidate
distinguishers in parallel are instantiated in PL. The obtained
speedup with respect to the baseline implementation (i.e.,
λ = 1 corresponding with Speedup = 1.00 in Table I) scales
almost perfectly with the number of CBD pairs.

Table II gives the resources utilization for k = 6, d = 6,
N = 800 000, and n = 128, where the dominant consumer
is BRAM needed to store TBS and RBS. Depending on
the number of CBDs, our design requires from 12.80% to
33.26% slice LUTs. We were unable to fit more than five
CBD pairs to PL because of complicated routing associated
with the requirement of high operational frequency. Increasing
the complexity of CBD can in some cases slightly improve
the quality of randomness testing as reported in [2], but it
immediately reduces the speedup in terms of Table I. For our
FPGA, only one CBD pair can be instantiated in the PL if
d = k = 10. This configuration leads to a 66% resources
overhead (with respect to d = k = 6 and “CBD pairs” = 1
reported in Table II) and power consumption is also higher
(2.7 W). A compromise configuration with d = 6 and k = 10
enables instantiating up to three CBDs with a 25% increase
in resources.

B. Data Sets

The method is evaluated on the data (i.e., TBSs) gen-
erated by means of the stream cipher (RC4), block cipher
(AES), and hash functions (SHA-256, MD6, Keccak). In order
to detect some nonrandom sequences in our experiments,
we intentionally limited the number of rounds that are per-
formed by these primitives. The test data were generated as

TABLE II

RESULTS OF SYNTHESIS FOR 1–5 CBD PAIRS (k = d = 6, N = 800 000,
AND n = 128) INSTANTIATED IN THE XC7Z020 CHIP

the standard keystream for RC4. For the remaining cases,
a special stream consisting of 128-bit blocks of minimal
Hamming weight was employed at the inputs. This sequence
starts with block B0 = “00 . . . 0.” Each of next 128 blocks
consists of 127 bits “0” and 1 bit “1” on different positions,
i.e., B1 = “00 . . . 01,”B2 = “00 . . . 10,” . . . , B128 = “100 . . . .”
Next blocks consist of 126 bits with “0” and 2 bits of the
value “1,” etc. The test data were generated as blocks of the
sequence processed by one of the functions (SHA-256, etc.)
separately. In addition to that, a sequence of random data
obtained from /dev/urandom (which is a special file that serves
as a pseudorandom number generator in Unix-like operating
systems) is considered. The generator is cryptographically
secure [40] which means that the numbers it produces can be
used in cryptographic applications where high-quality random
data are required. In all cases, 100 kB of data is used as this
memory capacity is supported in the proposed implementation.

C. Results of EA and BF

For the EA setting given in Section V-A, we analyzed how
the Z-score depends on d (d = {3, 6}), k (k = 1, . . . , 6) and
selected data streams. Fig. 5 shows the box plots of the Z-score
constructed from ten independent runs of EA. For d ≤ 3, it is
possible to run the BF method whose results are shown as the
crosses. For example, BF evaluated 349 632 monomials with
d ≤ 3 in the first phase of the BF algorithm introduced in
Section III-C. If k > 1, the number of distinguishers evaluated
by BF is

(s
k

)
, where s is the number of top monomials selected

in the first phase.
Our results are consistent with [2] because we implemented

the same EA. If d ≤ 3 and k ≤ 3, then BF is able to find
better solutions than EA. The reason is that there are usually
only a few “the best solutions” which BF can always detect
while EA does not usually reach them, but EA is very close.
If the number of monomial is increased (d = 3, k = {4, 5, 6}),
the monomials selected by BF in the first phase are not good
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Fig. 5. Z-score obtained for four tested data streams using evolved Boolean
distinguishers with various settings of d and k. Red cross: best solution from
the brute force method.

enough to constitute good distinguishers in the second phase
of BF. Hence, EA provides much better results. These results
are then significantly improved for d = 6 and k ≥ 2. We do not
report any results for BF with d = 6 because it is intractable
to run BF in these cases.

Fig. 6 shows the fitness (i.e., Z-score) of the best, median,
and worst distinguishers from the EA runs conducted for four
data streams and d = k = 6. It can be seen that 104 is
a sufficient number of generations to converge as the best
solutions stop improving well before this limit (it has to be
noted that we used the logarithmic scale on the Generation
axis). This behavior is visible in both the basic cases that we
investigate, i.e., for testing of: 1) high randomness bit streams
(Keccak(3), RC4, Random) in which the Z-score is around
20.0 for our setup of CBD and 2) low randomness bit streams
[SHA-256(3)] in which the Z-score is much higher than 20.0.

D. Performance Analysis

We can observe that the Z-score is improving with increas-
ing the number of monomials (k) and degree (d). Higher k
and d permit the evolution to search for more complex dis-
tinguishers capable of discovering more tricky dependencies
among the bits. This is the main advantage of the EA with
respect to the BF algorithm.

For 12 data sets, Table III summarizes the Z-scores of the
best distinguishers obtained using: 1) the EA operating in the
space of all possible functions permitted by CBD; 2) the EA
operating in a restricted search space (d ≤ 3); and 3) BF
in which the best 100 monomials were used in the second
phase of the brute force method introduced in Section III-C.
Based on the comparison with the baseline Z-score of the
random sequence (denoted “random”), one can observe that all
three methods give consistent results, but EVO (d ≤ 6, k ≤ 6)

Fig. 6. Z-score of the best, median, and worst distinguishers from the EA
runs conducted for four analyzed data streams and d = k = 6.

TABLE III

Z-SCORE OF THE BEST DISCOVERED DISTINGUISHERS FOR DATA

STREAMS PRODUCED BY VARIOUS CRYPTOGRAPHIC FUNCTIONS

provides the strongest distinguishers. For example, the data
streams produced by three rounds of SHA-256 cryptographic
function or two rounds of Keccak are far from random.

For d = 6, k = 6, n = 128, 100 kB data streams, and
λ × ng = 4.104, the execution time is 1 s, if a single pair of
CBDs is instantiated. If four pairs of CBDs are employed the
proposed system is faster than a highly optimized single-core
software implementation running on a 64-bit Xeon E5-2670 at
2.6 GHz whose execution time is 0.3 s. However, the main
contribution of this paper is that the whole system can be
implemented as an embedded solution for sensitive on-demand
statistical test requiring a fraction of energy in comparison to
a personal computer.

E. Comparison With State of the Art

The estimated complexity of the almost complete NIST STS
battery implementation is 32 230 LUTs on a Xilinx Virtex
II Pro FPGA V2P30 chip [34]. However, the state-of-the-
art implementations of randomness testing typically employ a
simplified subset of commonly used test batteries [35], [36].
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For example, eight NIST STS simplified tests (denoted as
NIST-STS-8 in this section) implemented on the Xilinx
Spartan-6 XC6SLX45 chip required between 44 and 757 LUTs
(1920 LUTs in sum, no other circuits such as controllers or
memory interfaces considered) and operated at frequencies
between 121 and 203 MHz [35]. Although this approach is
clearly less complex than the proposed Boolean distinguishers
(requiring 6808 LUTs for one CBD pair running at 250 MHz
as given in Section V-A), it cannot provide randomness
testing of the same quality as the proposed Boolean distin-
guishers. In order to demonstrate this property, we generated
data streams (TBSs) using various cryptographic functions
(23 block ciphers and 13 hash functions). These functions
process different types of inputs (such as blocks of counter
values, blocks of minimal Hamming weight, and random
blocks where consecutive blocks differ in one bit), but reduce
the number of internal rounds to get data with bias on the edge
of detectability. In total, we generated 443 TBSs whose ran-
domness was tested using the proposed Boolean distinguishers
and NIST-STS-8, but NIST-STS-8 was implemented according
to the original software version of NIST STS. Therefore,
we did not consider the simplifications introduced in [35]
because the corresponding hardware implementation is not
fully documented.

Results of Boolean distinguishers (with a very basic
configuration d ≤ 4, k ≤ 2, n = 128) and NIST-STS-8 are
evaluated according to the most significant results for 100 kB
TBSs, i.e., the biggest Z-score and the smallest p-value are
counted. We consider that a TBS failed NIST-STS-8 test if
at least one of computed p-values is below the significance
level (0.001). In order to find critical Z-score (for significance
level 0.001), we generated 1000 random TBSs (using
“/dev/urandom”) and computed corresponding maximal
Z-scores. Based on this experiment, we can consider that a
TBS failed a Boolean distinguisher-based test if the Z-score is
greater than 7.66. Note that Z-score ≤ 7.66 reliably represents
a random sequence for d ≤ 4, k ≤ 2, n = 128, N = 100 kB.
Z-score of TBS generated by, for example, AES(3) is
5.15 and we classified this sequence as “random” which is
consistent (as for other cases) with more detailed testing
reported in Table III. Despite a very basic configuration
of Boolean distinguishers, the proposed method was
able to detect nonrandomness for 24 different TBSs
which successfully passed NIST-STS-8 [i.e., ARIA(2),
CAST(3), Grostl(1), Grostl(2), IDEA(1), KUZNYECHIK(1),
MD5(7), MD5(8), MD6(8), RIPEMD160(8), SERPENT(3),
SHA1(11),SHA2(6), SIMON(13), SIMON(14), SPECK(7),
3DES (2), TWOFISH(2); CAMELLIA-hw(3), Grostl-
hw(2), MD6-hw(8), SHACAL2-hw(7), SIMON-hw(13),
SPECK-hw(6)]. On the other hand, NIST-STS-8 detected
ten nonrandom TBSs that successfully passed Boolean
distinguisher-based testing. The remaining TBSs were
evaluated identically by both approaches.

VI. ONLINE RANDOMNESS TESTING OF

ON-CHIP PSEUDO RNGS

In order to evaluate the proposed implementation in use
case II, we replaced the BRAMs storing TBS and RBS with

Fig. 7. Z-score obtained from randomness testing of (A) PRNGref with a
stuck-at-1 at bit 7. (B) Low-quality short-cycle PRNG. (C) PRNGref seeded
using a different initial value.

a hardware implementation of two pseudo RNGs (PRNGs):
1) PRNGref that is a reference PRNG producing uniformly
distributed values and 2) PRNGtest that is a subject of ran-
domness testing. PRNGref is implemented according to [41]
as a linear feedback shift register (LFSR) producing a 128-bit
vector in one clock cycle. In particular, a new input value of
PRNGref is generated by means of XNOR-ing of bits 99, 101,
126, and 128 of a maximum length cycle LFSR.

PRNGref requires 2145 LUTs of the PL, which is 29%
of the whole design if a single CBD pair is instantiated.
If both PRNGs were identical then they would occupy 58%
of the whole design. As the usage of PRNGs leads to less
complex routing than for the BRAM-based solution, we were
able to instantiate up to seven CBD pairs in PL. It has to
be noted that the execution time (and the number of clock
cycles) is the same as for the BRAM-based solution if the
same number of CBD pairs is instantiated. For four pairs of
CBDs, power consumption is 2.79 W, which is comparable to
the BRAM-based solution (2.94 W).

The evaluation was performed with the EA having the same
setting as reported in Section V-A. We tested three PRNGs on
the position of PRNGtest.

1) A PRNG working as PRNGref , but with a stuck-at-1 at
bit 7 (this setup emulates a faulty circuit).

2) A low-quality short-cycle 128-bit PRNG working with
bits 2, 4, 5, and 8 as generators of a new bit in next
clock cycle.

3) PRNGref seeded using a different initial value.

In cases 1) and 2), a very high Z-score is expected as these
PRNGs are of a low quality. On the other hand, the Z-score
obtained for the case 3) should be around 20.0. Fig. 7 showing
the box plots of Z-score calculated from ten independent runs
of EA, confirms this hypothesis.

VII. CONCLUSION

An evolvable hardware platform was proposed which
is capable of evolving efficient randomness distinguishers
directly in the FPGA. We investigated two use cases: 1) the
platform is used to evaluate bit streams that are stored in local
BRAMs and 2) the bit streams are online generated and imme-
diately processed by evolving distinguishers. In both cases,
we analyzed the quality of randomness testing, performance,
and resources utilization. The main contribution of this paper
is that the software implementation developed for random-
ness testing and described in [2] can be implemented as an
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embedded solution for more sensitive on-demand statistical
test (compared to NIST FIPS 140-2 tests) of randomness. The
proposed tests are also energy efficient requiring a fraction of
energy in comparison to a personal computer. Finally, evolved
distinguishers can easily be interpreted by an expert to identify
sources of nonrandomness, which is almost impossible to find
out when other randomness testing methods are employed.

Our future work will focus on using our platform for
randomness testing of bit streams that are produced by various
components on a chip. In particular, we plan to integrate
the proposed solution to new implementations of hardware
random number generators, which generate genuinely random
numbers, in order to test their properties in various physical
environments.
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