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Abstract—In this paper, we present three datasets that have
been built from network traffic traces using ASNM features,
designed in our previous work. The first dataset was built
using a state-of-the-art dataset called CDX 2009, while the
remaining two datasets were collected by us in 2015 and
2018, respectively. These two datasets contain several adversarial
obfuscation techniques that were applied onto malicious as well
as legitimate traffic samples during “the execution” of particular
TCP network connections. Adversarial obfuscation techniques
were used for evading machine learning-based network intrusion
detection classifiers. Further, we showed that the performance
of such classifiers can be improved when partially augmenting
their training data by samples obtained from obfuscation tech-
niques. In detail, we utilized tunneling obfuscation in HTTP(S)
protocol and non-payload-based obfuscations modifying various
properties of network traffic by, e.g., TCP segmentation, re-
transmissions, corrupting and reordering of packets, etc. To the
best of our knowledge, this is the first collection of network traffic
metadata that contains adversarial techniques and is intended for
non-payload-based network intrusion detection and adversarial
classification. Provided datasets enable testing of the evasion
resistance of arbitrary classifier that is using ASNM features.

I. INTRODUCTION

Network intrusion attacks such as exploiting unpatched
services are one of the most dangerous threats in the do-
main of information security [1], [2]. Due to an increasing
sophistication in the techniques used by attackers, misuse-
based/knowledge-based [3] intrusion detection suffers from
undetected attacks such as zero-day attacks or polymorphism,
enabling an exploit-code to avoid positive signature matching
of the packet payload data. Therefore, researchers and devel-
opers are motivated to design new methods to detect various
versions of the modified network attacks including the zero-
day ones. These goals motivate the popularity of Anomaly
Detection Systems (ADS) and also the classification-based ap-
proaches in the context of intrusion detection. Anomaly-based
approaches are based on building profiles of normal users, and
they try to detect anomalies deviating from these profiles [3],
which might lead to detection of unknown intrusions, but on
the other hand it might also generate many false positives.
In contrast, the classification-based approaches take advantage
of both misuse-based and anomaly-based models in order to
leverage their respective advantages. The classification-based

detection methods first build a model based on the labeled
samples from both classes – intrusions and the legitimate
instances. Second, they compare a new input to the model
and select the more similar class as the predicted label.
Classification and anomaly-based approaches are capable to
detect some unknown intrusions, but at the same time they
may be susceptible to evasion by obfuscation techniques.

In this paper, we present ASNM datasets, a collection of
malicious and benign network traffic data. ASNM datasets
include records consisting of several features that express
miscellaneous properties and characteristics of TCP commu-
nications (i.e., aggregated bidirectional flows). These features
are called Advanced Security Network Metrics (ASNM) and
were designed in our previous work [4] with the intention to
distinguish between legitimate and malicious TCP connections
(i.e., intrusions and C&C channels of malware). ASNM fea-
tures are extracted from tcpdump [5] traces and do not perform
deep packet inspection during their computation, which makes
them suitable for passive monitoring of (potentially encrypted)
network traffic.

To this end, we performed ASNM feature extraction over
three different subsets of network traffic collections, resulting
in three sub-datasets that we provide to the community:

• ASNM-CDX-2009 Dataset: was created from tcpdump
traces of CDX 2009 dataset [6]. The dataset misses a few
newer ASNM features and does not contain any obfusca-
tions of the network traffic (see details in Section IV-A).

• ASNM-TUN Dataset: was created with the intention
to evade and improve machine learning classifiers, and
besides legitimate network traffic samples, it contains
tunneling obfuscation technique [7] applied onto mali-
cious network traffic, in which several vulnerable network
services were exploited (see details in Section IV-B).

• ASNM-NPBO Dataset: like the previous dataset, the
current dataset was created with the intention to evade
and improve machine learning classifiers, and it contains
non-payload-based obfuscation techniques (modifying the
properties of network flows) applied onto malicious traffic
and onto several samples of legitimate traffic (see details
in Section IV-C).



All ASNM datasets are available for download
at http://www.fit.vutbr.cz/∼ihomoliak/asnm/. In the following,
we will describe ASNM features, detail particular datasets,
and finally benchmark several supervised classification
methods used for non-payload-based1 network intrusion
detection in ASNM datasets. We conduct a few experiments
aimed at the adversarial classification, and we demonstrate
that proposed obfuscations are able to evade an intrusion
detection of employed classifiers. Consequently, we show that
after partially augmenting the training data by obfuscated
attacks, we can significantly improve the performance of the
classifiers.

The rest of the paper is organized as follows. In Section II,
we define the classification problem in intrusion detection
and describe preliminaries and terms used throughout the
paper. In Section III, we formally define ASNM features and
describe them. Next, we introduce particular ASNM datasets
in Section IV and consequently perform their benchmarking
in Section V. In Section VII we discuss limitations of the
proposed datasets. Then, in Section VI, we mention existing
network datasets and network features, compare them to the
ASNM datasets, and finally in Section VIII we conclude the
paper.

II. PROBLEM DEFINITION AND PRELIMINARIES

First, we define the scope of our work by introducing the
network connection as an elementary data object that is used
for building our datasets. Second, we describe the feature
extraction process over a network connection object, which
forms a sample/data record in our datasets. Then, we describe
the intrusion detection classification task, representing the
problem that is addressed by an arbitrary binary classifier given
a dataset containing 2-class labels. This problem represents
the main challenge of ASNM datasets, but the application of
ASNM datasets can be straightforwardly extended to a multi-
class classification problem in sub-datasets containing multi-
class labels.

A. TCP Connection

Consider a session of a protocol at the application layer
of the TCP/IP stack that serves for data transfer between
the client/server based application. The interpretation of ap-
plication data exchanges between client and server can be
formulated, considering the TCP/IP stack up to the transport
layer, by connection c that is constrained to the connection-
oriented protocol TCP at L4, Internet protocol IP at L3, and
Ethernet protocol at L2. The TCP connection c is represented
by the tuple

c = (ts, te, pc, ps, ipc, ips, Pc, Ps),

which consists of the start and end timestamps ts and te, ports
of the client and the server pc and ps, IP addresses of the client
and the server ipc and ips, sets of packets sent by the client Pc,
and by the server Ps, respectively (see details in Table XXIII

1Not performing deep packet inspection.

of Appendix). Sets Pc and Ps contain a number of packets,
where each of them can be interpreted by the packet tuple

p = (t, size, ethsrc, ethdst, ipoff , ipttl, ipp, ipsum,

ipsrc, ipdst, ipdscp, tcpsport, tcpdport, tcpsum,

tcpseq, tcpack, tcpoff , tcpflags, tcpwin, tcpurp, data).

The symbols of the tuple are described in Table XXIV of
Appendix. We assume that the payload of Ps and Pc is
encrypted, and thus data of these packet sets are not accessible.

Each TCP connection has its beginning that is represented
by a three way handshake, in which, three packets that contain
the same IP addresses (ips, ipd), ports (ps, pd), and se-
quence/acknowledgment numbers (tcpseq , tcpack) conforming
the specification of RFC 7932 must be found. Similarly, each
TCP connection has its end, which is defined by a three-way-
endshake or by an inactivity timeout.3

B. Feature Extraction

At this time, we can express characteristics of a TCP
connection by network connection features. The features ex-
traction process is defined as a function that maps a connection
c into space of features F :

f(c) 7→ F,

F = (F1, F2, . . . , Fn),
(1)

where n represents the number of defined features. Each
function fi that extracts feature i is defined as a mapping
of a connection c into feature space Fi:

fi(c) 7→ Fi, i ∈ {1, . . . , n}, (2)

and each element4 of codomain Fi is defined as

e = (e0, . . . ,en), n ∈ N0,

ei ∈ N | ei ∈ R | ei ∈ Γ+, i ∈ {0, . . . , n},
Γ = {a− z,A− Z, 0− 9},

(3)

where Γ+ denotes positive iteration of the set Γ. Note that for
demonstration purposes, we abstract in our formalization from
the fact that some features of a network connection c can be
extracted not only from c itself but in addition from metadata
of c that are not part of c. For example, such metadata may
represent “neighboring” network connections of c, which we
later refer to as a context of c (see Section III).

In general, network connection features can be instanti-
ated, for example, by discriminators of A. Moore [8], Kyoto
2006+ features [9], basic and traffic features5 of KDD Cup’99
dataset [10], NetFlow features [11], or ASNM features [4],
CICFlowMeter features [12], multi-layered network traffic
features from BGU [13], or connection-less features [14].

2URL http://www.ietf.org/rfc/rfc793.txt, page 30.
3E.g., in Unix-based systems, such a timeout is equal to five days.
4Representing a particular dimension of a feature.
5Not content features, which work over payload of the network data.

http://www.fit.vutbr.cz/~ihomoliak/asnm/


C. Intrusion Detection Classification Task

A data sample of the dataset Dtr refers to the vector
of the network connection features, defined in Section II-B.
Then, referring to [15], let X = V × Y be the space of
labeled samples, where V represents the space of unlabeled
samples and Y represents the space of possible labels. Let
Dtr = {x1, x2, . . . , xn} be a training dataset consisting of
n labeled samples, where

xi = (vi ∈ V, yi ∈ Y ). (4)

Consider classifier C which maps unlabeled sample v ∈ V to
a label y ∈ Y :

y = C(v), (5)

and learning algorithm A which maps the given dataset D to
a classifier C:

C = A(Dtr). (6)

The notation ypredict = A(Dtr, v) denotes the label assigned
to an unlabeled sample v by the classifier C, build by learning
algorithm A on the dataset Dtr. Then, all extracted features
f() of an unknown connection c can be used as an input of
the trained classifier C that predicts the target label:

ypredict = A
(
Dtr, f(c)

)
, (7)

where

ypredict ∈ {Intrusion,Legitimate}. (8)

D. Adversarial Obfuscations & Evasion of the Classifier

Assume a connection cm representing a malicious commu-
nication executed without any obfuscation. Then, cm can be
expressed by network connection features

f(cm) 7→ Fm = (Fm1 , Fm2 , . . . , F
m
n ) (9)

that are delivered to the previously trained classifier C.
Assume that C can correctly predict the target label as a
malicious one, because its knowledge base is derived from
training dataset Dtr containing features of malicious connec-
tions having similar (or the same) behavioral characteristics
as cm.

Now, consider connection c′m that represents the malicious
communication cm executed by employment of an obfuscation
technique that is aimed at modification of network behavioral
properties of the connection cm. An obfuscation technique can
modify Pc and Ps packet sets of the original connection cm
as well as IP addresses (ips, ipd) and ports (ps, pd) of the
original connection cm.

Hence, network connection features extracted for c′m are
represented by

f(c′m) 7→ Fm
′

= (Fm
′

1 , Fm
′

2 , . . . , Fm
′

n ) (10)

and have different values than features Fm of the connec-
tion cm. Therefore, we conjecture that the likelihood of a
correct prediction of of c′m-connection’s features Fm

′
by the

previously assumed classifier C is lower than in the case of

connection cm, which might cause an evasion of the detection.
Also, we conjecture that the classifier C ′ trained by learning
algorithm A on training dataset D′tr, containing obfuscated
malicious instances, will be able to correctly predict higher
number of unknown obfuscated malicious connections than
classifier C. We will demonstrate the correctness of these
assumptions in Section V on two of our datasets.

III. ASNM FEATURES AND CONTEXT ANALYSIS

ASNM features [4] are network connection features that
describe various properties of TCP connections and were
designed with the intention to distinguish between legiti-
mate traffic and remote buffer overflow attacks.6 We studied
behavioral characteristics of remote buffer overflow attacks
in our previous work [17], and our findings inspired the
design of ASNM features. We can interpret ASNM features
like an extended protocol NetFlow [11] but describing more
than statistical properties of network connections. In addition
to NetFlow features, ASNM features represent dynamical,
localization, and, most importantly, the behavioral properties
of network connections. Moreover, some of the features utilize
a context of an analyzed connection c, which represents
“neighboring” connection objects (see Section III-A).

In the following, we assume an input dataset of network
traffic traces, which is used for identification of network TCP
connection objects C = {c1, . . . , cM}, where M is a count of
TCP connections in the dataset.

A. Context Definition

We assume a dataset of TCP connection objects (as de-
scribed in Section II) Considering analyzed TCP connection
ck, we define a sliding window sw of length τ as a set of TCP
connections Wk that are delimited by ± τ

2 :

sw(ck, τ) = Wk

Wk ⊆ C,
Wk = {cj},

(11)

where each TCP connection cj must satisfy the following:

cj [ts] > ck[ts]−
τ

2
,

cj [te] < ck[ts] +
τ

2
.

(12)

The next fact about each particular TCP connection ck is an
unambiguous association of it to particular sliding window
Wk. We can interpret the start time ts of the TCP connection
ck as a center of the sliding window Wk. Then, we can denote
a shift of the sliding window ∆(Wj) which is defined by start
time differences of two consecutive TCP connections in C:

∆(Wj) = cj+1[ts]− cj [ts],
j ∈ {1, . . ., |C| − 1}.

(13)

6See Appendix D of [16] for the full list of ASNM features.



Figure 1: Sliding window and the context of the connection ck [4].

Next, we define the context Kk of the TCP connection ck,
which is a set of all connections in a particular sliding window
Wk excluding analyzed TCP connection ck:

Kk = {c1, . . . , cn} = {Wk \ ck}. (14)

Defined terms are shown in Figure 1. In the figure, the x
axis displays time, and the y axis represents TCP connections,
which are shown in the order of their occurrences. Packets
are represented by small squares, and TCP connections are
represented by a rectangular boundary of particular packets.
A bold line and bold font are used for depicting an analyzed
TCP connection ck, which has an associated sliding window
Wk and context Kk. TCP connections, which are part of the
sliding window Wk, are drawn by full line boundary, and
TCP connections, which are not part of this sliding window,
are drawn by a dashed line boundary. We note that only a
few features from the ASNM datasets utilize context; these
features belong to dynamic and behavioral categories (see
Section III-C).

B. ASNM Feature Extraction

In addition to a general definition of network connec-
tion feature extraction (see Section II-B), we incorporate the
context of a TCP connection into the extraction process of
ASNM features. The ASNM feature extraction is thus defined
as a function that maps a connection ck with its context
Kk = sw(ck, τ) into feature space F :

f(ck,Kk) 7→ F,

F = (F1, F2, . . . , Fn),
(15)

where n represents the number of defined features, while the
rest of the definition is inherited from Section II-B.

Category of
ASNM Features #

Statistical 77
Dynamic 32

Localization 8
Distributed 34
Behavioral 43

Table I: Categorization of ASNM features.

C. Categorization of ASNM Features

The list of original proposed ASNM feature set contains
167 features and is present Master’s thesis [18] and formally
described in [4]. However, the ASNM feature set was later
extended [16], resulting in 194 features. These 194 features
are in many cases a result of reasonable parametrization of
the base feature functions fi(), We depict a categorization
of our feature set in Table I together with their counts. We
decided to determine the naming of particular categories of
features according to their principles, not according to their
data representation. In the following, we briefly describe each
category.
Statistical Features. In this category of ASNM features, the
statistical properties of TCP connections are identified. All
packets of the TCP connection are considered in order to de-
termine count, mode, median, mean, standard deviation, ratios
of some header fields of packets, or the packets themselves.
This category of features partially uses a time representation of
packets occurrences, in contrast to the dynamic category (see
below). Therefore, it includes particularly dynamic properties
of the analyzed TCP connection, but without any context. Most
of the features in this category also distinguish inbound and
outbound packets of the analyzed TCP connection.
Dynamic Features. Dynamic features were defined with the
aim to examine dynamic properties of the analyzed TCP
connection and transfer channel such as a speed or an error
rate. These properties can be real or simulated. Eighteen of the
features consider the context of an analyzed TCP connection.
The difference between some of the statistical and dynamic
features from a dynamic view can be demonstrated on two
instances of the same TCP connection, which performs the
same packet transfers, but in different context conditions and
with different packet retransmission and attempts to start or
finish the TCP connection. Many of the defined features
distinguish between the inbound and outbound direction of the
packets and consider the statistical properties of the packets
and their sizes, as mentioned in statistical features.
Localization Features. The main characteristic of the localiza-
tion features category is that it contains static properties of the
TCP connection. These properties represent the localization of
participating machines and their ports used for communication.
In some features, the localization is expressed indirectly by
a flag, which distinguishes whether participating machines lay
in a local network or not. Features included in this category do
not consider the context of the analyzed TCP connection, but
they distinguish a direction of the analyzed TCP connection.



Distributed Features. The characteristic property of the dis-
tributed features category is the fact that they distribute packets
or their lengths to a fixed number of intervals per the unit
time specified by a logarithmic scale (1s, 4s, 8s, 32s, 64s).
A logarithmic scale of fixed time intervals was proposed
as a performance optimization during the extraction of the
features. The next principal property of this category is vector
representation. All these features are supposed to work within
the context of an analyzed TCP connection.
Behavioral Features. Behavioral features represent properties
associated with the behavior of an analyzed TCP connection.
Examples include legal or illegal connection closing, the poly-
nomial approximation of packet lengths in a time domain or
an index of occurrence domain, count of new TCP connections
after starting an analyzed TCP connection, coefficients of
Fourier series with the distinguished direction of an analyzed
TCP connection, etc.

IV. ASNM DATASETS

In this section, we detail three different datasets that have
been built using ASNM features. The first of them was built
using an existing dataset of network traffic traces, while the
remaining two were collected by us, and they contain several
adversarial obfuscation techniques that were applied onto
malicious as well as legitimate samples during “the execution”
of particular network connections.

A. ASNM-CDX-2009 Dataset

ASNM-CDX-2009 dataset was build from CDX-2009
dataset [19], which was introduced by Sangster et al. [6] and
it contains data in tcpdump format as well as SNORT [20]
intrusion prevention logs, as relevant sources for our purpose.

The CDX 2009 dataset was created during the network
warfare competition, in which one of the goals was to gen-
erate a labeled dataset. By labeled dataset, the authors mean
tcpdump traces of all simulated communications and SNORT
log with information about occurrences of intrusions, deemed
as the expert knowledge. Network infrastructure contained four
servers with four vulnerable services (one per each server),
while the authors provided two collections of network traces:
1) network traces captured outside the West Point network
border and 2) network traces captured by National Security
Agency (NSA). The services that run on the hosted servers
together with IP addresses of the servers are listed in Table II.
Two types of IP addresses are shown in this table:

Service OS Internal IP External IP

Postfix Email FreeBSD 7.204.241.161 10.1.60.25
Apache Web Server Fedora 10 154.241.88.201 10.1.60.187

OpenFire Chat FreeBSD 180.242.137.181 10.1.60.73
BIND DNS FreeBSD 65.190.233.37 10.1.60.5

Table II: A list of vulnerable servers in CDX 2009 dataset.

• Internal IP addresses – corresponding to the SNORT
log,

Network Service Count of TCP Connections

Legitimate Malicious Summary

Apache 2911 37 2948
Postfix 179 7 186

Other Traffic 2637 – 2637

Summary 5727 44 5771

Table III: ASNM-CDX-2009 dataset distribution.

• External IP addresses – corresponding to a TCP dump
network captured outside the West Point network border.

Note that specific versions of services described in [6] were not
announced. We found out that SNORT log can be associated
only with data capture outside of West point network border
and only with significant timestamps differences – approxi-
mately 930 days. We have not found any association between
SNORT log and data capture performed by NSA. We focused
only on buffer overflow attacks found in SNORT log, and we
performed a match with the packets contained in the West
point network border capture.

Despite all the efforts, we matched only 44 buffer over-
flow attacks out of 65 entries in SNORT log. To correctly
match SNORT entries, it was necessary to remap external
IP addresses to internal ones, because SNORT detection was
performed in external network and TCP dump data capture
contains entries with internal IP addresses. We found out that
in CDX 2009 dataset, buffer overflow attacks were performed
only on two services – Postfix Email and Apache Web Server.

The buffer overflow attacks that were matched with data
capture have their content only in two TCP dump files:

• 2009-04-21-07-47-35.dmp
• 2009-04-21-07-47-35.dmp2

Due to the high count of all packets (approx. 4 mil.) in
all dump files, we decided to consider only these two files
for the purpose of extraction both malicious and legitimate
samples (which together contain 1, 538, 182 packets). We also
noticed that network data density was increased in the time
when attacks were performed. Consequently, we made another
reduction of all packets consider so far, which filtered enough
temporal neighborhood of all attacks occurrences, and at the
same time, included a high enough number of legitimate TCP
connections. In the result, we used 204 953 packets for the
extraction of ASNM features. A distribution of malicious and
legitimate samples across obtained dataset is presented in
Table III. Beside two services that contained buffer overflow
vulnerabilities, our dataset also contains samples representing
other network traffic, which we consider as legitimate since
no match of its metadata with SNORT log was determined.

Labeling. ASNM-CDX-2009 dataset contains two types of
labels that are enumerated by increasing order of their granu-
larity in the following:

• label 2: is a two-class label, which indicates whether an
actual sample represents a network buffer overflow attack
or legitimate traffic.
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Figure 2: A setup of virtual network used in ASNM-TUN dataset.

Service CVE CVSS

Apache Tomcat 2002-0082 7.5
BadBlue 2007-6377 7.5

DCOM RPC 2003-0352 7.5
Samba 2003-0201 10.0

Table IV: A list of vulnerable services in ASNM-TUN dataset.

• label poly: is composed of two parts that are delimited
by a separator: (a) a two-class label where legitimate and
malicious communications are represented by symbols
0 and 1, respectively, and (b) an acronym of network
service. This label represents the type of communication
on a particular network service.

This dataset was for the first time used and evaluated in [4].

B. ASNM-TUN Dataset

ASNM-TUN7 dataset was build in laboratory conditions8

using a custom virtual network architecture (see Figure 2),
where we simulated malicious TCP connections on a few
selected vulnerable network services. The selected vulner-
abilities are presented in Table IV, which also contains Com-
mon Vulnerabilities and Exposures (CVE) IDs and Common
Vulnerability Scoring System (CVSS) values. A selection of
the vulnerable services was aimed at a high severity of their
successful exploitation, namely a presence of buffer overflow
vulnerabilities that led to a remote shell code execution
through an established backdoor communication, while as a
consequence of successful exploitation, the attacker was able
to get the root access. The details about each vulnerability and
its exploitation are briefly described in the following listing:
• Apache web server with mod_ssl plugin 2.8.6:

This attack exploits a buffer overflow vulnerability
in mod_ssl plugin of the Apache web server. The
plugin does not correctly initialize memory in the
i2d_SSL_SESSION function, which allows a remote

7The name is derived from TUNelling obfuscations.
8Note that part of the legitimate connections was extracted from

anonymized metadata collected from a real network.

attacker to exploit a buffer overflow vulnerability in order
to execute arbitrary code via a large client certificate
that is signed by a trusted Certification Authority, which
produces a large serialized session [21]. This allows
remote code execution and modification of any file on
a compromised system [22]. The vulnerable versions of
the plugin are in range 2.7.1-2.8.6.

• BadBlue web server 2.72b: The second attack exploits
a stack-based buffer overflow vulnerability in PassThru
functionality of ext.dll in BadBlue 2.72b and ear-
lier [23]. In the attack performing phase, the specially
crafted packet with a long header is sent, which leads to
an overflow of processing buffer [24]

• Microsoft DCOM RPC: The third attack exploits a
vulnerability in Microsoft Windows DCOM Remote Pro-
cedure Call (DCOM RPC) service of Microsoft Windows
NT 4.0, 2000 (up to Service Pack 4), Server 2003, and
XP [25]. This vulnerability allows a remote attacker to
execute an arbitrary code after a buffer overflow in the
DCOM interface. The vulnerability was originally found
by the Last Stage of Delirium research group and has
been widely exploited since then [26]. The vulnerability
is well documented, and it was used, for example, by
Blaster worm.

• Samba service 2.2.7: The last attack exploits a buffer
overflow vulnerability in call_ trans2open func-
tion in trans2.c of Samba 2.2.x before 2.2.8a, 2.0.10,
earlier versions than 2.0.x and Samba-TNG before
0.3.2 [27]. This vulnerability allows a remote attacker to
execute arbitrary code. An exploit code sends malformed
packets to a remote server in batches [28]. Packets
differ in one shell-code address only because the return
address depends on versions of Samba and host operating
systems.

Adversarial Modifications. We employed tunneling of mali-
cious network traffic inside of HTTP and HTTPS protocols,
serving as obfuscation techniques when exploiting vulnerable
services. The tunneling obfuscation modifies Pc and Ps packet
sets (see Section II-A) of the original malicious connection cm
by wrapping each original packet into a new one. Assuming
the background from Section II-D, the tunneling (i.e., wrap-
ping) may cause fragmentation of IP packets, and thus it can
also modify the number of packets in both packet sets Pc and
Ps. Also, the obfuscation modifies IP addresses (ipc, ips) and
ports (pc, ps) of the original connection. Symbols of the packet
tuple whose values are sensitive to the obfuscation include all
defined fields, as tunneling obfuscation creates new TCP/IP
stack with unique values of L2, L3, L4 headers as well as
new content of application layer data. All these modifications,
especially modifications of Pc and Ps of the connection cm,
cause alteration of the original network connection features’
values (see Section II-D).

For the purpose of simulating real network conditions, we
executed each malicious and legitimate network communica-
tion four times with four different network traffic modifica-



Network Service Count of TCP Connections

Legitimate Direct
Attacks

Obfuscated
Attacks

Summary

Apache 38 102 61 201
BadBlue 95 4 10 109

DCOM RPC 4 4 8 16
Samba 15 20 8 43

Other Traffic 25 – – 25

Summary 177 130 87 394

Table V: ASNM-TUN dataset distribution.

tions. Network traffic modifications differ in the alteration
degree of the network traffic, and we divide them into four
categories:

(a) No Modification: The first category represents reference
output without any modification. All experiments ran on
the same host machine to minimize deviations among
different tests.

(b) Traffic Shaping: The second category is dedicated to
simulation of traffic shaping. Therefore, all packets were
forwarded with higher time delays. For this purpose,
the special gateway machine with a limited processor’s
performance was used. This machine was also fully
loaded to emulate slower packets processing than in the
first scenario.

(c) Traffic Policing: The third category is supposed to
simulate traffic policing when some of the packets were
dropped during the processing on the network gateway
node. In this case, a custom packet dropper was used on
the gateway node, and 25% of packets were dropped, re-
sulting in output which contained re-transmitted packets.

(d) Corrupted Traffic: The fourth category represents trans-
mission on an unreliable network channel; thus, 25% of
packets were corrupted during processing on the network
gateway node.

Legitimate Network Traffic. Legitimate samples of the
dataset were collected from two sources. The first source
represents a legitimate traffic simulation in our virtual network
architecture and also employed network traffic modifications
for the purpose of simulating real network conditions. As
the second source, common usage of selected services was
captured in the campus network in accordance with policies in
force. In the obtained data, no content of packets was captured,
and all collected metadata was anonymized. Further, we filter
out data matched on high severity alerts by signature-based
Network Intrusion Detection Systems (NIDS) Suricata [29]
and SNORT [20] through Virus Total API. This step assured
that legitimate traffic does not contain any malicious data.
Note that SNORT was equipped with Sourcefire VRT ruleset,
and SURICATA utilized Emerging Threats ETPro ruleset. The
final composition of the dataset after extraction of ASNM
features is depicted in Table V.

Labeling. ASNM-TUN dataset contains four types of labels

that are enumerated by increasing order of their granularity in
the following:
• label 2: is a two-class label, which indicates whether an

actual sample represents a network buffer overflow attack
or a legitimate communication.

• label 3: is a three-class label, which distinguishes among
legitimate traffic (symbol 3), direct attacks (symbols 1),
and obfuscated network attacks (symbol 2).

• label poly: is a label that is composed of 2 parts: (a) a
three-class label, and (b) acronym of a network service.
This label represents a type of communication on a
particular network service.

• label poly s: is composed of 3 parts: (a) a three-class
label, (b) an acronym of network service, and (c) a
network modification technique employed. This label has
almost the same interpretation as the previous one, but in
addition, it introduces a network modification technique
employed (identified by a letter from the previous listing).

Testing with Signature-Based NIDS. To investigate the effect
of the tunneling obfuscation on signature-based NIDSs, we
performed detection by SNORT and SURICATA through
VirusTotal API [30]. SNORT was equipped with Sourcefire
VRT ruleset, and SURICATA utilized Emerging Threats ET-
Pro ruleset. The results of direct attacks’ detection by both
NIDSs are shown in Table VI. Note that high priority rules
detected 93 direct attacks on Apache service in both NIDSs,
but 4 undetected direct attacks occurred almost at the same
time as some of the detected attack instances, and hence,
we consider them as a part of other detected direct attacks.
Also, we can see that five instances of direct attacks were
not detected by SNORT nor SURICATA. These five instances
utilized network traffic modifications (c) and (d), which likely
influenced the detection rate of both NIDSs; hence, they give
an intuition for the adversarial obfuscation techniques utilized
in the last ASNM dataset (see Section IV-C). The resulting
detection rates of direct attacks look the same in both NIDSs,
but there were differences in fired alerts during the exploita-
tion of Apache service. Unlike SNORT, SURICATA had not
detected any occurrence of buffer overflow, nor shellcode,
nor remote command execution but instead fired high priority
alerts related to potential corporate privacy violation:
• ET POLICY
Possible SSLv2 Negotiation in Progress
Client Master Key SSL2_RC4_128_WITH_MD5,

which we decided to consider as correct detection. If we would
not consider them as correctly detected, then SURICATA was
not detecting any direct attack on the Apache service.

Next, we have performed exploitation of each vulnerable
service using the tunneling obfuscation, while scanning the
network by aforementioned NIDSs. The obtained results are
depicted in Table VII, which distinguishes between tunneling
obfuscation performed through HTTP and HTTPS protocols.

We can see that an average detection rate per service is
significantly lower for obfuscated attacks than in the case of
direct attacks, and thus tunneling obfuscation was partially



Direct Attacks
Detected Total %

Apache 93 +4 102 95.10%
BadBlue 4 4 100.00%

DCOM RPC 4 4 100.00%
Samba 20 20 100.00%

Overall Detection 125 130 96.15%
ADR∗ per Service 98.77%

∗Average detection rate.

(a) SNORT

Direct Attacks
Detected Total %

Apache 93 +4 102 95.10%
BadBlue 4 4 100.00%

DCOM RPC 4 4 100.00%
Samba 20 20 100.00%

Overall Detection 125 130 96.15%
ADR∗ per Service 98.77%

∗Average detection rate.

(b) SURICATA

Table VI: Detection of direct attacks in ASNM-TUN dataset by
SNORT and SURICATA.

capable of evading detection by utilized NIDSs. Regarding
tunneling through the HTTP protocol, both SNORT and SURI-
CATA achieved the same low detection rate for all classes of
attacks.

The situation is slightly different for the case of tunnel-
ing through the HTTPS protocol. The SNORT achieved an
average detection rate (ADR) per class equal to 68.75% and
SURICATA only 23.25%. We found out the same fact about
high priority rules fired by SURICATA on exploitation of
Apache service as in the case of direct attacks detection –
neither buffer overflow, nor shellcode, nor remote command
execution rules were matched, and thus we decided to accept
the previously mentioned potential corporate privacy violation
alert as correct detection again. If we would not accept it, then
SURICATA were not detected any tunneled attack on Apache
service. Also note that SURICATA fired one non-high-priority
alert classified as potentially bad traffic in several instances of
attacks tunneled through HTTPS, which exploited BadBlue,
DCOM and Samba services:
• ET POLICY
FREAK Weak Export Suite
From Client (CVE-2015-0204).

But we have not considered it as correct detection due to the
low priority of the alert as well as the scope of corresponding
CVE-2015-0204 is only related to the client code of OpenSSL.
The plus notation in Table VII, alike in Table VI, denotes
undetected attacks that occurred almost at the same time as
some other correctly detected attacks, and thus are considered
as their parts. Concluding the results of NIDSs detection, we
can state that the proposed tunneling obfuscation technique
was successful in evading the NIDSs used since a high number
of obfuscated attacks were not detected in comparison to the
case where obfuscations were not employed. On the other

Internet

Kali Linux

Metasploitable Metasploitable 2

Windows XP SP3

Figure 3: A setup of virtual network used in ASNM-NPBO dataset.

hand, we emphasize that SNORT has detected the most of
direct attacks on Apache service even though it was encrypted.
This indicates that VirusTotal may utilize a very paranoid rule
set, which causes false positives. Hence, the results of the
analysis through VirusTotal API are arguable.

C. ASNM-NPBO Dataset

ASNM-NPBO9 dataset was built in laboratory conditions
using a virtual network architecture (see Figure 3) consisting
of three vulnerable machines and the attacker’s machine.
All virtual machines were configured with private static IP
addresses in order to enable easy automation of the whole
exploitation process. Our testing network infrastructure con-
sisted of the attacker’s machine equipped with Kali Linux
and vulnerable machines that were running Metasploitable 1,
2 [31], and Windows XP with SP 3. We aimed at the selection
of vulnerable services with the high severity of their successful
exploitation leading to remote shell code execution through an
established backdoor communication. All selected vulnerable
services are depicted in Table VIII, which also contains CVE
IDs and CVSS severity score values. The details about each
vulnerability and its exploitation are briefly described in the
following:
• Apache Tomcat 5.5: First, a dictionary attack was

executed in order to obtain access credentials into the
application manager instance [32]. Further, the server’s
application manager was exploited for the transmission
and execution of malicious code [33].

• Microsoft SQL Server 2005: A dictionary attack
was employed to obtain access credentials of MSSQL
user [34] and then the procedure xp_cmdshell en-
abling the execution of an arbitrary code was ex-
ploited [35].

• Samba 3.0.20-Debian: A vulnerability in Samba ser-
vice enabled the attacker of arbitrary command ex-
ecution, which exploited MS-RPC functionality when
username_map_script [36] was allowed in the con-
figuration. There was no need for authentication in this
attack.

9The name is derived from Non-Payload-Based Obfuscations.



Service
Obfuscated Attacks

HTTP HTTPS All
Detected Total % Detected Total % Detected Total %

Apache 0 4 0.00 51 +6 57 100.00 57 61 93.40
BadBlue 3 6 50.00 2 4 50.00 5 10 50.00

DCOM 0 4 0.00 3 4 75.00 3 8 37.50
Samba 0 4 0.00 2 4 50.00 2 8 25.00

Summary 3 18 16.67 64 69 92.75 67 87 77.01
ADR∗ 12.50 68.75 51.49

∗Average detection rate per class.

(a) SNORT

Service
Obfuscated Attacks

HTTP HTTPS All
Detected Total % Detected Total % Detected Total %

Apache 0 4 0.00 50 +3 57 92.98 53 61 86.89
BadBlue 3 6 50.00 0 4 0.00 3 10 30.00

DCOM 0 4 0.00 0 4 0.00 0 8 0.00
Samba 0 4 0.00 0 4 0.00 0 8 0.00

Summary 3 18 16.67 53 69 76.81 56 87 64.37
ADR∗ 12.50 23.25 29.22

∗Average detection rate per class.

(b) SURICATA

Table VII: Detection of obfuscated attacks in ASNM-TUN dataset by SNORT and SURICATA.

• Server Service of Windows XP: The server service
enabled the attacker of arbitrary code execution through
crafted RPC request resulting in stack overflow during
path canonicalization [37].

• PostgreSQL 8.3.8: A dictionary attack was executed in
order to obtain access credentials into the PostgreSQL
instance [38]. Standard PostgreSQL Linux installation
had write access to /tmp directory, and it could call user-
defined functions (UDF). UDFs utilized shared libraries
located on an arbitrary path (e.g., /tmp). An attacker
exploited this fact and copied its own UDF code to /tmp
directory and then executed it [39].

• DistCC 2.18.3: A vulnerability enabled the attacker
remote execution of an arbitrary command through com-
pilation jobs that were executed on the server without any
permission check [40].

Adversarial Modifications. We proposed several non-
payload-based obfuscation techniques [41] when exploiting
vulnerable network services as well as during the execution
of legitimate communications on the services. The proposed
non-payload-based obfuscation techniques are described in

Service CVE CVSS

Apache Tomcat 2009-3843 10.0
DistCC service 2004-2687 9.3

MSSQL 2000-1209 10.0
PostgreSQL 2007-3280 9.0

Samba service 2007-2447 6.0
Server service of Windows 2008-4250 10.0

Table VIII: A list of vulnerable services in ASNM-NPBO dataset.

Table IX, Assuming the background from Section II-D, the
proposed non-payload-based obfuscation techniques can mod-
ify Pc and Ps packet sets of the original connection cm by
insertion, removal and transformation of the packets. Symbols
of the packet tuple (see Table XXIV) whose values are
sensitive to the obfuscations include: t, size, ipoff , ipsum,
tcpsum, tcpseq, tcpack, tcpoff , tcpflags, tcpwin, tcpurp and
data.10 The modifications of Pc and Ps of the connection
cm can cause alteration of the original network connection
features’ values Fm to new ones (see Section II-D).

Then we built an obfuscation tool [42] that morphs network
characteristics of a TCP connection at network and transport
layers of the TCP/IP stack by applying one or a combination of
several non-payload-based obfuscation techniques. Execution
of direct communications (non-obfuscated ones) is also sup-
ported by the tool as well as capturing network traffic related
to communication. The tool is capable of automatic/semi-
automatic run and restoring of all modified system settings
and consequences of attacks/legitimate communications on
a target machine. After the successful execution of each
desired obfuscation on the selected service, the output of the
tool contains several network packet traces associated with
pertaining obfuscations. The behavioral state diagram of the
obfuscation tool is depicted in Figure Figure 4.

We applied our obfuscation tool for automatic exploitation
of all enumerated vulnerable services while using the pro-
posed obfuscations. When exploitation leading to a remote
shell was successful, simulated attackers performed simple
activities involving various shell commands (such as listing

10Note the data field is sensitive to the obfuscations only in the manner
of damaging or splitting the original packet’s data.



Technique Parametrized Instance ID

Spread out packets
in time

• constant delay: 1s (a)
• constant delay: 8s (b)
• normal distribution of delay with 5s mean
2.5s standard deviation (25% correlation)

(c)

Packets’ loss • 25% of packets (d)

Unreliable network
channel simulation

• 25% of packets damaged (e)
• 35% of packets damaged (f)
• 35% of packets damaged with 25% cor-
relation

(g)

Packets’ duplication • 5% of packets (h)

Packets’ order
modifications

• reordering of 25% packets; reordered
packets are sent with 10ms delay and
50% correlation

(i)

• reordering of 50% packets; reordered
packets are sent with 10ms delay and
50% correlation

(j)

Fragmentation

• MTU 1000 (k)
• MTU 750 (l)
• MTU 500 (m)
• MTU 250 (n)

Combinations

• normal distribution delay (µ = 10ms,
σ = 20ms) and 25% correlation; loss:
23% of packets; corrupt: 23% of packets;
reorder: 23% of packets

(o)

• normal distribution delay (µ = 7750ms,
σ = 150ms) and 25% correlation;
loss: 0.1% of packets; corrupt: 0.1% of
packets; duplication: 0.1% of packets; re-
order: 0.1% of packets

(p)

• normal distribution delay (µ = 6800ms,
σ = 150ms) and 25% correlation; loss:
1% of packets; corrupt: 1% of packets;
duplication: 1% of packets; reorder 1% of
packets

(q)

Table IX: Non-payload-based obfuscation techniques with parameters
and IDs.

directories, opening, and reading files). An average number
of issued commands was around 10, and text files of up
to 50kB were opened/read. Note that we labeled each TCP
connection representing dictionary attacks as legitimate ones
due to two reasons: 1) from the behavioral point of view, they
independently appeared just as unsuccessful authentication
attempts, which may occur in legitimate traffic as well, 2)
more importantly, we employed ASNM features whose subset
involves context of an analyzed TCP connection for their
computation – i.e., ASNM features capture relations to other
TCP connections initiated from/to a corresponding service.

Legitimate Network Traffic. The legitimate samples of this
dataset were collected from two sources:

• A common usage of all previously mentioned services
was obtained in an anonymized form, excluding the
payload, from a real campus network in accordance
with policies in force. Analyzing packet headers, we
observed that a lot of expected legitimate traffic contained
malicious activity, as many students did not care about
up-to-date software. Therefore, we filtered out network
connections yielding high and medium severity alerts by
signature-based NIDS – Suricata and SNORT – through

Figure 4: Behavioral state diagram of the obfuscation tool.

Virus Total API [30].
• The second source represented legitimate traffic simu-

lation in our virtual network architecture and also em-
ployed all of our non-payload-based obfuscations for
the purpose of partially addressing overstimulation in
adversarial attacks against IDS [43], and thus making
the classification task more challenging. However, only
109 TCP connections were obtained from this stage,
which was also caused by the fact that services such as
Server and DistCC were hard to emulate.11 Simulation
of legitimate traffic was aimed at various SELECT and
INSERT statements when interacting with the database
services (i.e., PostgreSQL, MSSQL); several GET and
POST queries to our custom pages as well as down-
loading of high volume data when interacting with our
HTTP server (i.e., Apache Tomcat); and several queries
for downloading and uploading small files into Samba
share.

The class distribution of the final dataset after extraction of
ASNM features is summarized in Table X

Labeling. ASNM-NPBO dataset contains four types of labels
that are enumerated by increasing order of their granularity in
the following:

• label 2: is a two-class label, which indicates whether an
actual sample represents a network buffer overflow attack
or a legitimate communication.

• label 3: is a three-class label, which distinguishes among
legitimate traffic (symbol 3), direct attacks (symbols 1),
and obfuscated network attacks (symbol 2).

• label poly: is a label that is composed of 2 parts: (a) a
three-class label, and (b) acronym of a network service.

11Note that additionally to those 109 TCP connections that were explicitly
simulated, other 2252 TCP connections from obfuscated dictionary attacks
were also considered as legitimate, and thus also helped in achieving a
resistance against the overstimulation attacks.



This label represents a type of communication on a
particular network service.

• label poly o is the last label, which is composed of
3 parts: (a) three-class label, (b) employed obfuscation
technique, and (c) acronym of network service. The
label has almost the same interpretation as label poly
but moreover introduces obfuscation technique employed
(identified by ID from Table IX) into all obfuscated attack
samples.

Testing with Signature-Based NIDS. To investigate the
effect of the proposed non-payload-based obfuscations on
signature-based NIDSs, we performed detection by SNORT
and SURICATA in a similar manner as we did in the case of
the tunneling obfuscations (see Section IV-B), while the same
ruleset was employed.

First, we let NIDSs inspect direct attacks that exploit the
current network vulnerabilities. The results of the inspection
summarize the detection properties of SNORT and SURI-
CATA, and are depicted in Table XI.We can see in the tables
that SNORT overcame SURICATA and correctly detected
100.00% of direct attacks. However, only 33 direct attacks on
Apache service were detected by high priority rules of SNORT,
and 24 attacks were undetected. Despite it, we considered
these attacks as correctly detected, as they occurred almost
at the same time as other correctly predicted direct attacks,
and thus might be a part of their execution. In the case
of SURICATA, the only one such undetected direct attack
occurred. Nevertheless, unlike SNORT, SURICATA did not
fire any alert representing buffer overflow, shellcode, or remote
command execution, but instead fired combination of high
priority alerts related to potential corporate privacy violation:

• ET POLICY
Incoming Basic Auth Base64 HTTP
Password detected unencrypted

• ET POLICY
Outgoing Basic Auth Base64 HTTP
Password detected unencrypted

• ET POLICY
HTTP Request on Unusual Port Possibly Hostile

• ET POLICY
Internet Explorer 6 in use
Significant Security Risk,

Network Service Count of TCP Connections

Legitimate Direct
Attacks

Obfuscated
Attacks

Summary

Apache Tomcat 809 61 163 1033
DistCC 100 12 23 135

MSSQL 532 31 103 666
PostgreSQL 737 13 45 795

Samba 4641 19 44 4704
Server 3339 26 100 3465

Other Traffic 647 – – 647

Summary 10805 162 478 11445

Table X: ANSM-NPBO dataset distribution.

Direct Attacks
Detected Total %

Apache Tomcat 33 +28 61 100.00
DistCC 12 12 100.00

MSSQL 31 31 100.00
PostgreSQL 13 13 100.00

Samba 19 19 100.00
Server 26 26 100.00

Overall Detection 162 162 100.00
ADR∗ per Service 100.00

∗Average detection rate.

(a) SNORT

Direct Attacks
Detected Total %

Apache Tomcat 56 +5 61 100.00
DistCC 0 12 0.00

MSSQL 31 31 100.00
PostgreSQL 0 13 0.00

Samba 0 19 0.00
Server 26 26 100.00

Overall Detection 118 162 72.84
ADR∗ per Service 50.00

∗Average detection rate.

(b) SURICATA

Table XI: Detection of direct attacks in the ASNM-NPBO dataset by
SNORT and SURICATA.

which we decided to consider as correctly detected. If we
would not consider them as correctly detected, then SURI-
CATA were not detected any attack on the Apache service.

Next, we analyzed detection capabilities of both NIDSs on
obfuscated attacks and the results are depicted in Table XII.

Comparing the detection rate of SNORT and SURICATA on
obfuscated attacks, we can conclude that SNORT overcame
SURICATA again and the ratio of their correct detection
was almost the same as in the case of direct attacks (see
Table XI). The only difference occurred during the exploitation
of a vulnerability in Server service, where two instances of
obfuscated attacks were not detected by any NIDS. These two
instances utilized obfuscations with IDs (f) and (g), both from
a category of unreliable network traffic channel simulation
techniques (see Table IX). There were also several undetected
obfuscated attacks on Apache service in both NIDSs, but we
were able to track their occurrences and associate them as
part of other correctly detected attacks; hence, the detection
rate for Apache service achieved 100.00% for both NIDSs.
Regarding Apache service, SURICATA once again did not
fire any alert detecting malicious content, but instead, it fired
the previously mentioned combination of high priority alerts
stating corporate privacy violation, which we, once again, con-
sidered as a correct detection. Also, note that SURICATA fired
one non-high-priority alert classified as potentially bad traffic
in all instances of direct and obfuscated attacks exploiting
PostgreSQL service:

• ET POLICY
Suspicious inbound to PostgreSQL port 5432.



Obfuscated Attacks
Detected Total %

Apache Tomcat 128 +36 164 100.00
DistCC 23 23 100.00

MSSQL 103 103 100.00
PostgreSQL 45 45 100.00

Samba 44 44 100.00
Server 98 100 98.00

Overall Detection 478 480 99.58
ADR∗ per Service 99.67

∗Average detection rate.

(a) SNORT

Obfuscated Attacks
Detected Total %

Apache Tomcat 162 +1 163 100.00
DistCC 0 23 0.00

MSSQL 103 103 100.00
PostgreSQL 0 45 0.00

Samba 0 44 0.00
Server 98 100 98.00

Overall Detection 364 478 76.15
ADR∗ per Service 49.67

∗Average detection rate.

(b) SURICATA

Table XII: Detection of obfuscated attacks in ASNM-NPBO dataset
by SNORT and SURICATA.

However, we did not consider it as a correct detection due to
the low priority of the alert. As discussed in Section IV-B,
VirusTotal likely uses a paranoid rule set, and thus fired alerts
may contain false positives. Comparing fired alerts before and
after obfuscation, we can see that utilized NIDSs detected most
of the obfuscated attacks by non-payload-based, but there were
also a few cases where they failed, and thus, evasion was
successful.

V. BENCHMARKING THE DATASETS

In the previous research [4], [16], [7], [44], [41], [42], we
conducted several machine learning experiments with ASNM
datasets, and we summarize them in the current section.

A. ASNM-CDX-2009 Dataset

Forward Feature Selection. First, we used 5-fold cross-
validation and forward feature selection (FFS) on top of the
Naive Bayes classifier with kernel functions for the estimation
of density distribution, which represents a non-parametric
estimation method. In FFS, we accepted one iteration without
improvement as we wanted to avoid the selection process to
get stuck in local extremes. The maximal number of selected
features was limited to 20 (although it was never reached).
We used the binary label of the dataset (i.e., label 2), and we
obtained F1 -measure over 90% and an average recall of both
classes equal to 92%.

Additionally, we compared the performance of ASNM fea-
tures with discriminators of A. Moore [8] in the same setting,
and we concluded that both feature sets yielded similar results.

Moreover, when we merged both feature sets and rerun FFS,
F1 -measure reached 98.87% [16].

Figure 5: ROC diagram comparing a few classifiers on the ASNM-
CDX-2009 dataset.

Comparison of Several Classifiers. Next, we compared three
non-parametric classifiers while using a subset of ASNM
features obtained by FFS with the Naive Bayes classifier – the
selected features are enumerated and described in Table XXV
of Appendix. The individual confusion matrices that we ob-
tained are presented in Table XIII (Naive Bayes with kernel
density estimation), Table XIV (Decision Tree with Gini index
as a selection criterion for splitting of attributes), and Table XV
(SVM with radial basis function). Finally, all classifiers were
compared using ROC curves, and a comparison is depicted
in Figure 5. Note that ROC curves also depict a variance
coming from a cross-validation method, which is shown by
line-adjacent transparent areas.

B. ASNM-TUN Dataset

Forward Feature Selection. Alike the case of the previous
dataset, we again started with the FFS method using the same
Naive Bayes classifier and 5-fold cross-validation, while we
allowed acceptance of one FFS iteration without improvement
to avoid the selection process becoming stuck in local ex-
tremes. All cross-validation experiments have been adjusted to
employ stratified sampling during assembling of folds, which
ensured equally balanced class distribution of each fold. We
performed two-class prediction (i.e., using the label denoted as
label 2). Some features existed, which were inconvenient for
comparison of synthetic attacks with legitimate traffic captured
in a real network; therefore, such features were removed from
the dataset in the pre-processing phase of our experiment.
The examples include TTL-based features, IP addresses, ports,
MAC addresses, the occurrence of source/destination host in
the monitored local network, some context-based features,
etc. The experiment consisted of two executions of FFS.
The first took as an input just legitimate traffic and direct
attack entries and represented the case where the classifier



Classification Accuracy: True Class Precision
99.86% ±0.07 Legit. Flows Attacks

Predicted
Class

Legit. Flows 5726 7 99.88%
Attacks 1 37 97.37%

Recall 99.98% 84.09% F1 = 90.24%

Table XIII: Performance of the Naive Bayes classifier on the ASNM-
CDX-2009 dataset.

Classification Accuracy: True Class Precision
99.71% ±0.07 Legit. Flows Attacks

Predicted
Class

Legit. Flows 5721 11 99.81%
Attacks 6 33 84.62%

Recall 99.90% 75.00% F1 = 79.52%

Table XIV: Performance of the decision tree classifier on the ASNM-
CDX-2009 dataset.

Classification Accuracy: True Class Precision
99.81% ±0.06 Legit. Flows Attacks

Predicted
Class

Legit. Flows 5726 10 99.83%
Attacks 1 34 97.4%

Recall 99.98% 77.27% F1 = 86.07%

Table XV: Performance of the SVM classifier on the ASNM-CDX-
2009 dataset.

was trained without knowledge about obfuscated attacks. The
second execution took as input the whole dataset of network
traffic – consisting of legitimate traffic, direct attacks as well
as obfuscated ones, and therefore represented the case where
the classifier was aware of obfuscated attacks. The selected
features of both executions are depicted in Table XXVI of
Appendix. The penultimate column of the table (i.e., FFS
DOL) denotes the selected features where the whole dataset
was utilized for the FFS, and the last column (i.e., FFS DL)
denotes the case where only direct attacks and legitimate traffic
were taken into account.

Several mutual features were selected in both cases, which
means they provided a value regardless of whether obfuscation
was performed or not. Almost all of the following experiments
will use the feature set gained from the second execution
(i.e., FFS DOL), as we consider them as more appropriate
for general behavior representation of both kinds of attacks.

Evasions. First, we executed an experiment that performed
detection of malicious obfuscated attacks by the classifier
trained on all direct attacks and legitimate traffic samples. It
represented the situation when the classifier had no previous
knowledge about obfuscated attacks, and therefore we used
FFS DL feature set. As a result, only 35.63% of obfuscated
attacks (i.e., 31 of 87) were correctly detected by the classifier,
and thus an average recall and F1 -measure of the classifier
were equal to 67.53% and 52.10%, respectively. An associated
confusion matrix is depicted in Table XVI. We realized that
64.36% of obfuscated attacks were incorrectly predicted as
legitimate traffic, and thus caused an evasion of the classifier.

Training Data Augmentation. Our second binary classifica-
tion experiment considered explicit information about obfus-

Classification Accuracy: True Class Precision
78.41% Legit.

Flows
Obfus.

Attacks

Predicted
Class

Legit. Flows 176 56 75.86%
Obfus. Attacks 1 31 96.88%

Recall 99.44% 35.63% F1 = 52.10%

Table XVI: Detection of unknown obfuscated attacks by the Naive
Bayes classifier trained on all direct attack samples and legitimate
traffic samples from the ASNM-TUN dataset.

cated attacks in the training phase of the classifier. Therefore,
we used direct and obfuscated attacks labeled as one class
while using 5-fold cross-validation. FFS DOL feature set
was used for the purpose of this experiment. The resulting
confusion matrix with performance measures is shown in
Table XVII. The outcome of this experiment indicates a high
class recall and F1 -measure of the classifier trained with
knowledge about some obfuscated attacks.

Comparison of Several Classifiers. For the purpose of perfor-
mance comparison of various classifiers, we executed 5-fold
cross-validation on the other two non-parametric classifiers –
decision tree and SVM. FFS DOL feature set was used in this
experiment as the input for the classifiers working with two
class prediction (i.e., using label 2). At first, we evaluated
the performance of the SVM classifier, which utilized a radial
basis function as the non-linear kernel. The adjacent confusion
matrix is depicted in Table XVIII. The next experiment was
performed with the decision tree classifier, which utilized gini
index as selection criterion for splitting of attributes. The ad-
jacent result is represented by confusion matrix in Table XIX.
The results of both performance evaluation experiments can
be compared to the result of the Naive Bayes classifier repre-
sented by the confusion matrix from Table XVII. Considering
an average recall of all classes and F1 -measure, we can
say that the Naive Bayes classifier achieved the best results,
following by the decision tree, and finally by SVM.

All the classification models were compared by ROC
method (see Figure 6). Note that comparison of ROC ran
above the cross-validation method, and thus generated certain
variability, which is shown by line-adjacent transparent areas.For
more experiments with this dataset, including tri-nominal and
multi-nominal labels and individual feature analysis, we refer
the reader to [7], [44], and [16].

Classification Accuracy: True Class Precision
99.49% ± 0.62% Legit.

Flows
All

Attacks

Predicted
Class

Legit. Flows 176 1 99.44%
All Attacks 1 216 99.54%

Recall 99.44% 99.54% F1 = 99.54%

Table XVII: Performance of the Naive Bayes classifier on the ASNM-
TUN dataset using the binary label (i.e., label 2).



Classification Accuracy: True Class Precision
80.96% ± 3.51% Legit.

Flows
All

Attacks

Predicted
Class

Legit. Flows 176 74 70.40%
All Attacks 1 143 99.31%

Recall 99.44% 65.90% F1 = 79.22%

Table XVIII: Performance of the SVM classifier on the ASNM-TUN
dataset.

Classification Accuracy: True Class Precision
95.93% ± 2.47% Legit.

Flows
All

Attacks

Predicted
Class

Legit. Flows 169 8 95.48%
All Attacks 8 209 96.31%

Recall 95.48% 96.31% F1 = 96.31%

Table XIX: Performance of the decision tree classifier on the ASNM-
TUN dataset.

Figure 6: ROC diagram comparing a few classifiers on the ASNM-
TUN dataset.

C. ASNM-NPBO Dataset

Forward Feature Selection. Alike the case of the previ-
ous datasets, we again started with the FFS method using
the same Naive Bayes classifier and 5-fold cross-validation,
while we allowed acceptance of one FFS iteration without
improvement, and we excluded the same inconvenient features
as in Section V-B. We performed two-class prediction (i.e.,
using label 2) in two executions of FFS using the Naive
Bayes classifier – the first execution did not contain obfuscated
attack samples (i.e., FFS DL) and the another one included
these samples (i.e., FFS DOL). The selected features of both
executions are depicted in Table XXVII of Appendix.

Evasions. 5-fold cross-validation with FFS DL features was
performed using all direct attack samples and legitimate traffic
samples. The performance measures of three classifiers vali-
dated by the cross-validation are shown in Table XX. Then the
classifiers trained on all direct attacks and legitimate traffic

Classifier TPR FPR F1 (↑) Avg. Recall

Naive Bayes 98.15% 0.02% 98.45% 99.07%
Decision Tree 95.68% 0.09% 94.80% 97.80%

SVM 82.72% 0.01% 90.24% 91.36%

Table XX: Direct attacks and legitimate traffic cross validation on
ASNM-NPBO dataset.

Classifier TPR (↑) ∆ TPR

Naive Bayes 52.30% -45.85%
Decision Tree 36.61% -59.07%

SVM 15.90% -66.82%

(a) Obfuscated attacks

Classifier TPR (↑) ∆ TPR

Naive Bayes 64.38% -33.77%
Decision Tree 52.03% -43.65%

SVM 26.25% -56.47%

(b) All attacks

Table XXI: Prediction of obfuscated attacks and all attacks in the
ASNM-NPBO dataset by classifiers trained without knowledge about
obfuscated attacks.

samples were applied for the prediction of the obfuscated
attacks and all attacks, respectively (see Table XXI).12 Here
TPRs were deteriorated for all classifiers, which means that
some obfuscated attacks were successful – they were predicted
as legitimate traffic, and thus caused evasion of the classifiers.

Training Data Augmentation. To improve the resistance of
the classifiers against evasions, we widened their knowledge
about different mixtures of obfuscated attack instances, which
was accomplished by random 5-fold cross-validation of the
whole dataset. In this experiment, we use FFS DOL features
that consider knowledge about obfuscated attacks for updating
not only the model of the classifier but also the underlying fea-
ture set (in contrast to the previous experiment). Additionally,
we show the results with FFS DL features, which consider
updating the model only. The results of this experiment are
shown in Table XXII. Comparing against the results from
the previous experiment (see FPRs from Table XX and TPRs
from Table XXIb), most of the classifiers were significantly
improved in TPR, while FPR was deteriorated only slightly.
Hence, the classifiers trained with knowledge about some
obfuscated attacks were able to detect the same and similar
obfuscated attacks later.

Comparison of Several Classifiers. From the previous ex-
periments, we can say that the Naive Bayes classifier was the
least sensitive to evasions by non-payload-based obfuscations
(see Table XX), while SVM was the most sensitive classifier.
This might be caused by overfitting of the training data. Note
that all classifiers used the feature sets selected by FFS with
the Naive Bayes classifier. However, we also rerun FFS with

12Note that we do not depict FPRs in the tables since no changes to
legitimate traffic was made, hence FPRs remain the same as in Table XX.



Classifier TPR FPR ∆
TPR

∆
FPR F1(↑) Avg.

Recall

Naive Bayes 93.28% 0.73% +28.90% +0.71% 90.73% 96.28%
SVM 80.31% 0.05% +54.06% +0.04% 88.70% 90.13%

Decision Tree 67.34% 0.36% +15.31% +0.27% 77.65% 83.49%

(a) FFS DL features

Classifier TPR FPR ∆
TPR

∆
FPR F1(↑) Avg.

Recall

SVM 99.53% 0.13% +73.28% +0.12% 98.68% 99.70%
Decision Tree 98.44% 0.19% +46.41% +0.10% 97.60% 99.13%

Naive Bayes 98.75% 0.99% +34.37% +0.97% 91.66% 98.88%

(b) FFS DOL features

Table XXII: Cross validation of the whole ASNM-NPBO dataset,
representing the situation where classifiers were aware of some obfus-
cated attacks, and therefore they brought performance improvement in
contrast to classifiers aware only about direct attacks (see Table XXI).

individual classifiers, but obtained results were much worse
than using the features selected by the Naive Bayes classifier.

After augmentation of a training data without updating the
feature set (see Table XXIIa), we observe that the Naive
Bayes classifier is the most robust one. However, when making
a training data augmentation with updating the feature set
(see Table XXIIb), other classifiers perform better than Naive
Bayes, which might be again caused by overfitting of them.

Finally, we compared the classification models by ROC
method (see Figure 7). The best results were achieved in
the case of the Naive Bayes classifier and SVM. For more
experiments with this dataset, including tri-nominal and multi-
nominal labels, detection of unknown obfuscations by a cus-
tom leave-one-out validation, and individual feature analysis,
we refer the reader to [42] and [16].

VI. RELATED WORK

In this section, we summarize public datasets intended for
the evaluation of network intrusion detection solutions. We
partition all datasets into two categories. The first category
represents datasets containing raw network traffic traces, and
the second category represents datasets containing high-level
features extracted from underlying network traces.

A. Datasets of Network Traffic Traces

Datasets from this category have one property in common:
they contain network traffic traces with optional data serving
for labeling purposes. The first four representatives of this
category are large collections of datasets and are referred
to as projects – MWS [45], PREDICT [46], CAIDA [47],
NETRESEC [48]. The next four examples of this category
represent just one specific collection of network data and are
referred to as datasets – DARPA [49], CCRC [50], CDX [6],
CONTIAGO [51]. We describe them in the following.

Figure 7: ROC diagram comparing a few classifiers on the ASNM-
NPBO dataset.

1) Project MWS: The project MWS represents a collection
of various types of datasets that are primarily intended for
use in anti-malware research [45], but some of them are
also applicable in network intrusion detection. A summary of
the MWS datasets is available in Japanese [52], [53], [54],
[55], [56], and it covers three categories of datasets, which is
based on phases of attacks: (1) probing, (2) infection, and (3)
malware activities after infection.

From the perspective of network intrusion detection, we
consider PRACTICE, D3M, CCC, and NICTER as related
datasets of MWS. However, for network intrusion detection is
also important to have a ground truth, which can be inferred
from the MWS datasets called FFRI, IIJ MITF, D3M, and
CCC. In the following, we briefly describe these datasets.

Cyber Clean Center (CCC) dataset consists of a malware
sample, honeypot packet trace, and malware collection log.
The dataset was collected from server-side, high-interaction
honeypots operated by the CCC in a distributed manner.
Over a hundred of honeypots gathered attacks and collected
malware through multiple ISPs. These honeypots were based
on Windows 2000 and Windows XP SP1 virtual machines.
Drive-by Download Data by Marionette (D3M) dataset is a set
of packet traces collected from the web-client-based high-
interaction honeypot system Marionette [57], [58], which is
built upon Internet Explorer with several vulnerable plugins,
such as Adobe Reader, Flash Player, WinZip, QuickTime. The
datasets contain packet traces for the two periods: at infection
and after infection. The IIJ MITF dataset is collected by
server-side, low interaction honeypots based on the open-
source honeypot Dionaea [59]. This dataset contains attack
communication and malware collection logs from a hundred
honeypots between July 2011 and April 2012 in order to
discover the trends of bot and botnets. The PRACTICE
dataset contains the packet traces obtained during long-term
dynamic analysis of five malware samples (Zbot, SpyEye, etc.)



and their metadata, while the focus was put on network activity
of malware, using the dynamic analysis system proposed
in [60]. The analysis period of the dataset is one week in the
middle of May 2013. The FFRI dataset focuses on the internal
activities that occurred at a host by the influence of malware
and are generated by dynamic analysis systems – Cuckoo
sandbox [61] and FFR Yarai Analyzer Professional [62]. The
NICTER darknet dataset is a set of packet traces collected
from April 2011 to 2014 using the darknet monitoring system
NICTER [63]. The packet traces contain scan packets to
explore the reachable hosts by worms, backscatter packets
caused by source IP address spoofing, distributed reflection
denial of service (DRDoS) attacks using DNS and NTP, etc.

2) Project PREDICT: The project PREDICT [46] provides
430 datasets in 14 categories contributed by several data
providers. From all 14 categories, just three of them are
relevant to the network intrusion detection and could be used
for evaluation purposes:
Blackhole Address Space Data: is collected by monitoring

routed but unused IP address space that does not host
any networked devices. Systems that monitor such unoc-
cupied address space have a variety of names, includ-
ing darkspace, darknets, network telescopes, blackhole
monitors, sinkholes, and background radiation monitors.
Packets observed in the darkspace can originate from
a wide range of security-related events, such as scanning
in search of vulnerable targets, backscatter from spoofed
denial-of-service attacks, automated spread of the Internet
worms or viruses, etc. The related subcategory of this cat-
egory is UCSD Archived Network Telescope Data. The
archived files are in PCAP format. Source IP addresses
are not anonymized.

IP Packet Headers: these datasets are comprised of head-
ers of network data, containing information such as
anonymized source and destination IP addresses and other
IP and transport header fields. No payload is included.
Depending on the specific dataset, this category of data
can be used for characterization of typical internet traffic,
or of traffic anomalies such as distributed denial of service
attacks, port scans, or worm outbreaks.

Synthetically Generated Data: are generated by capturing
information from a synthetic environment, where benign
user activity and malicious attacks are emulated by com-
puter programs. In this category, full network packets,
as well as firewall logs, application logs, and malicious
attacks are available, without any risk of compromising
the privacy of real people. In this category, one can
know and document complete “ground truth”. Therefore,
this category is well suited for the evaluation of NIDS
systems.

Note that IDS and Firewall Data category contains large
collection of logs submitted in a standard format but generated
from a diverse set of hardware and software systems. It does
not contain any PCAP files, therefore it could not be used for
IDS evaluation purposes. If we were to consider categorization

of datasets from the MWS project, then mentioned datasets of
PREDICT would represent probing and infection categories.

3) Project CAIDA: Center for Applied Internet Data Anal-
ysis (CAIDA) [47] collects several different network data types
at geographically diverse locations. The data are provided
by various organizations, for whose data CAIDA guarantees
anonymity and privacy.

The CAIDA datasets are dived into three categories that
reflect a status of a collection process:
Ongoing: the data collection for such dataset is still active,

while collections are added regularly,
One-Time Snapshot: the dataset comes from a single col-

lection event that only occurred once. Future events will
have a different dataset names,

Complete: a formerly ongoing data collection that is finished,
and will not be resumed.

From the network intrusion detection perspective, CAIDA
includes datasets containing e.g. DDoS attacks [64], [65],
botnet traffic [66], dumps of various well known worms
(Conficker [67], Code-Red [68], Witty [69]). These datasets
could be utilized for the evaluation of intrusion detection
approaches after a further analysis followed by labeling where
it is not available. If we were to consider a categorization of
datasets from MWS project (see Section VI-A1), then CAIDA
would belong to probing and infection categories.

4) Project NETRESEC: Network Forensics and Network
Security Monitoring (NETRESEC) [48] is an independent
software vendor with focus on the network security field.
NETRESEC specializes in software for network forensics and
analysis of network traffic. In addition, NETRESEC maintains
a comprehensive list of publicly available PCAP files that can
be used for the evaluation of network intrusion detection ap-
proaches as well. The datasets are divided into six categories:
Cyber Defence Exercises: this category includes network

traffic from exercises and competitions, such as Cyber
Defense Exercises and red-team/blue-team competitions.

Capture the Flag Competitions: it contains files from
capture-the-flag (CTF) competitions and challenges.

Malware Traffic: it contains PCAP files of captured malware
traffic from honeypots, sandboxes, and intrusions.

Network Forensics: Network forensics training, challenges
and contests.

SCADA/ICS Network Captures: files with attacks against
Industrial Control Systems; files captured at Industrial
Control System Village (4SIC, CTF, DEF CON 22).

Uncategorized PCAP Repositories: various captures that
often represent data for intrusion detection purposes.

If we were to consider the categorization of datasets from
MWS project (see Section VI-A1), then NETRESEC datasets
would represent probing and infection categories.

5) DARPA 1998 and 1999 Datasets: The Cyber Systems
and Technology Group [49] of MIT Lincoln Laboratory has
collected the first standard corpora for evaluation of network
intrusion detection systems in 1998 and 1999. There were



collected two datasets DARPA 1998 and 1999, and later there
were released three datasets marked as DARPA 2000, which
address specific network scenarios. If we were to consider the
categorization of datasets from Section VI-A1, then DARPA
datasets would represent probing and infection categories.

6) CCRC 2006 Dataset: The authors F. Massicotte et
al. [50] developed a framework for automatic evaluation of
intrusion detection systems, and they collected an examplar
dataset consisted of several network attack simulations. We
denote this dataset as CCRC 2006, because of the main author
was, at the time of the article was written, an employee of
Canada Communication Research Center in Ottawa.

The dataset is specific to signature-based network intrusion
detection systems and contains only well-known attacks, with-
out background traffic. The purpose of the dataset is testing
and evaluation of the detection accuracy of IDS in the case of
successful and failed attack attempts. The paper also reports
an initial evaluation of the framework on two well-known IDS,
namely SORT [70] and Bro [71]. In the proposed framework,
the authors are able to automatically generate a large dataset,
with which it is possible to automatically test and evaluate
intrusion detection systems. Note that the framework also
contains a mutation layer that is able to perform various L2
and L3 protocol based obfuscations using tools Fragroute [72]
and Whisker [73]. If we were to consider the categorization of
datasets from Section VI-A1, then CCRC 2006 dataset would
represent the infection category.

7) CDX 2009 Dataset: The CDX 2009 dataset was intro-
duced by Sangster et al. [6] and it contains data in tcpdump
format as well as SNORT [20] intrusion prevention logs.
We used this dataset in our research, and it is described in
Section IV-A. If we were to consider the categorization of
datasets from the MWS project (see Section VI-A1), then
CDX 2009 dataset would represent probing and infection
categories.

8) Twente 2009 Dataset: The Twente 2009 dataset [74]
consists of 14.2M network flows (i.e., 155M packets) collected
during a period of 9 days in 2008, where 7.6M of intrusion
alerts were generated. The flows in this dataset were assembled
by a modified version of softflowd utility, and 98% of them
have been labeled by the authors. The authors collected dataset
by a honeypot installed on virtual host Citrix XenServer 5. The
deployed honeypot run with three opened services: OpenSSH,
Apache web server, and FTP server proftp.

9) ISCX 2012 Dataset: The authors of [75] presented
guidelines for the generation of benchmark dataset consisting
of creating a malicious and benign profile that were later
executed during dataset generation. The authors generated
their own dataset of network traffic (including the payload) for
various network services such as HTTP, SMTP, SSH, IMAP,
POP3, FTP. In sum, they collected 2.5M of network flows,
consisting of 125M of packets.

10) Contagio 2015 Dataset: Contagio dataset [51] contains
a collection of PCAP files from malware analysis. The authors
collected almost 1000 malicious PCAPs from various public
sources. The collection is irregularly updated with new PCAP
files. PCAPs in the Contagio dataset include implicit expert
knowledge about the occurrence of attacks/malware. If we
were to consider the categorization of datasets from the MWS
project (see Section VI-A1), then the Contagio dataset would
belong to categories representing an infection and malware
activities after an infection.

B. Datasets Consisting of High-Level Features

The current category of datasets contains representatives
that were built from network traffic traces, hence it can be
interpreted as a post-processed version of the former category.
The current category of datasets contains five representatives:
KDD Cup ’99 [10], NSL KDD ’99 [76], Moore’s 2005 [8],
Kyoto 2006+ [9], and OptiFilter 2014 [77].

1) KDD Cup ’99: In 1999, KDD Cup ’99 [10] dataset was
created, and it is based on the DARPA 1998 dataset of network
dumps. It has been used for evaluating intrusion detection
methods that analyze features extracted from network traffic
and host machine data. The training dataset consists of approx-
imately 4,9M single connection samples from seven weeks of
network traffic, each labeled as either normal or attack, con-
taining 41 features per connection sample. Similarly, the two
weeks of testing data yielded around two million connection
samples. The datasets contain a total number of 24 training
attack types, with additional 14 types in the testing dataset.
The simulated attacks fall into four main categories [10], [76]:
Denial of Service Attack (DOS): is an attack in which the

attacker makes some computing or memory resource too
busy or too full to handle legitimate requests, or denies
legitimate users access to a machine, e.g., SYN flood.

Remote to Local Attack (R2L): occurs when an attacker
who has the ability to send packets to a machine over
a network, but who does not have an account on that
machine, exploits some vulnerability to gain local access
as a user of that machine, e.g., guessing password, remote
buffer overflow attacks.

User to Root Attack (U2R): is a class of attacks where the
attacker begins with access to a normal user account on
the system (e.g., a dictionary attack) and then is able to
exploit some vulnerability to gain superuser access to the
system, e.g. local buffer overflow attacks.

Probing: is an attempt to gather information about a network
of computers for the purpose of circumventing its security
controls, e.g. port scanning for vulnerable services.

The features of the KDD ’99 dataset are, according to [10],
divided into three categories:
• Basic Features: of individual communications. This cat-

egory encapsulates all the attributes that can be extracted
from TCP or UDP communications.

• Content Features: are extracted within a connection
suggested by domain knowledge. Unlike most of the DoS



and Probing attacks, the R2L and U2R attacks cannot be
described by any volumetric or frequency pattern. This
is because the DoS and Probing attacks involve many
connections to some hosts in a very short period of
time, while the R2L and U2R attacks are embedded in
the data portions of the packets associated with a single
connection. To detect such attacks, features that inspect
application-level behavior are employed, e.g., the number
of failed login attempts. These features parse the payload
of packets regardless of it is encrypted or not. Hence,
they cannot be extracted from only network data.

• Traffic Features: (a.k.a., time-based features) calculate
statistics related to protocol behavior, service, etc., and
they are computed using a two-second time window.
This category of features is further divided into two
subcategories [78]:
– Same Host Features: examine only the connections

in the past two seconds that have the same destination
host as the current connection.

– Same Service Features: examine only the connections
in the past two seconds that have the same service as
the current connection.

Stolfo et al. [78] criticize time-based features since there exist
several slow probing attacks that scan host using a much
larger time interval than two seconds. Rather than using a time
window of two seconds, Stolfo et al. [78] use a window of
100 connections, and constructed a mirror set of host-based
traffic features, replacing original time-based traffic features.

2) NSL KDD ’99: Deficiencies of the KDD Cup ’99 dataset
were discussed in [76]. The main deficiency of original dataset
relates to redundant replicated entries (78% in the training set
and 75% in the testing set). The original dataset was modified,
reduced, and release as the NSL KDD ’99 dataset. The training
dataset contains about 130 thousand entries and the testing one
about 23 thousand. In NSL KDD ’99 dataset, all samples are
sorted into the original 24 classes as well as into two classes.
Complete NSL KDD ’99 dataset is available at [79].

3) Moore’s 2005: The Moore’s 2005 datasets [8] are
primarily intended to aid in the assessment of network traffic
classification. A number of datasets are described; each dataset
consists of a number of objects, and each object is described
by a group of features (a.k.a., discriminators [8]). Each object
within each dataset represents a single flow of TCP packets
between a client and a server. Features for each object consist
of processed input data by discriminators extraction, and
these features serve as the input for probabilistic classification
techniques. Input data is obtained by the Network Monitor tool
designed in [80]. In contrast to previously described KDD
datasets, Moore’s dataset is based purely on network traffic
traces, and there is not utilized any information from host
machines during the extraction of the features.

4) Kyoto 2006+: J. Song et al. [9] presented an evaluation
dataset for NIDS, which was built from the 3 years of real-
network traffic (since Nov. 2006 to Aug. 2009) that was

collected by various types of honeypots. The total number of
honeypots used for collection is 348, including two black hole
sensors with 318 unused IP addresses. The most of honeypots
were rebooted and restored original HDD image immediately
after a malicious packet was observed. For inspection of
captured traffic, the authors use three independent security SW:
SNS7160 IDS system [81], Clam AntiVirus software [82], and
Ashula [83]. Later on, the authors have deployed SNORT [70]
to their infrastructure. The dataset contains over 50 millions of
normal sessions and over 43 millions of attack sessions. The
authors regarded all traffic data captured from their honeypots
as attack data and all traffic data captured at their legitimate
mail and DNS server as normal data. Also, among the attack
sessions, there were observed over 425 thousands of sessions
that were related to unknown attacks, because they did not
trigger any IDS alerts, but they contained shellcodes detected
by Ashula.

The Kyoto 2006+ dataset consists of 14 statistical features
taken from the KDD Cup ’99 dataset as well as 10 additional
features that can be used for further analysis and evaluation of
NIDSs. The authors have not used any content-based features
(extracted from host data) and focused only on network
traffic data. In addition to statistical features, the authors
extracted other 10 features that enable them to investigate
more effectively what kinds of attacks occurred (e.g., reflecting
granularity of ground truth). The Kyoto 2006+ dataset is
available at [84].

5) OptiFilter 2014 – Persistent Dataset Generation: Salem
et al. proposed OptiFilter [77], a framework that on-the-fly
constructs connection vectors from data flows. The framework
collects network packets and host events continuously in real-
time, parses them to a queue of dynamic windows, and then
it generates connection vectors. Datasets generated by the
framework can be utilized for the evaluation of NIDSs.

OptiFilter handles ARP, ICMP, IP/TCP, and IP/UDP proto-
cols. Moreover, it utilizes a finite state machine on TCP and
UDP connections for monitoring of their state until a connec-
tion is closed or a certain condition is satisfied. All host-based
features are collected using SNMP traps, a mechanism that
allows systems to send messages to a trap receiver. Within
Windows machines, the Windows Management Instrumenta-
tion is used to filter events and send them as SNMP traps
via WMI SNMP-Provider. In contrast, the Linux systems use
syslog daemon to generate SNMP traps using the NetSNMP
agent. The extracted features of OptiFilter framework are
influenced by KDD Cup 99 [10] and Kyoto 2006 [9] datasets
and consist of three categories:
Network-based Features: timestamp, source and destination

IPs, ports, protocol type, service, transferred Bytes, con-
nection state (using BRO [71]), the number of fragmen-
tation errors.

Traffic Features: are statistical and are derived from the
basic features. They are divided into two types, time-
based traffic features, and connection-based traffic fea-
tures. Both types are distinguished and treated differently.



The former type is calculated based on a dynamic time
window, e.g., the last five seconds, while the latter type
is calculated on a configurable connection window, e.g.,
the last 1000 connections.

Content Features: the features are obtained directly from a
monitored host using SNMP. Examples are the number of
failed login attempts, the indication of a successful login,
and the indication of obtaining a root shell.

In the evaluation, the authors generated a dataset called
SecMonet, in which 17 common services were captured (e.g.,
FTP, SSH, telnet, SMTP, SMB, NFS, etc.). However, it is not
clear whether the dataset contains a self-collected malicious
traffic, or it is only substituted from KDD Cup ’99.

6) CICIDS 2017 Dataset: CICIDS 2017 dataset [85] con-
sists of network attacks such as DoS, DDoS, Brute force, XSS,
SQL injection, Heartbleed, infiltration through the scam, and
port scanning. The authors generated benign data based on
the extracted profile from an analysis of 25 users, which is
in line with the approach proposed in [75]. The infrastructure
used for the data collection consisted of 15 vulnerable Linux-
based & Windows-based machines and 4 attacker machines.
Further, the authors extracted 80 features using CICFlowMeter
tool [12] and provided them along with the network traffic
traces.

VII. DISCUSSION

Age of Vulnerabilities. Although there exist a plethora of
publicly available exploit-codes for contemporary vulnerabili-
ties, the situation with corresponding available vulnerable SW
is more difficult due to understandable prevention reasons
imposed by SW vendors. Therefore, we were able to contain
only older available high-severity vulnerable services that are
outdated. However, we conjecture that from the point of view
of non-payload-based network intrusion detection (not inspect-
ing the payload of packets), the behavioral characteristics of
simulated high-severity attacks are similar regardless of the
age of vulnerabilities. In particular, we refer to the buffer
overflow attacks, which are executed in a few stages involving
a repeated transfer of one or more packets with the maximum
payload.

Cross-Dataset Evaluation. In this paper, we provided only
a basic benchmarking of several supervised classifiers on
ASNM datasets. Nevertheless, it is worth to note that different
benchmarking techniques can be used as well. One example is
cross-dataset evaluation, where the target classifier is trained
on the input data of one dataset, and then it is evaluated on
data taken from another dataset. We leave these tasks as an
open challenge for the community.

VIII. CONCLUSION

In this paper, we presented three datasets consisting of
extracted high-level network features (ASNM features). These
datasets are intended for non-payload-based network intrusion

detection and adversarial classification, enabling to test evasion
resistance of machine learning-based classifiers. In detail,
ASNM-CDX-2009 dataset might serve for basic benchmark-
ing of machine learning-based classifiers, while ASNM-TUN
and ASNM-NPBO datasets might serve for more advanced
benchmarking of these classifiers, such as testing the classifiers
on evasion resistance. In future work, we will extend ASNM
datasets with data collected from other experiments.
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of Buffer Overflow Attacks Tunneled in HTTP Traffic,” ser. International
Carnahan Conference on Security Technology. IEEE, 2014, pp. 188–
193.

[45] M. Hatada, M. Akiyama, T. Matsuki, and T. Kasama, “Empowering
anti-malware research in japan by sharing the mws datasets,” Journal of
Information Processing, vol. 23, no. 5, pp. 579–588, 2015.

[46] “PREDICT dataset: Protected Repository for the De-
fense of Infrastructure against Cyber Threats,” 2019.
[Online]. Available: https://www.dhs.gov/publication/dhsstpia-006-
protected-repository-defense-infrastructure-against-cyber-threats

[47] “CAIDA: the Cooperative Association for Internet Data Analysis,”
2019. [Online]. Available: http://www.caida.org/

[48] “Netresec – publicly available PCAP files,” 2019. [Online]. Available:
http://www.netresec.com/?page=PcapFiles

[49] “DARPA Intrusion Detection Evaluation,” [Online], Cited 2014-01-
13. [Online]. Available: http://www.ll.mit.edu/mission/communications/
cyber/CSTcorpora/ideval/

[50] F. Massicotte, F. Gagnon, Y. Labiche, L. Briand, and M. Couture, “Auto-
matic evaluation of intrusion detection systems,” in Proceedings of the
22nd Annual Computer Security Applications Conference, ACSAC’06.
IEEE, 2006, pp. 361–370.

[51] “Contagio malware dump: Collection of PCAP files from malware
analysis,” 2015. [Online]. Available: http://contagiodump.blogspot.cz/
2013/04/collection-of-pcap-files-from-malware.html

[52] M. Akiyama, M. Kamizono, T. Matsuki, and M. Hatada, “Datasets for
anti-malware research – mws datasets 2014,” IPSJ SIG, Tech. Rep.,
2014.

[53] M. Hatada, I. Nakatsuru, and M. Akiyama, “Datasets for anti-malware
research – mws 2011 datases,” IPSJ Malware Workshop, MWS’11, 2011,
in Japanese language.

[54] M. Hatada, Y. Nakatsuru, M. Akiyama, and S. Miwa, “Datasets for anti-
malware research – mws 2010 datasets,” in IPSJ Malware Workshop,
MWS’10, 2010, pp. 1–5.

[55] M. Hatada, Y. Nakatsuru, M. Terada, and Y. Shinoda, “Dataset for anti-
malware research and research achievements shared at the workshop,”
in Proceedings of the Computer Security Symposium, 2009, pp. 1–8.

[56] M. Kamizono, M. Hatada, M. Terada, M. Akiyama, T. Kasama, and
J. Murakami, “Datasets for anti-malware research – mws datasets 2013,”
in Proceedings of IPSJ Computer Security Symposium, 2013, pp. 1–8.

[57] M. Akiyama, M. Iwamura, and Y. Kawakoya, “Design and implementa-
tion of high interaction client honeypot for drive-by-download attacks,”
IEICE Transactions on Communications, vol. 93, no. 5, pp. 1131–1139,
2010.

[58] M. Akiyama, Y. Takeshi, Y. Kadobayashi, T. Hariu, and S. Yamaguchi,
“Client honeypot multiplication with high performance and precise
detection,” IEICE Transactions on Information and Systems, vol. 98,
no. 4, pp. 775–787, 2015.

[59] “Dionaea – A malware capturing honeypot,” 2014. [Online]. Available:
https://www.div0.sg/single-post/dionaea-malware-honeypot

[60] K. Aoki, T. Yagi, M. Iwamura, and M. Itoh, “Controlling malware http
communications in dynamic analysis system using search engine,” in
Proceedings of the 3rd International Workshop on Cyberspace Safety
and Security. IEEE, 2011, pp. 1–6.

[61] C. Guarnieri, A. Tanasi, J. Bremer, and M. Schloesser, “The
cuckoo sandbox,” Cited 2016-03-07. [Online]. Available: http://www.
cuckoosandbox.org

[62] “Ffr yarai analyzer professional,” 2019, in Japanese language. [Online].
Available: www.ffri.jp/products/yarai analyzer pro/

[63] D. Inoue, M. Eto, K. Yoshioka, S. Baba, K. Suzuki, J. Nakazato,
K. Ohtaka, and K. Nakao, “Nicter: An incident analysis system toward
binding network monitoring with malware analysis,” in Workshop on In-
formation Security Threats Data Collection and Sharing, WISTDCS’08.
IEEE, 2008, pp. 58–66.

[64] “The UCSD CAIDA Backscatter dataset,” 2019. [Online]. Available:
http://www.caida.org/data/passive/backscatter dataset.xml

[65] “The CAIDA UCSD “DDoS Attack 2007” dataset,” 2019.
[Online]. Available: http://www.caida.org/data/passive/ddos-20070804
dataset.xml

[66] A. Dainotti, A. King, F. Papale, A. Pescape et al., “Analysis of a/0 stealth
scan from a botnet,” in Proceedings of the ACM Internet Measurement
Conference, IMC’12. ACM, 2012, pp. 1–14.

[67] “The CAIDA UCSD network Telescope “Three Days Of Conficker”,”
2019. [Online]. Available: http://www.caida.org/data/passive/telescope-
3days-conficker dataset.xml

[68] “The UCSD CAIDA Dataset on the Code-Red Worms,” 2019.
[Online]. Available: http://www.caida.org/data/passive/codered worms
dataset.xml

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2002-0082
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2002-0082
https://www.rapid7.com/db/vulnerabilities/HTTP-MODS-0003
https://www.rapid7.com/db/vulnerabilities/HTTP-MODS-0003
https://www.rapid7.com/db/modules/exploit/windows/http/badblue_passthru
https://www.rapid7.com/db/modules/exploit/windows/http/badblue_passthru
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2007-6377
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2007-6377
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2003-0352
https://www.rapid7.com/db/modules/exploit/windows/dcerpc/ms03_026_dcom
https://www.rapid7.com/db/modules/exploit/windows/dcerpc/ms03_026_dcom
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2003-0201
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2003-0201
https://www.rapid7.com/db/modules/exploit/linux/samba/trans2open
https://www.rapid7.com/db/modules/exploit/linux/samba/trans2open
http://suricata-ids.org/
https://www.virustotal.com/
https://information.rapid7.com/metasploitable-download.html
https://information.rapid7.com/metasploitable-download.html
http://www.rapid7.com/db/modules/auxiliary/scanner/http/tomcat_mgr_login
http://www.rapid7.com/db/modules/auxiliary/scanner/http/tomcat_mgr_login
http://www.rapid7.com/db/modules/exploit/multi/http/tomcat_mgr_deploy
http://www.rapid7.com/db/modules/exploit/multi/http/tomcat_mgr_deploy
https://www.rapid7.com/db/modules/auxiliary/scanner/mssql/mssql_login
https://www.rapid7.com/db/modules/auxiliary/scanner/mssql/mssql_login
http://www.rapid7.com/db/modules/exploit/windows/mssql/mssql_payload
http://www.rapid7.com/db/modules/exploit/windows/mssql/mssql_payload
http://www.rapid7.com/db/modules/exploit/multi/samba/usermap_script
http://www.rapid7.com/db/modules/exploit/multi/samba/usermap_script
http://www.rapid7.com/db/modules/exploit/windows/smb/ms08_067_netapi
http://www.rapid7.com/db/modules/exploit/windows/smb/ms08_067_netapi
http://www.rapid7.com/db/modules/auxiliary/scanner/postgres/postgres_login
http://www.rapid7.com/db/modules/auxiliary/scanner/postgres/postgres_login
http://www.rapid7.com/db/modules/exploit/linux/postgres/postgres_payload
http://www.rapid7.com/db/modules/exploit/linux/postgres/postgres_payload
http://www.rapid7.com/db/modules/exploit/unix/misc/distcc_exec
http://www.rapid7.com/db/modules/exploit/unix/misc/distcc_exec
https://www.dhs.gov/publication/dhsstpia-006-protected-repository-defense-infrastructure-against-cyber-threats
https://www.dhs.gov/publication/dhsstpia-006-protected-repository-defense-infrastructure-against-cyber-threats
http://www.caida.org/
http://www.netresec.com/?page=PcapFiles
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/
http://contagiodump.blogspot.cz/2013/04/collection-of-pcap-files-from-malware.html
http://contagiodump.blogspot.cz/2013/04/collection-of-pcap-files-from-malware.html
https://www.div0.sg/single-post/dionaea-malware-honeypot
http://www.cuckoosandbox.org
http://www.cuckoosandbox.org
www.ffri.jp/products/yarai_analyzer_pro/
http://www.caida.org/data/passive/backscatter_dataset.xml
http://www.caida.org/data/passive/ddos-20070804_dataset.xml
http://www.caida.org/data/passive/ddos-20070804_dataset.xml
http://www.caida.org/data/passive/telescope-3days-conficker_dataset.xml
http://www.caida.org/data/passive/telescope-3days-conficker_dataset.xml
http://www.caida.org/data/passive/codered_worms_dataset.xml
http://www.caida.org/data/passive/codered_worms_dataset.xml


[69] “The CAIDA UCSD dataset on the Witty worm,” 2019. [Online].
Available: http://www.caida.org/data/passive/witty worm dataset.xml

[70] M. Roesch et al., “Snort: Lightweight intrusion detection for networks,”
in LISA, vol. 99, no. 1, 1999, pp. 229–238.

[71] V. Paxson, “Bro: A system for detecting network intruders in real-time,”
Computer Networks, vol. 31, no. 23, pp. 2435–2463, 1999.

[72] Song, D., “Fragroute.” [Online]. Available: http://www.monkey.org/
∼dugsong/fragroute/

[73] R. F. Puppy, “A look at Whisker’s Anti-IDS Tactics,” 1999. [Online].
Available: http://www.ussrback.com/docs/papers/IDS/whiskerids.html

[74] A. Sperotto, R. Sadre, F. Van Vliet, and A. Pras, “A labeled data set
for flow-based intrusion detection,” in International Workshop on IP
Operations and Management. Springer, 2009, pp. 39–50.

[75] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection,” computers & security, vol. 31, no. 3, pp. 357–374,
2012.

[76] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A Detailed
Analysis of the KDD Cup 99 Data Set,” in Proceedings of the 2nd IEEE
International Conference on Computational Intelligence for Security and
Defense Applications. IEEE Press, 2009, pp. 53–58.

[77] M. Salem, S. Reissmann, and U. Buehler, “Persistent dataset generation
using real-time operative framework,” in Proceedings of International
Conference on Computing, Networking and Communications, ICNC’14.
IEEE, 2014, pp. 1023–1027.

[78] S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. K. Chan, “Cost-
based modeling for fraud and intrusion detection: Results from the
JAM project,” in DARPA Information Survivability Conference and
Exposition, 2000. DISCEX’00. Proceedings, vol. 2. IEEE, 2000, pp.
130–144.

[79] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “Nsl-
kdd dataset,” 2009. [Online]. Available: https://web.archive.org/web/
20150205070216/http://nsl.cs.unb.ca/NSL-KDD/

[80] A. Moore, J. Hall, C. Kreibich, E. Harris, and I. Pratt, “Architecture of a
Network Monitor,” in Proceedings of the Passive & Active Measurement
Workshop, PAM’03, 2003.

[81] “Symantec network security 7100 series,” 2019. [Online].
Available: http://eval.symantec.com/mktginfo/enterprise/fact sheets/ent-
factsheet network security 7100 series 01-2005.en-us.pdf

[82] “ClamAV: Open source antivirus engine for detecting trojans, viruses,
malware & other malicious threats,” 2019. [Online]. Available:
http://www.clamav.net

[83] “Ashula,” 2019. [Online]. Available: https://sites.google.com/a/secure-
ware.com/securewareproducts/ashula

[84] “Kyoto 2006+ Dataset,” 2006. [Online]. Available: http://www.takakura.
com/Kyoto data/

[85] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization.”
in ICISSP, 2018, pp. 108–116.

APPENDIX

A. Tuples of TCP Connection and Packet

We detail the TCP connection tuple in Table XXIII. In
the table, the superscript at R∗ represents a set of positive
real numbers, including zero. Next, we present a detailed
description of items from the packet tuple in Table XXIV.
The description contains assignment to a particular layer of
ISO/OSI stacked model together with supported instances of
the protocols – placeholder ∗ represents an arbitrary protocol
instance. Also note that in the case of data field, superscript
in X∗ represents an iteration of the set X .

B. FFS Selected Features

As part of benchmarking ASNM datasets, in this section,
we enumerate subsets of the ASNM features selected by the
FFS method with Naive Bayes classifier running over 5-fold

Symbol Description

ts ∈ R+ Timestamp of the connection’s start.
te ∈ R+ Timestamp of the connection’s end.

pc ∈ {0, . . . , 216 − 1} Port of the client within the TCP connection.
ps ∈ {0, . . . , 216 − 1} Port of the server within the TCP connection.
ipc ∈ {0, . . . , 232 − 1} IPv4 address of the client.
ips ∈ {0, . . . , 232 − 1} IPv4 address of the server.

Pc Set of packets sent by client to server.
Ps Set of packets sent by server to client.

Table XXIII: Symbols of the TCP connection tuple.

Symbol Description

t ∈ <+
0

Relative time of the packet capture (L1,
∗).

size ∈ ℵ Size of the whole Ethernet frame includ-
ing Ethernet header (L1, ∗).

ethsrc ∈ {0, . . . , 248 − 1} Source MAC address of the frame (L2,
Ethernet).

ethdst ∈ {0, . . . , 248 − 1} Destination MAC address of the frame
(L2, Ethernet).

ipoff ∈ {0, . . . , 213 − 1} Offset field (L3, IPv4).
ipttl ∈ {0, . . . , 28 − 1} Time to live field (L3, IPv4).
ipp ∈ {0, . . . , 28 − 1} Protocol field (L3, IPv4).

ipsum ∈ {0, . . . , 216 − 1} Checksum of the header (L3, IPv4).

ipsrc ∈ {0, . . . , 232 − 1} Source IP address of the packet (L3,
IPv4).

ipdst ∈ {0, . . . , 232 − 1} Destination IP address of the packet (L3,
IPv4).

ipdscp ∈ {0, . . . , 28 − 1} Differentiated services code point field
(L3, IPv4).

tcpsport ∈ {0, . . . , 216 − 1} Source port of the packet (L4, TCP).
tcpdport ∈ {0, . . . , 216 − 1} Destination port of the packet (L4, TCP).
tcpsum ∈ {0, . . . , 216 − 1} Checksum of the header (L4, TCP).

tcpseq ∈ {0, . . . , 232 − 1} Sequence number of the packet (L4,
TCP).

tcpack ∈ {0, . . . , 232 − 1} Acknowledgment number of the packet
(L4, TCP).

tcpoff ∈ {0, . . . , 28 − 1} Offset and reserved fields together (L4,
TCP).

tcpflags ∈ {0, . . . , 28 − 1} Control bits (L4, TCP).
tcpwin ∈ {0, . . . , 216 − 1} Window field (L4, TCP).
tcpurp ∈ {0, . . . , 216 − 1} Urgent pointer field (L4, TCP).
data ∈ {0, . . . , 28 − 1}∗ Payload of the packet (L7, ∗).

Table XXIV: Symbols of the packet tuple.

cross-validation. We present ASNM features selected using:
(1) the ASNM-CDX-2009 dataset in Table XXV, (2) the
ASNM-TUN dataset in Table XXVI, and (3) the ASNM-
NPBO dataset in Table XXVII. Note that the FFS DL set
denotes features selected when only legitimate samples and
direct attacks were included in the FFS experiment. The FFS
DOL set denotes selected features when, in addition to the
previous case, obfuscated attacks were included in the FFS
experiment.
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Feature ID Description

PolyInd3ordOut[0] • Approximation of outbound communica-
tion (from client to server) by polynomial
of 3rd order in the index domain of packet
occurrences. The feature represents the 1st
coefficient of the approximation,

PolyInd3ordOut[3] • The same as the previous one, but the
feature represents the 4th coefficient of the
approximation,

PolyInd8ordOut[6] • The same as the previous ones, but the
feature represents the 7th coefficient of the
approximation,

InPkt1s10i[7] • Lengths of inbound packets occurred in
the first second of a connection which are
distributed into 10 intervals. The feature
represents totaled inbound packet lengths of
the 8th interval,

InPkt1s10i[0] • The same as the previous one, but it
represents the 1st interval,

InPkt1s10i[1] • The same as the previous one, but it
represents the 2nd interval,

GaussProds8All[7] • Normalized products of all packet sizes
with 8 Gaussian curves. The feature repre-
sents a product of the 8th slice of packets
with a Gaussian function which fits the
interval of the packets’ slice.

Table XXV: ASNM features selected by FFS with the Naive Bayes
classifier using ASNM-CDX-2009 dataset.

Feature ID Description FF
S

D
O

L
FF

S
D

L

SigPktLenIn • Std. deviation of inbound (server to client)
packet sizes.

X

ConTcpFinCntIn • The number of TCP FIN flags occurred
in inbound traffic.

X X

ConTcpSynCntIn • The number of TCP SYN flags occurred
in inbound traffic.

X X

InPktLen32s10i[0] • Lengths of inbound packets occurred in
the first 32 seconds of a connection which
are distributed into 10 intervals. The feature
represents totaled inbound packet lengths of
the 1st interval.

X

InPktLen1s10i[2] • The same as the previous one, but com-
puted above the first second of a connec-
tion. The feature represents totaled inbound
packet lengths of the 3rd interval.

X

InPktLen8s10i[7] • The same as the previous one, but com-
puted above the first 8 seconds of a connec-
tion. The feature represents totaled inbound
packet lengths of the 8th interval.

X

OutPktLen1s10i[0] • Lengths of outbound (client to server)
packets occurred in the first second of a con-
nection which are distributed into 10 in-
tervals. The feature represents totaled out-
bound packet lengths of the 1st interval.

X

FourGonAngleN[9]∗ • Fast Fourier Transformation (FFT) of all
packet sizes. The feature represents the an-
gle of the 10th coefficient of the FFT in
goniometric representation.

X X

InPktLen8s10i[1] • Lengths of inbound packets occurred in
the first 8 seconds of a connection which
are distributed into 10 intervals. The feature
represents totaled inbound packet lengths of
the 2nd interval.

X

PolyInd8ordOut[5] • Approximation of outbound packet
lengths in index domain by polynomial of
8th order. The feature represents 6th coeffi-
cient of the polynomial.

X

PolyInd8ordIn[5] • Approximation of inbound packet lengths
in index domain by polynomial of 8th order.
The feature represents 6th coefficient of the
polynomial.

X

∗Sizes of inbound and outbound packets are represented by
negative and positive values, respectively.

Table XXVI: ASNM features selected by FFS with the Naive Bayes
classifier using ASNM-TUN dataset.



Feature ID Description FF
S

D
O

L
FF

S
D

L

SigPktLenOut • Std. deviation of outbound (client to server)
packet sizes.

X X

MeanPktLenIn • Mean of packet sizes in inbound traffic of
a connection.

X X

CntOfOldFlows • The number of mutual connections between
client and server, which started up to 5 min-
utes before start of an analyzed connection.

X X

CntOfNewFlows • The number of mutual connections between
client and server, which started up to 5 min-
utes after the end of an analyzed connection.

X X

ModTCPHdrLen • Modus of TCP header lengths in all traffic. X
UrgCntIn • The number of TCP URG flags occurred in

inbound traffic.
X

FinCntIn • The number of TCP FIN flags occurred in
inbound traffic.

X

PshCntIn • The number of TCP PUSH flags occurred
in inbound traffic.

X

FourGonModulIn[1] • Fast Fourier Transformation (FFT) of in-
bound packet sizes. The feature represents the
module of the 2nd coefficient of the FFT in
goniometric representation.

X X

FourGonModulOut[1] • The same as the previous one, but it repre-
sents the module of the 2nd coefficient of the
FFT for outbound traffic.

X

FourGonAngleOut[1] • The same as the previous one, but it repre-
sents the angle of the 2nd coefficient of the
FFT.

X

FourGonAngleN[9] • Fast Fourier Transformation (FFT) of all
packet sizes, where inbound and outbound
packets are represented by negative and pos-
itive values, respectively. The feature repre-
sents the angle of the 10th coefficient of the
FFT in goniometric representation.

X X

FourGonAngleN[1] • The same as the previous one, but it repre-
sents the angle of the 2nd coefficient of the
FFT.

X

FourGonModulN[0] • The same as the previous one, but it repre-
sents the module of the 1st coefficient of the
FFT.

X

PolyInd13ordOut[13] • Approximation of outbound communication
by polynomial of 13th order in the index
domain of packet occurrences. The feature
represents the 14th coefficient of the approx-
imation.

X

PolyInd3ordOut[3] • The same as the previous one, but it repre-
sents the 4th coefficient of the approximation.

X

GaussProds8All[1] • Normalized products of all packet sizes with
8 Gaussian curves. The feature represents a
product of the 2nd slice of packets with a
Gaussian function that fits the interval of the
packets’ slice.

X

GaussProds8Out[7] • The same as the previous one, but com-
puted above outbound packets and represents
a product of the 8th slice of packets with a
Gaussian function that fits the interval of the
packets’ slice.

X

InPktLen1s10i[5] • Lengths of inbound packets occurred in
the first second of a connection, which are
distributed into 10 intervals. The feature rep-
resents totaled outbound packet lengths of the
6th interval.

X

OutPktLen32s10i[3] • The same as the previous one, but com-
puted above the first 32 seconds of a connec-
tion. The feature represents totaled outbound
packet lengths of the 4th interval.

X

OutPktLen4s10i[2] • The same as the previous one, but computed
above the first 4 seconds of a connection. The
feature represents totaled outbound packet
lengths of the 3rd interval.

X

Table XXVII: ASNM features selected by FFS using the Naive Bayes
classifier.
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