
Journal of Automata, Languages and Combinatorics 25 (2020) 1, 37 – 54
c© Institut für Informatik · Justus-Liebig-Universität Giessen

GENERAL CD GRAMMAR SYSTEMS
AND THEIR SIMPLIFICATION

Radim Kocman Zbyněk Křivka Alexander Meduna

Centre of Excellence IT4Innovations
Faculty of Information Technology, Brno University of Technology

Božetěchova 2, Brno 612 66, Czech Republic
{ikocman,krivka,meduna}@fit.vutbr.cz

ABSTRACT
The present paper studies general CD grammar systems, whose components are gen-
eral grammars, so they are computationally complete, and it investigates them working
under the ∗ mode and t mode. Most importantly, the paper presents two types of
transformations that turn arbitrary general grammars into equivalent two-component
general CD grammar systems with a context-free component and a non-context-free
component. From the first type of transformations, the non-context-free component
results with two rules of the form 11→ 00 and 0000→ ε, while the other type of trans-
formations produces the non-context-free component with two rules of the form 11→ 00
and 0000 → 2222. Apart from this significant reduction and simplification, the paper
describes several other useful properties concerning these systems and the way they
work. A formulation of several remarks and open problems closes this paper.

Keywords: general grammars, CD grammar systems, simulated non-context-free rules,
homogeneous rules, evenly homogeneous rules

1. Introduction

The present paper, which assumes a familiarity with formal language theory
(see [8, 15]), concerns grammar systems (see [1]). It concentrates its attention on
two-component CD grammar systems working under the ∗ and t modes. Recall that
under the former mode the context-free versions of these systems obviously generate
only the family of context-free languages. More surprisingly, under the latter mode
they are no more powerful than ordinary context-free grammars either. To increase
their power, the present paper uses general CD grammar systems, whose components
are general grammars, that are computationally complete—that is, they characterize
the family of recursively enumerable languages. Most importantly, however, the pa-
per explains how to turn arbitrary general grammars into equivalent two-component
general CD grammar systems of very reduced and simplified forms.

To give an insight into this study in a greater detail, take any general gram-
mar G. This paper demonstrates two types of transformations that turn G into a

38 R. Kocman, Z. Křivka, A. Meduna

two-component general CD grammar system with one context-free component and
one non-context-free component. For brevity, in this introductory section, Γ1 and Γ2
denote the systems resulting from the first type of transformations and the second
type of transformations, respectively. The system Γ1 has its non-context-free compo-
nent containing the rules 11 → 00 and 0000 → ε, while Γ2 has its non-context-free
component containing the rules 11→ 00 and 0000→ 2222, where 0, 1, and 2 are new
nonterminals. The paper proves that working under the ∗ and t modes, Γ1 and Γ2
are equivalent to G. Thus, more generally speaking, general CD grammar systems of
these two forms are computationally complete—that is, they characterize the family
of recursively enumerable languages. Apart from the computational completeness,
it is worth mentioning the following other useful properties, (I) through (V), which
make Γ1 and Γ2 simple and easy to apply in theory as well as in practice.

(I) Most importantly, observe that Γ1 and Γ2 utilize a very reduced number of non-
context-free rules. One of their components is always purely context-free, and
the other has only two non-context-free rules. Of course, computational com-
pleteness resulting from such strongly reduced versions of general CD grammar
systems is more than highly appreciated from both a theoretical and practical
standpoint.

(II) Consider Γ1. The paper demonstrates that working under the t mode, during
every generation of a sentence, Γ1 changes its components no more than once.
Furthermore, if the system simulates the use of at least one non-context-free
rule from the original grammar, it changes its components precisely once.

(III) From a general viewpoint, taking a closer look at language-generating rewriting
systems, we intuitively see that some of them generate sentences of the same
language in a more similar way than others. Formal language theory has formal-
ized this generative phenomenon in terms of close derivation simulations (see
Chapter 6 in [10] and [11]). To give an insight into this formalization, consider
grammatical models X and Y . Let ⇒ denote a derivation step, and let ⇒m

denote m consecutive derivation steps. If there is a constant k such that for
every derivation of the form

x0 ⇒ x1 ⇒ · · · ⇒ xn

in X, where x0 is its start symbol, there is a derivation of the form

x0 ⇒k1 x1 ⇒k2 · · · ⇒kn xn

in Y , where ki ≤ k for each 1 ≤ i ≤ n, we say that Y closely simulates X.
In this sense, the paper demonstrates that under the ∗ mode Γ1 and Γ2 in
many cases closely simulate G. This also makes these transformations distinct
from some well-known transformations generating grammatical models with a
reduced number of non-context-free rules (e. g., Geffert normal forms [4, 5]),
since they usually require a very strict derivation flow for the resulting model.

(IV) The specific form of the rules in Γ1 and Γ2 makes it possible to utilize paralleliza-
tion through the whole sentence generation process. In essence, it is possible

General CD Grammar Systems and Their Simplification 39

to use multi-derivations that, during a derivation step, rewrite the sentential
form at several positions at once, not just at a single position. This property
also holds for uniform derivations that always rewrite at all possible positions
at once.

(V) Before sketching the final property, we recall that a grammatical rule of the
form x→ y, where x and y are strings, is homogeneous if x is formed by a string
of identical symbols (see [9]). A homogeneous rule x→ y is evenly homogeneous
if y is also formed by a string of identical symbols and |x| = |y|. In a CD
grammar system, a component is homogeneous if all its rules are homogeneous,
and it is evenly homogeneous if all its rules are evenly homogeneous. A CD
grammar system is rule-homogeneous if all its components are homogeneous.
As obvious, any CD grammar system with context-free components is rule-
homogeneous. Observe that Γ1 and Γ2 are both rule-homogeneous CD grammar
systems with one context-free component and one homogeneous component. In
fact, in Γ2, the second component is evenly homogeneous.

The rest of this paper is organized as follows. Section 2 recalls all the basic ter-
minology needed in this paper and formally presents the definition of general CD
grammar systems. Section 3 introduces all fundamental techniques of the transfor-
mations on input grammars that satisfy Kuroda normal form. Sections 4 generalizes
the previous techniques for arbitrary general grammars and presents the remaining
results. Section 5 closes the study by pointing out some remarks and suggestions for
further investigation.

2. Preliminaries and Definitions

This paper assumes that the reader is familiar with the theory of automata and formal
languages (see [8, 15]). This section recalls only the crucial notions used in this paper.

We denote by card(X) the cardinality of a set X. For an alphabet (finite nonempty
set), V , V ∗ represents the free monoid generated by V under the operation of con-
catenation. The unit of V ∗ is denoted by ε. Members of V ∗ are called strings.
Set V + = V ∗ − {ε}; algebraically, V + is thus the free semigroup generated by V
under the operation of concatenation. For x ∈ V ∗, |x| denotes the length of x,
rev(x) denotes the reversal of x, and alph(x) denotes the set of all symbols occurring
in x; for instance, alph(0010) = {0, 1}. Let CF, CS, and RE denote the families of
context-free, context-sensitive, and recursively enumerable languages, respectively.

A general grammar or, more simply, a grammar is a quadruple, G = (N,T, P, S),
whose components are defined as follows: N and T are alphabets such that N∩T = ∅.
Symbols inN are referred to as nonterminals, while symbols in T are referred to as ter-
minals. The nonterminal S ∈ N is the start symbol of G. By P , we denote a finite set
of (general) rules of the form x→ y, where x, y ∈ (N ∪T)∗ and alph(x)∩N 6= ∅. For
brevity, we sometimes denote a rule x→ y with a unique label p as p : x→ y, and in-
stead of p : x→ y ∈ P , we simply write p ∈ P . The left-hand side x and the right-hand
side y of p are denoted by lhs(p) and rhs(p), respectively. If p ∈ P and | rhs(p)| = 0,
it is an ε-rule. The rule p ∈ P is considered context-free if | lhs(p)| = 1; otherwise,

40 R. Kocman, Z. Křivka, A. Meduna

it is a non-context-free rule. If x → y ∈ P and u,w ∈ (N ∪ T)∗, then uxw ⇒ uyw.
In the standard manner, extend ⇒ to ⇒n, where n ≥ 0. Let ⇒+ and ⇒∗ denote
the transitive closure and transitive-reflexive closure of⇒, respectively. The language
generated by G, L(G), is defined as L(G) = { w ∈ T ∗ | S ⇒∗ w }.

Let G = (N,T, P, S) be a grammar. The grammar G is in Kuroda normal form
(see Section 8.3.3. in [8]) if every rule p ∈ P has one of these three forms:

(1) AB → CD, (2) A→ BC, or (3) A→ a,

where A,B,C,D ∈ N and a ∈ (T ∪{ε}). If x→ y ∈ P and x ∈ {A}+ for some A ∈ N ,
then x → y is a homogeneous rule (see [9]). Furthermore, if also y ∈ {B}+ for
some B ∈ (N ∪ T) and |x| = |y|, then x → y is an evenly homogeneous rule. The
grammar G is a homogeneous grammar if every p ∈ P is homogeneous. Lastly, set

ContextFree(P) = { p ∈ P | | lhs(p)| = 1 } and
NonContextFree(P) = { p ∈ P | | lhs(p)| ≥ 2 }.

A general cooperating distributed grammar system (a general CD grammar system
for short) is a construct Γ = (N,T, P1, P2, . . . , Pn, S), n ≥ 1, where N is the alphabet
of nonterminals, T is the alphabet of terminals, N ∩T = ∅, S ∈ N is the start symbol,
and, for 1 ≤ i ≤ n, each component Pi is a finite set of general rules. (For the original
context-free definition see [1].) For u, v ∈ V ∗ with V = N ∪ T and 1 ≤ k ≤ n,
let u ⇒Pk

v denote a derivation step performed by the application of a rule from
Pk. As usual, extend the relation ⇒Pk

to ⇒m
Pk

(the m-step derivation), m ≥ 0, ⇒+
Pk
,

and ⇒∗Pk
. In addition, we define the relation u ⇒t

Pk
v so that u ⇒∗Pk

v and there
is no w ∈ V ∗ such that v ⇒Pk

w. The language generated by Γ working in the f
mode, f ∈ {∗, t}, denoted by Lf (Γ), is defined as

Lf (Γ) = { w ∈ T ∗ | S ⇒f
Pk1

w1 ⇒f
Pk2
· · · ⇒f

Pkl
wl = w, l ≥ 1, 1 ≤ ki ≤ n, 1 ≤ i ≤ l }.

The system Γ is referred to as rule-homogeneous, evenly rule-homogeneous, or context-
free (instead of general) if all its rules are homogeneous, evenly homogeneous, or
context-free, respectively.

Language families generated by context-free CD grammar systems with n compo-
nents working in the f mode and allowing ε-rules are denoted by CDε

n(f). When the
number of components is not limited, we replace n by ∞. The following results are
well-known (see Theorem 3.1 in [13]):
(I) CDε

∞(∗) = CF,
(II) CF = CDε

1(t) = CDε
2(t) ⊂ CDε

3(t) = CDε
∞(t) = ET0L,

where ET0L denotes the family of languages generated by extended tabled interac-
tionless Lindenmayer systems (see [12]).

The definition of general CD grammar systems can be easily modified so that the
components are sets of rules of any type. Recall that for CD grammar systems hav-
ing regular, linear, context-sensitive, or general components, their generative power

General CD Grammar Systems and Their Simplification 41

does not change with the number of components (see [1, 13]), i. e., they always gen-
erate the families of regular, linear, context-sensitive, or recursively enumerable lan-
guages, respectively. Nonetheless, different results have been obtained by studying
some other non-classical components—e. g., permitting, left-forbidding, and random
context components (see [2, 6, 7])—where the number of components affects the re-
sulting generative power.

It is clear that if we require computational completeness, we need components that
use stronger mechanisms than basic context-free rules. In general, components with
homogeneous rules have a similar effect as general components—a single homogeneous
component can define RE by itself (see [9]). The same, however, does not hold
for components with evenly homogeneous rules, which can define only sets of single
symbols on their own. Therefore, one may wonder, what properties we can get if we
combine together several relatively simple components of different types.

The rest of this paper studies two-component general CD grammar systems where
the first component is always purely context-free and the second component contains
either homogeneous or evenly homogeneous rules. Furthermore, we limit the non-
context-free component so it contains only two rules.

3. Transformations from Kuroda Normal Form

In order to simplify the reasoning for underlying proofs, this section assumes that all
input grammars satisfy Kuroda normal form. Nonetheless, in the following section, we
show that Kuroda normal form is not necessary and that we can use similar techniques
to convert any general grammar into a two-component general CD grammar system
that also satisfies similar properties.

First, let us start with the most straightforward variant of a two-component gen-
eral CD grammar system that works in the ∗ mode and has the second component
homogeneous. The following proof will also serve as a framework for later proofs since
the majority of the reasoning can be shared throughout the variants.

Theorem 1. Let G = (N,T, P, S) be a grammar in Kuroda normal form. Then,
there exists a two-component general CD grammar system Γ = (N ′, T,H, I, S) such
that H is context-free, I = {11→ 00, 0000→ ε}, and L∗(Γ) = L(G).

Proof.
Construction.
Let G = (N,T, P, S). Without any loss of generality, assume that (N∪T)∩{0, 1} = ∅.
For

m = 2 + card(NonContextFree(P)),

define an injection g from NonContextFree(P) to ({01}+{00}{01}+ ∩ {01, 00}m).
From the grammar G, we construct the two-component general CD grammar sys-
tem Γ = (N ′, T,H, I, S), where N ′ = N ∪ {0, 1}, I = {11→ 00, 0000→ ε}, and H is

42 R. Kocman, Z. Křivka, A. Meduna

defined as follows:
(I) For every AB → CD ∈ P where A,B,C,D ∈ N ,

add A→ CDg(AB → CD) and B → rev(g(AB → CD)) to H.
(II) For every A→ x ∈ P where A ∈ N and x ∈ ({ε} ∪ T ∪N2), add A→ x to H.
The construction of Γ is completed.

Basic idea.
(a) The rules (I) and the second component I simulate the derivation steps

made by NonContextFree(P) in G. That is, xABy ⇒ xCDy according
to AB → CD ∈ P in G, where x, y ∈ (N ∪ T)∗, is simulated in Γ as

xABy ⇒H xCDg(AB → CD)By
⇒H xCDg(AB → CD) rev(g(AB → CD))y
⇒2m−1

I xCDy.

The system Γ makes the (2m−1)-step derivation

xCDg(AB → CD) rev(g(AB → CD))y ⇒2m−1
I xCDy

by using only the rules 11 → 00 and 0000 → ε. During this derivation, the
string between D and y always contains exactly one occurrence of consecutive
identical symbols that can be rewritten, so this derivation actually verifies that
the simulation of xABy ⇒ xCDy is made properly.

(b) The rules (II) simulate the use of ContextFree(P) in G.

The reader may notice that the simulation of non-context-free rules resembles sim-
ilar techniques used in general grammars (see [14, 3, 4, 5, 9]). However, this is
traditionally done either by using several types of matching parentheses (see [14, 3]),
which is not a suitable form for homogeneous rules, or it requires a significant non-
local change in the generation flow of the original grammar (see [4, 5, 9]), which denies
the close derivation simulations.

Formal proof.
We prove L∗(Γ) = L(G). It was already proven in part B of the proof of Theorem 1
in [3] and in the proof of Theorem 1 in [14] that the rules of the form XY → w,
where X,Y ∈ N , w ∈ (N ∪ T)∗, can be replaced with X → wLi, Y → Ri, LiRi → ε,
where Li, Ri are new unique nonterminals for each rule. Thus, we only need to prove
that our encoding with injection g simulates the same behavior and that it works in
two-component general CD grammar systems.

First, we establish the terminology that we will use throughout this proof: Any
consecutive sequence of nonterminals 0 and 1 is referred to as verification code. We say
that a sequence is rewritable if there is a rule in Γ that can be used on the sequence.
We recognize three distinct types of verification codes in the sentential form:
• unconnected verification code – This is the initial sequence from the rules (I).

Considering some rule AB → CD ∈ P , it is either g(AB → CD)

General CD Grammar Systems and Their Simplification 43

or rev(g(AB → CD)). In more detail, we identify g(AB → CD) as a
left unconnected verification code (the code of the form {01}+{00}{01}+)
and rev(g(AB → CD)) as a right unconnected verification code (the code of
the form {10}+{00}{10}+).

• connected verification code – This sequence is established when some left and
right unconnected verification codes merge together in the sentential form, and
we identify it as connected until it has the form {01}{0, 1}∗{10}.

• leftover – The remaining sequence {0000}.

Now, we show that our encoding properly simulates LiRi → ε. First, we establish
a claim on how a connected verification code can be rewritten.

Claim 2. Let AB → CD ∈ P , where A,B,C,D ∈ N . A (standalone) connected
verification code can be reduced to a leftover if and only if it was initially established
as g(AB → CD) rev(g(AB → CD)).

Proof. Let AB → CD ∈ P and EF → UV ∈ P , where A,B,C,D,E, F, U, V ∈ N ,
such that g(AB → CD) = (01)k00(01)l and g(EF → UV) = (01)p00(01)q,
where k, l, p, q ≥ 1, k + l + 1 = m, p + q + 1 = m, k 6= p. There are two
distinct cases how a connected verification code can be initially established: ei-
ther g(AB → CD)rev(g(AB → CD)) or g(AB → CD)rev(g(EF → UV)). (There
are four ways how to pair the unconnected verification codes but only two distinct
cases since the rules can be swapped.)

The first case creates the sequence (01)k00(01)l(10)l00(10)k. Initially, the
rules 11 → 00 and 0000 → ε are used l times to erase (01)l(10)l. Then, the
rule 0000 → ε has to be used. Next, both rules are used k − 1 times again until
only the sequence 0110 remains. And finally, the rule 11→ 00 creates the leftover.

In the second case, the sequence is (01)k00(01)l(10)q00(10)p. Assume that l > q;
the result is analogical for the opposite situation. The rules 11 → 00 and 0000 → ε
can be used q times, and it leads to the sequence (01)k00(01)l−q00(10)p. Nonetheless,
this sequence cannot be rewritten any further.

In both cases, the derivation steps cannot be done in any other way. Thus, it is
clear that a connected verification code can be reduced to a leftover if and only if it
is established as g(AB → CD) rev(g(AB → CD)) for some AB → CD ∈ P . ��

Next, we demonstrate that there is no sentential form in which a verification code
could be rewritten in some unintended way.

Claim 3. In any reachable sentential form, a verification code can be rewritten only
if it can be identified as either a connected verification code or a sequence of 0’s
containing a leftover as its substring.

Proof. Verification codes can be rewritten only with the rules 11→ 00 and 0000→ ε.
Any verification code generated into the sentential form is initially in the
form {01}+{00}{01}+ or {10}+{00}{10}+. Clearly, no rule can rewrite this code
as long as it remains alone. When the left and right unconnected verification codes

44 R. Kocman, Z. Křivka, A. Meduna

are joined together, a connected verification code is established where the rewriting
can occur. In contrast, observe that unconnected verification codes joined in different
ways do not establish any rewritable sequence.

Considering the proof of Claim 2, a connected verification code is always in the
form {01}{0, 1}∗{10} until it is reduced to a leftover. Observe that if this form is
joined together with other connected or unconnected verification codes, it does not
establish any new rewritable sequence.

Lastly, the leftover 0000 is clearly rewritable on its own, but it can be also merged
with other verification codes and that can create an even longer rewritable sequence
of 0’s. Nonetheless, observe that only the rule 0000 → ε can be applied on this
sequence, which erases precisely the leftover. Thus, this cannot affect the form of the
other verification codes.

The above description covers all obtainable forms of verification codes, and only
the connected verification code and the sequence of 0’s containing a leftover as its
substring can be rewritten. Thus, Claim 3 holds. ��

From Claims 2 and 3, it is obvious that the encoding successfully simulates the
unique nonterminals Li, Ri and the erasing rules LiRi → ε.

Next, we prove L(G) ⊆ L∗(Γ); more precisely, by induction on the number of
derivation steps, we demonstrate Claim 4.

Claim 4. For every w ∈ (N ∪ T)∗ and i ≥ 0, S ⇒i w in G implies

S ⇒∗k1
w1 ⇒∗k2

· · · ⇒∗kl
wl = w,

with l ≥ 1, kj ∈ {H, I}, 1 ≤ j ≤ l, in Γ.

Proof. Basis: Let i = 0. Then, w = S. Clearly, S ⇒∗H S.
Induction hypothesis: Assume that the implication of Claim 4 holds for every i ≤ o,
where o is a non-negative integer.
Induction step: Consider any derivation of the form S ⇒o+1 β in G,
where β ∈ (N ∪ T)∗. Express S ⇒o+1 β as S ⇒o α ⇒ β, where α ∈ (N ∪ T)∗.
By the induction hypothesis,

S ⇒∗k1
w1 ⇒∗k2

· · · ⇒∗kl
wl = α,

with l ≥ 1, kj ∈ {H, I}, 1 ≤ j ≤ l, in Γ. There are the following two possibilities
how G can make α⇒ β:
(1) Let AB → CD ∈ P , α = xABy, β = xCDy, x, y ∈ (N ∪ T)∗, A,B,C,D ∈ N .

According to (a) in the basic idea and from Claims 2 and 3,

xABy ⇒H xCDg(AB → CD)By
⇒H xCDg(AB → CD) rev(g(AB → CD))y
⇒2m−1

I xCDy

in Γ. Consequently,

S ⇒∗k1
w1 ⇒∗k2

· · · ⇒∗kl′ wl′ = xCDy = β,

General CD Grammar Systems and Their Simplification 45

with l′ ≥ 1, kj ∈ {H, I}, 1 ≤ j ≤ l′, in Γ.
(2) Let A→ z ∈ P , α = xAy, β = xzy, x, y ∈ (N ∪T)∗, A ∈ N , z ∈ ({ε}∪T ∪N2).

From (b) in the basic idea, xAy ⇒H xzy in Γ. Consequently,

S ⇒∗k1
w1 ⇒∗k2

· · · ⇒∗kl′ wl′ = xzy = β,

with l′ ≥ 1, kj ∈ {H, I}, 1 ≤ j ≤ l′, in Γ.
The induction step is completed, so Claim 4 holds. ��

Lastly, we prove L∗(Γ) ⊆ L(G). We show that, for any y ∈ L∗(Γ), there is a
sequence of derivation steps in Γ that precisely follows the intended order from the
basic idea, so y ∈ L(G).

Claim 5. Any successful derivation sequence generating y ∈ L∗(Γ) in Γ can be re-
ordered so it satisfies the form

S = v03 ⇒∗H v10 ⇒H v11 ⇒H v12 ⇒2m−1
I v13

⇒∗H v20 ⇒H v21 ⇒H v22 ⇒2m−1
I v23

...
⇒∗H vk0 ⇒H vk1 ⇒H vk2 ⇒2m−1

I vk3 ⇒∗H v(k+1)0 = y,

where for i = 0, 1, . . . , k in vi3 ⇒∗H v(i+1)0 every sentential form is over (N ∪T)∗; and
for j = 1, . . . , k the sentential forms in the derivation vj0 ⇒H vj1 ⇒H vj2 ⇒2m−1

I vj3

have the structure:

vj0 = ujAjBjwj,
vj1 = ujCjDjg(AjBj → CjDj)Bjwj,
vj2 = ujCjDjg(AjBj → CjDj) rev(g(AjBj → CjDj))wj,
vj3 = ujCjDjwj ,

for some AjBj → CjDj ∈ P , uj , wj ∈ (N ∪ T)∗, Aj , Bj , Cj , Dj ∈ N .

Proof. First, all nonterminals in N can be rewritten only with the context-free rules
of the component H. This implies that it does not matter in which order we rewrite
them in the sentential form. Second, consider rules A → CDg(AB → CD) ∈ H
and B → rev(g(AB → CD)) ∈ H, where A,B,C,D ∈ N and AB → CD ∈ P .
Claims 2 and 3 show that only the verification code g(AB → CD) rev(g(AB → CD))
can be successfully erased. It follows that we can always establish some order of
derivations in which the sequence vj0 ⇒H vj1 ⇒H vj2 ⇒2m−1

I vj3 holds for each
simulated non-context-free rule. ��

From the reordered derivations of Claim 5 in Γ and from (I) and (II), we
see that v03 ⇒∗ v(k+1)0 in G. Therefore, y ∈ L∗(Γ) implies y ∈ L(G).
Thus, L∗(Γ) ⊆ L(G).

As L(G) ⊆ L∗(Γ) and L∗(Γ) ⊆ L(G), L∗(Γ) = L(G). Thus, Theorem 1 holds. �

46 R. Kocman, Z. Křivka, A. Meduna

Corollary 6. The resulting two-component general CD grammar system Γ from the
proof of Theorem 1 closely simulates the original grammar G.

Proof. For any resulting Γ, we can find a bounded constant k such that for every
possible derivation u ⇒ v in G there is a k′-step derivation in Γ that gives the same
result and k′ ≤ k. Furthermore, for a given Γ, we can easily determine the minimal
possible k.

Consider the proof of Claim 4 and the mentioned possibilities how G can
make α ⇒ β. Any context-free rule is simulated in one derivation step. The non-
context-free rules require two initial derivation steps and the rewriting of the verifica-
tion code. The length of the rewriting depends on the size of m, and it takes 2m− 1
steps to complete. The minimal possible k for a given Γ is therefore 2m+ 1. �

Next, we consider a two-component general CD grammar system with the same
structure but working in the t mode.

Theorem 7. Let G = (N,T, P, S) be a grammar in Kuroda normal form. Then,
there exists a two-component general CD grammar system Γ = (N ′, T,H, I, S) such
that H is context-free, I = {11→ 00, 0000→ ε}, and Lt(Γ) = L(G).

Proof.
Construction. The process of construction remains identical to Theorem 1. For
a grammar G = (N,T, P, S), m = 2 + card(NonContextFree(P)), and injection g,
we construct the two-component general CD grammar system Γ = (N ′, T,H, I, S),
where N ′ = N ∪ {0, 1}, and H and I contain the rules as described in Theorem 1.

Basic idea.
Recall that, during the generation of a sentence, a CD grammar system working in
the t mode switches its components only if the process is not finished and there are
no possible derivations with the previous component. Consider the general behavior
of Γ. It starts the generation with S. For the first derivation, applicable rules can
be found only in H, so this component has to be used. However, H also contains all
rules simulating the original rules of G. Consequently, the first derivation in the t
mode has to simulate all rules in G and cannot rewrite any generated verification
codes. Nonetheless, we prove that the verification codes can be successfully erased
afterwards for all simulated non-context-free rules at once.

Formal proof.
We prove Lt(Γ) = L(G). First, let us prove the statement introduced above. For
convenience, consider the homomorphism ϕ : (N ′ ∪ T)∗ → (N ∪ T)∗ where ϕ(a) = a
and ϕ(b) = ε, for all a ∈ (N ∪ T) and b ∈ {0, 1}.

Claim 8. For every u ∈ (N ∪ T)∗ and i ≥ 0, S ⇒i u in G implies S ⇒∗H w ⇒t
I u

in Γ, where w ∈ (N ′ ∪ T)∗ and ϕ(w) = u. Furthermore, w satisfies the
form w = p1q1 · · · pnqn, where n ≥ 1, pj ∈ (N ∪ T)∗, qj ∈ {0, 1}∗, 1 ≤ j ≤ n,
and every qj represents a verification code that can be successfully erased on its own.

General CD Grammar Systems and Their Simplification 47

Proof. Basis: Let i = 0. Then, u = S. Clearly, S ⇒0
H S ⇒t

I S, and the required
form also holds.
Induction hypothesis: Assume that Claim 8 holds for every i ≤ o, where o is a non-
negative integer.
Induction step: Consider any derivation of the form S ⇒o+1 β in G,
where β ∈ (N ∪ T)∗. Express S ⇒o+1 β as S ⇒o α ⇒ β, where α ∈ (N ∪ T)∗.
By the induction hypothesis, S ⇒∗H w ⇒t

I α, where ϕ(w) = α, in Γ. There are the
following two possibilities how G can make α⇒ β:
(1) Let AB → CD ∈ P , α = xABy, β = xCDy, x, y ∈ (N ∪ T)∗, A,B,C,D ∈ N .

Consider w in the required form. Let w = p1q1 · · · pkAqkBpk+1qk+1 · · · pnqn,
where n ≥ 1, 1 ≤ k ≤ n, pj ∈ (N ∪ T)∗, qj ∈ {0, 1}∗, 1 ≤ j ≤ n, and
also p1 · · · pk = x and pk+1 · · · pn = y. Then,

w = p1q1 · · · pkAqkBpk+1qk+1 · · · pnqn

⇒H p1q1 · · · pkCDg(AB → CD)qkBpk+1qk+1 · · · pnqn

⇒H p1q1 · · · pkCDg(AB → CD)qk rev(g(AB → CD))pk+1qk+1 · · · pnqn

= w′

in Γ, and there are two possible situations regarding these steps:
(A) If qk = ε, the steps add a new connected verification code. By Claims 2

and 3, such a code can be successfully erased on its own, so the required
form holds. Consequently, S ⇒∗H w′ ⇒t

I β in Γ.
(B) If qk 6= ε, the steps prolong some existing verification code. However,

since qk has to be erasable on its own, observe that this creates a properly
nested structure that is also erasable on its own, so the required form holds.
Consequently, S ⇒∗H w′ ⇒t

I β in Γ.
(2) Let A→ z ∈ P , α = xAy, β = xzy, x, y ∈ (N ∪T)∗, A ∈ N , z ∈ ({ε}∪T ∪N2).

Consider w in the required form. Let w = p1q1 · · · pkAqkpk+1qk+1 · · · pnqn,
where n ≥ 1, 1 ≤ k ≤ n, pj ∈ (N ∪ T)∗, qj ∈ {0, 1}∗, 1 ≤ j ≤ n, and
also p1 · · · pk = x and pk+1 · · · pn = y. Then,

w = p1q1 · · · pkAqkpk+1qk+1 · · · pnqn

⇒H p1q1 · · · pkzqkpk+1qk+1 · · · pnqn = w′

in Γ. The required form clearly holds, and thus S ⇒∗H w′ ⇒t
I β in Γ.

The induction step is completed, so Claim 8 holds. ��

Consider S ⇒∗ y, where y ∈ T ∗, in G. By Claim 8, this implies S ⇒∗H w ⇒t
I y,

where w ∈ (T ∪ {0, 1})∗, in Γ. It is obvious that, in such a case, ⇒∗H behaves exactly
the same as ⇒t

H . Thus, L(G) ⊆ Lt(Γ). Nonetheless, it is clear that Γ working in
the t mode can no longer closely simulate G.

Since the tmode is a restricted case of the ∗mode, it must hold that Lt(Γ) ⊆ L∗(Γ).
From the proof of Theorem 1, L∗(Γ) = L(G). Therefore, Lt(Γ) ⊆ L(G).

As L(G) ⊆ Lt(Γ) and Lt(Γ) ⊆ L(G), Lt(Γ) = L(G). Thus, Theorem 7 holds. �

48 R. Kocman, Z. Křivka, A. Meduna

Corollary 9. The resulting two-component general CD grammar system Γ from the
proof of Theorem 7 changes its components, during every generation of a sentence,
no more than once.

Proof. This proof directly follows the basic idea of Theorem 7 and Claim 8. Γ always
starts the process with the symbol S and componentH, sinceH is the only component
that can generate something from S. If the first derivation does not use any simulated
non-context-free rules, then Γ never switches components, because the result of such a
derivation is already a final sentence. If the result contains verification codes, then Γ
switches to the component I that finishes the generation. Since I cannot introduce
any new nonterminals of the original grammar, Γ is not able to switch again. �

For the remaining results, we change the second component of the two-component
general CD grammar system so it is evenly homogeneous. We show that such a system
also works correctly in both the ∗ mode and the t mode.

Theorem 10. Let G = (N,T, P, S) be a grammar in Kuroda normal form. Then,
there exists a two-component general CD grammar system Γ = (N ′, T,H, I, S) such
that H is context-free, I = {11→ 00, 0000→ 2222}, and L∗(Γ) = Lt(Γ) = L(G).

Proof.
Construction.
Let G = (N,T, P, S). Without loss of generality, assume that (N ∪ T)∩ {0, 1, 2} = ∅.
For

m = 2 + card(NonContextFree(P)),

define an injection g from NonContextFree(P) to ({01}+{00}{01}+ ∩ {01, 00}m).
From the grammar G, we construct the two-component general CD grammar sys-
tem Γ = (N ′, T,H, I, S), where N ′ = N ∪ {0, 1, 2}, I = {11 → 00, 0000 → 2222},
and H is defined as follows:
(I) For every AB → CD ∈ P where A,B,C,D ∈ N ,

add A→ CDg(AB → CD) and B → rev(g(AB → CD)) to H.
(II) For every A→ x ∈ P where A ∈ N and x ∈ ({ε} ∪ T ∪N2), add A→ x to H.
(III) Add 2→ ε to H.
The construction of Γ is completed.

Note that this resembles the construction from Theorem 1. We only added one
new nonterminal and a rule that can erase it. Also the basic idea for the simulation
process remains almost the same.

Formal proof (sketch).
First, consider the verification codes. We adjust our terminology and say that the
verification code can also contain occurrences of nonterminal 2. Furthermore, the
connected verification code now always holds the form {01}{0, 1, 2}∗{10}. Note that
only the rule 0000→ 2222 can generate 2’s and that only the rule 2→ ε can rewrite
these nonterminals further. It follows that the proof of Claim 2 can be trivially

General CD Grammar Systems and Their Simplification 49

adapted for the modified structure, and thus Claim 2 also holds in this system. The
following claim introduces a slightly modified version of Claim 3.

Claim 11. In any reachable sentential form, a verification code can be rewritten
only if it can be identified as a connected verification code, sequence of 0’s containing
a leftover as its substring, or nonterminal 2.

Proof. The proof is analogical to Claim 3. ��

From Claim 2 and 11, it is clear that the purpose of verification codes holds.
Next, consider the ∗mode. It is obvious that Γ has to switch its components several

times if some connected verification code needs to be erased, since the rules of I rewrite
only 0’s and 1’s and the rule from H rewrites 2’s. For brevity, let u =⇒l v denote the
sequence u⇒k1

v1 ⇒k2
· · · ⇒kl

vl = v, kj ∈ {H, I}, 1 ≤ j ≤ l. Considering the basic
idea in Theorem 1, we can clearly replace the original derivation sequence ⇒2m−1

I

with a new derivation sequence =⇒6m−1. This change can be also straightforwardly
applied on Claims 4 and 5 and their proofs. Consequently, L∗(Γ) = L(G).

Lastly, consider the t mode. We introduce a modified version of Claim 8. For
convenience and brevity, consider the homomorphism ϕ : (N ′ ∪ T)∗ → (N ∪ T)∗
where ϕ(a) = a and ϕ(b) = ε, for all a ∈ (N ∪ T) and b ∈ {0, 1, 2}; and let u =⇒t v
denote the sequence u⇒t

k1
v1 ⇒t

k2
· · · ⇒t

kl
vl = v, l ≥ 1, kj ∈ {H, I}, 1 ≤ j ≤ l.

Claim 12. For every u ∈ (N ∪ T)∗ and i ≥ 0, S ⇒i u in G implies S ⇒∗H w =⇒t u
in Γ, where w ∈ (N ′∪T)∗ and ϕ(w) = u. Furthermore, we consider w to be generally
in the form w = p1q1 · · · pnqn, where n ≥ 1, pj ∈ (N ∪ T)∗, qj ∈ {0, 1}∗, 1 ≤ j ≤ n,
and every qj represents a verification code that can be successfully erased on its own.

Proof. The proof by induction is analogical to Claim 8. ��

Consider S ⇒∗ y, where y ∈ T ∗, in G. By Claim 12, this implies S ⇒∗H w =⇒t y,
where w ∈ (T ∪ {0, 1})∗, in Γ. It is again obvious that, in such a case, ⇒∗H behaves
exactly the same as⇒t

H . Thus, L(G) ⊆ Lt(Γ). It is clear that Γ working in the tmode
cannot closely simulate G. Furthermore, it is not even possible to bound the number
how many times Γ changes its components during the generation of a sentence, since
verification codes can be arbitrarily nested and the erasing process needs to constantly
switch the components.

As L∗(Γ) = L(G), L(G) ⊆ Lt(Γ), and Lt(Γ) ⊆ L∗(Γ), L∗(Γ) = Lt(Γ) = L(G).
Thus, Theorem 10 holds. �

Corollary 13. If the two-component general CD grammar system Γ from the proof
of Theorem 10 works in the ∗ mode, it can closely simulate the original grammar G.

Proof. The reasoning is the same as for Corollary 6. For any resulting Γ, we can
find a bounded constant k such that for every possible derivation u ⇒ v in G there
is a k′-step derivation in Γ that gives the same result and k′ ≤ k. Furthermore, for a
given Γ, we can easily determine the minimal possible k.

50 R. Kocman, Z. Křivka, A. Meduna

Again, any context-free rule is simulated in one derivation step. The non-context-
free rules require two initial derivation steps and the rewriting of the verification code.
The length of the rewriting depends on the size of m, and in this case it takes 6m− 1
steps to complete. The minimal possible k for a given Γ is therefore 6m+ 1. �

4. Transformations from General Grammars

This section considers transformations that turn arbitrary general grammars into
equivalent two-component general CD grammar systems. Since the previous sec-
tion already established several transformations from Kuroda normal form, the most
straightforward approach would be to convert any general grammar into Kuroda
normal form and then use the previous transformations; however, considering the re-
sulting properties of the system, this approach may be undesirable. First, if we want
to keep the system close to the original grammar, the transformation into the normal
form already considerably impacts the grammar. Second, the system may generate
unnecessarily nested verification codes that can be inconvenient for parallelization.
Therefore, we introduce transformations that directly work with general grammars.
We say that a transformation from general grammars into two-component general CD
grammar systems is direct if it keeps the original context-free rules intact and splits
the non-context-free rules proportionally to the number of symbols on their left-hand
sides.

Theorem 14. Let G = (N,T, P, S) be a general grammar such that

alph(lhs(p)) ∩ T = ∅

for all p ∈ P . Then, there exists its direct transformation into a two-
component general CD grammar system Γ = (N ′, T,H, I, S) such that H is context-
free, I = {11→ 00, 0000→ ε}, and L∗(Γ) = Lt(Γ) = L(G).

Proof.
Construction.
Let G = (N,T, P, S). Without any loss of generality, assume that (N∪T)∩{0, 1} = ∅.
For

n = max({ | lhs(p)| | p ∈ NonContextFree(P) })

and some m ≥ 3, define an injection g from NonContextFree(P) × {1, . . . , n−1}
to ({01}+{00}{01}+ ∩ {01, 00}m). From the grammar G, we construct the two-
component general CD grammar system Γ = (N ′, T,H, I, S), where N ′ = N ∪ {0, 1},
I = {11→ 00, 0000→ ε}, and H is defined as follows:

(I) For every r : X1 · · ·Xm → x ∈ P where m ≥ 2, X1, . . . , Xm ∈ N ,

General CD Grammar Systems and Their Simplification 51

and x ∈ (N ∪ T)∗, add the following rules to H:

X1 → xg(r, 1),
X2 → rev(g(r, 1))g(r, 2),

...
Xm−1 → rev(g(r,m−2))g(r,m−1),
Xm → rev(g(r,m−1)).

(II) For every X → x ∈ P where X ∈ N and x ∈ (N ∪ T)∗, add X → x to H.
The construction of Γ is completed.

Formal proof (sketch).
To prove the correctness of the above construction, we utilize the previous construc-
tion from Theorem 1, and we go backwards through the transformation of general
grammars into Kuroda normal form.

From Theorem 8.3.3.1 in [8], we use the following transformation of a gen-
eral grammar, G = (N,T, P, S), into an equivalent Kuroda normal form gram-
mar, GKNF = (NKNF, T, PKNF, S), which has five distinct steps that modify origi-
nal rules and add new auxiliary nonterminals. We outline only the necessary basics
since details are rather lengthy. All capital letters in the description represent some
nonterminals from NKNF. At start, NKNF = N . The five steps follow:
(1) Each occurrence of a terminal, a ∈ T , is replaced with a new nonterminal a′,

and we add a new rule a′ → a.
(2) Every A1 · · ·Am → B1 · · ·Bn, where n and m satisfy 0 ≤ n < m, is replaced

with A1 · · ·Am → B1 · · ·BnCn+1 · · ·Cm, where Cn+1 through Cm denote oc-
currences of a new nonterminal C. We also add a new rule C → ε.

(3) Every A→ B is replaced with A→ BC and C → ε. C is a new nonterminal.
(4) Every A1 · · ·Am → B1 · · ·Bn, where 2 ≤ m and 3 ≤ n, is repeatedly replaced

with A1A2 → B1C and CA3 · · ·Am → B2 · · ·Bn. C is a new nonterminal.
(5) Every A→ B1 · · ·Bn, where 3 ≤ n, is replaced with the standard chain of rules:

A→ B1〈B2 · · ·Bn〉, 〈B2 · · ·Bn〉 → B2〈B3 · · ·Bn〉, . . . ,
〈Bn−2 · · ·Bn〉 → Bn−2〈Bn−1Bn〉, 〈Bn−1Bn〉 → Bn−1Bn,

where 〈B2 · · ·Bn〉, . . . , 〈Bn−1Bn〉 are new nonterminals.
Let G be a general grammar such that alph(lhs(p))∩T = ∅ for all p ∈ P . Let GKNF

be a grammar in Kuroda normal form that was created from G according to the above
algorithm. And lastly, let ΓKNF be a two-component general CD grammar system
that was created from GKNF according to the construction from Theorem 1. The
proofs of Theorems 1 and 7 have already shown that we can rewrite nonterminals
of GKNF in the sentential form of ΓKNF in any order and that the t mode expands all
nonterminals of the original input grammar in one derivation. Therefore, we can, in
a backward way, recreate the desired form of rules in Γ from the rules of ΓKNF.

52 R. Kocman, Z. Křivka, A. Meduna

First, consider the original context-free rules of G. They are affected only by the
transformation into Kuroda normal form in steps (1), (3), and (5). Therefore, we
can easily recreate their original form so that it corresponds with II. This is possible
because each time the transformation into Kuroda normal form splits a rule, it defines
some new nonterminal for which only one specific rule is applicable. Therefore, this
next rule has to be also eventually applied in ΓKNF, and it causes no issue if both
rules are applied together as one in Γ.

Second, consider the context-sensitive rules A1 · · ·Am → B1 · · ·Bn of G,
where A1, . . . , Am ∈ N and B1, . . . , Bn ∈ (N ∪ T)∗. First, their right-hand side
is affected by (1). Next, they are rewritten with steps (2) and (4) so they have the
form: r1 : A1A2 → B1C1, r2 : C1A3 → B2C2, and so on. These remaining context-
sensitive rules are then transformed into ΓKNF as:

A1 → B1C1g(r1), A2 → rev(g(r1)), C1 → B2C2g(r2), A3 → rev(g(r2)), etc.

Working backwards, we get the rules of the form:

A1 → B1 · · ·Bng(rm−1) · · · g(r1), A2 → rev(g(r1)), A3 → rev(g(r2)), etc.

Observe that this creates a nested structure of verification codes. (The same situation
inevitably happens in the t mode of ΓKNF.) However, since these are the only rules
with the verification codes g(r1), . . . , g(rm−1), we can safely rearrange the codes in
the rules as:

A1 → B1 · · ·Bng(r1),
A2 → rev(g(r1))g(r2),

...
Am−1 → rev(g(rm−2))g(rm−1),
Am → rev(g(rm−1)).

This form then directly corresponds with (I).
Since L∗(ΓKNF) = Lt(ΓKNF) = L(G), it must hold that L∗(Γ) = Lt(Γ) = L(G).

�

The similar result can be easily achieved for the two-component general CD gram-
mar system where I = {11 → 00, 0000 → 2222}. Furthermore, it should be also
obvious that the other properties from the previous section (close simulation and
switching of components) still hold in this more general transformation.

Lastly, we introduce a modification of the above transformation that works with all
general grammars. However, it is not possible to directly use our previous approach
for grammars that have rules with terminals on their left-hand sides. Consequently,
the resulting system may not be able to closely simulate the original general grammar.
We say that a transformation is semi-direct if it separates terminals from the left-hand
side of the rules but otherwise behaves as a direct transformation.

General CD Grammar Systems and Their Simplification 53

Theorem 15. Let G = (N,T, P, S) be a general grammar. Then, there ex-
ists its semi-direct transformation into a two-component general CD grammar sys-
tem Γ = (N ′, T,H, I, S) such that H is context-free, I = {11 → 00, 0000 → ε},
and L∗(Γ) = LT (Γ) = L(G).

Proof. The proof by construction is simple. We use the core idea of step (1)
from the transformation of general grammars into Kuroda normal form. First,
let Trep = { a | a ∈ T, a ∈ alph(lhs(r)), r ∈ P }. We replace each occurrence
of a ∈ Trep in the rules with a new nonterminal a′, and we add a′ → a to P . Now,
the grammar satisfies the condition for the construction from Theorem 14. Thus, the
construction of Γ is completed. �

Again, the same holds for the system with the evenly homogeneous component.

5. Concluding Remarks

We close this paper by formulating some remarks and open problems. First, take a
closer look at the properties of all presented transformations.
• As already stated in Section 1, multi-derivations are performed so that dur-

ing a derivation step, the current sentential form may be simultaneously
rewritten at several positions, not just at a single position. More formally,
let Γ = (N,T, P1, P2, . . . , Pn, S) be a general CD grammar system, n be a pos-
itive integer, and ui ⇒Pk

vi, ui, vi ∈ (N ∪ T)∗, 1 ≤ i ≤ n. Then, Γ makes a
direct multi-derivation step from u1u2 · · ·un to v1v2 · · · vn, symbolically written
as u1u2 · · ·un multi⇒Pk

v1v2 · · · vn. Based on multi⇒Pk
, define Lf (Γ) by analogy

with the definition of Lf (Γ) in Section 2. Consider the systems constructed in
the proofs of Theorems 1, 7, 10, 14, and 15 in Sections 3 and 4. Observe that
both of their components H and I always allow the free use of multi-derivations
since this cannot disturb the generation process in any way.

Finally, we propose two challenging problems.
• Consider the computationally complete general CD grammar systems presented

in this paper. Can we find a different combination of even more restricted
components so that the resulting systems are still computationally complete?

• Introduce new restricted transformations of general CD grammar systems so
they characterize some other well-known language families, such as the families
of matrix and context-sensitive languages.

Acknowledgement

This work was supported by The Ministry of Education, Youth and Sports of the
Czech Republic from the National Programme of Sustainability (NPU II); project
IT4Innovations excellence in science – LQ1602; the TAČR grant TE01020415; and
the BUT grant FIT-S-17-3964. The authors thank the anonymous referees for their
useful comments and suggestions.

54 R. Kocman, Z. Křivka, A. Meduna

References

[1] E. Csuhaj-Varjú, J. Dassow, J. Kelemen, Gh. Păun, Grammar Systems: A Gram-
matical Approach to Distribution and Cooperation. Gordon and Breach Science Pub-
lishers, Inc., 1994.

[2] E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil, Cooperating distributed grammar sys-
tems with permitting grammars as components. Romanian Journal of Information
Science and Technology 12 (2009) 2, 175–189.

[3] V. Geffert, Grammars with context dependency restricted to synchronization. In:
J. Gruska, B. Rovan, J. Wiedermann (eds.), Mathematical Foundations of Com-
puter Science 1986. Proceedings of the 12th Symposium, Bratislava, Czechoslovakia,
August 25–29, 1986 . LNCS 233, Springer, 1986, 370–378.

[4] V. Geffert, Context-free-like forms for the phrase-structure grammars. In:
M. P. Chytil, V. Koubek, L. Janiga (eds.), Mathematical Foundations of Computer
Science 1988. Proceedings of the 13th Symposium, Carlsbad, Czechoslovakia, August 29
– September 2, 1988 . LNCS 324, Springer, 1988, 309–317.

[5] V. Geffert, Normal forms for phrase-structure grammars. RAIRO – Theoretical In-
formatics and Applications – Informatique Théorique et Applications 25 (1991) 5, 473–
496.

[6] F. Goldefus, T. Masopust, A. Meduna, Left-forbidding cooperating distributed
grammar systems. Theoretical Computer Science 411 (2010) 40–42, 3661–3667.

[7] Z. Křivka, T. Masopust, Cooperating distributed grammar systems with random
context grammars as components. Acta Cybernetica 20 (2011) 2, 269–283.

[8] A. Meduna, Automata and Languages: Theory and Applications. Springer, London,
2000.

[9] A. Meduna, D. Kolář, Homogenous grammars with a reduced number of non-
context-free productions. Information Processing Letters 81 (2002) 5, 253–257.

[10] A. Meduna, M. Švec, Grammars with Context Conditions and Their Applications.
Wiley, 2005.

[11] A. Meduna, M. Švec, T. Kopeček, Equivalent language models that closely simu-
late one another and their illustration in terms of L systems. International Journal of
Computer Mathematics 84 (2007) 11, 1555–1566.

[12] G. Rozenberg, A. Salomaa, Handbook of Formal Languages, Volume 1: Word, Lan-
guage, Grammar . Springer-Verlag, 1997.

[13] G. Rozenberg, A. Salomaa, Handbook of Formal Languages, Volume 2: Linear Mod-
eling: Background and Application. Springer-Verlag, 1997.

[14] W. J. Savitch, How to make arbitrary grammars look like context-free grammars.
SIAM Journal on Computing 2 (1973) 3, 174–182.

[15] D. Wood, Theory of Computation: A Primer . Addison-Wesley, Boston, 1987.

(Received: October 12, 2017; revised: January 7, 2019)

	1 Introduction
	2 Preliminaries and Definitions
	3 Transformations from Kuroda Normal Form
	4 Transformations from General Grammars
	5 Concluding Remarks

