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Abstract: Given a simple graph with the vertex set X, we discuss a closure operator on X induced by a set
of paths with identical lengths in the graph. We introduce a certain set of paths of the same length in the
2-adjacency graph on the digital line Z and consider the closure operators on Zm (m a positive integer) that
are induced by a special product of m copies of the introduced set of paths. We focus on the case m = 3 and
show that the closure operator considered provides the digital space Z3 with a connectedness that may be
used for de�ning digital surfaces satisfying a Jordan surface theorem.
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1 Introduction
In digital picture analysis, detection of object borders plays an important role in solving numerous problems
such as pattern recognition etc. - cf. [1]. In two-dimensional digital pictures, it is required that object borders
be digital Jordan curves, i.e., subsets of the digital plane Z2 satisfying a digital analog of the Jordan curve
theorem. (Recall that the classical Jordan curve theorem states that a simple closed curve separates the
Euclidean plane into precisely two connected components). It is, therefore, necessary to equip the digital
plane with a connectedness structure making it possible to de�ne digital Jordan curves. In the classical
approach to this problem, a pair of adjacency relations (4- and 8-adjacency) on Z2 is employed (see [2, 3]).
In [4], a new, topological approach was proposed using a single connectedness structure, the so-called
Khalimsky topology to provide Z2 with a connectedness structure. The topological approach was then
developed by many authors, see, e.g., [5–8].

In three-dimensional pictures, object borders are to be digital surfaces, i.e., subsets of the digital space
Z3 satisfying a digital analog of the Jordan surface theorem (which is also known as the Jordan-Brouwer
theorem). A classical approach to this three-dimensional problem is based, like in the two-dimensional case,
on using a pair of adjacency relations (6- and 26-adjacency) on Z3- see [9–12]. The topological approach
employing the Khalimsky topology on Z3 was applied, e.g., in [13, 14].

The present paper is a contribution to the topological approach to the problem of recognizing digital
surfaces in Z2. Instead of the Khalimsky topology, we employ closure operators that are induced by a set of
paths of the same length in a simple graph. We introduce, for every positive integer n, a certain set of paths
of identical lengths n in the 2-adjacency graph on the digital line Z. For every positive integer m, we obtain
a closure operator on Zm induced by a special product of m copies of the introduced set of paths in Z. For
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n = 2, we get the well-known Khalimsky topology on Zm. We focus on the case of n = m = 3 and, for the
obtained closure operator on Z3, we prove a digital Jordan surface theorem.

Sets of paths of identical lengths in a graph were proposed for the study of connectedness in digital
spaces in [15]. Closure operators induced by such sets of paths were used in [16] for proving a digital Jordan
curve theorem. In [17], correspondences between sets of paths and closure operators in a simple graph were
studied. In the present paper, we build on the concepts and results in [17]. To make the paper self-contained,
we repeat some of them.

By a graph G = (V , E), we understand an (undirected simple) graph (without loops) where V ≠ ∅ is the
vertex set and E ⊆ {{x, y}; x, y ∈ V , x = ̸ y} is the set of edges of G. We will say that G is a graph on V.
Two vertices x, y ∈ V are said to be adjacent (to each other) if {x, y} ∈ E. Recall that a walk in G is a (�nite)
sequence (xi| i ≤ n), i.e., (x0, x1, ..., xn), of pairwise di�erent vertices of V such that xi is adjacent to xi+1
whenever i < n. If, moreover, the members of (xi| i ≤ n) are pairwise di�erent, then (xi| i ≤ n) is called a path.
The non-negative integer n is called the length of the walk (path) (xi| i ≤ n). A sequence (xi| i ≤ n) of vertices
of G is called a circle if n > 2, x0 = xn, and (xi| i < n) is a path. For the graph-theoretic background, we refer
to [18].

Given graphs Gj = (Vj , Ej , ), j = 1, 2, ...,m (m > 0 an integer), we de�ne their strong product to
be the graph

∏m
j=1 Gj = (

∏m
j=1 Vj , E) with the set of edges E = {{(x1, x2, ..., xm), (y1, y2, ..., ym)}; there

exists a nonempty subset J ⊆ {1, 2, ...,m} such that {xj , yj} ∈ Ej for every j ∈ J and xj = yj for every
j ∈ {1, 2, ...,m}− J}. Note that the strong product di�ers from the cartesian product of Gj, j = 1, 2, ...,m, i.e.,
from the graph (

∏m
j=1 Vj , F) where F = {{(x1, x2, ..., xm), (y1, y2, ..., ym)}; {xj , yj} ∈ Ej for every j ∈ {1, 2,

...,m}}. More precisely, we have F ( E whenever m > 1. The strong product of a pair of graphs coincides
with that introduced in [19].

If Gj = G for every j = 1, 2, ...,m, we write Gm instead of
∏m
j=1 Gj.

By a closure operator u on a set X, we mean a map u: exp X → exp X (where exp X denotes the power set
of X) which is
(i) grounded (i.e., u∅ = ∅),
(ii) extensive (i.e., A ⊆ X ⇒ A ⊆ uA), and
(iii) monotone (i.e., A ⊆ B ⊆ X ⇒ uA ⊆ uB).
The pair (X, u) is then called a closure space.

A closure operator u on X that is
(iv) additive (i.e., u(A ∪ B) = uA ∪ uB whenever A, B ⊆ X) and
(v) idempotent (i.e., uuA = uA whenever A ⊆ X)
is called a Kuratowski closure operator or a topology and the pair (X, u) is called a topological space.

Given a cardinal m > 1, a closure operator u on a set X and the closure space (X, u) are called an Sm-
closure operator and an Sm-closure space (brie�y, an Sm-space), respectively, if the following condition is
satis�ed:

A ⊆ X ⇒ uA =
⋃
{uB; B ⊆ A, card B < m}.

S2-topologies (S2-topological spaces) are usually called Alexandro� topologies (Alexandro� spaces) - see
[7]. Similarly to [17],wewill use somebasic topological concepts suchas closed subsets, subspaces, connected
subsets, (connected) components etc. (see, e.g., [20]) naturally extended from topological spaces to closure
ones. The behavior of extended concepts is then analogous to that of the original ones. In particular, we will
employ the fact that the union of a (�nite or in�nite) sequence of connected subsets of a closure space is
connected in the space if every pair of consecutive members of the sequence has a nonempty intersection.

We will say that a subset Y of a closure space (X, u) separates the space into exactly two components if
the subspace X − Y of (X, u) has exactly two components.
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2 Closure operators induced by sets of paths
In the sequel, n will denote a positive integer. Given a graph G, we denote by Pn(G) the set of all paths of
length n in G. For every set of paths (path set for short)B ⊆ Pn(G), we put
B̂ = {(xi| i ≤ m) ∈ Pm(G); 0 < m ≤ n and there exists (yi| i ≤ n) ∈ B such that xi = yi for every i ≤ m} and
B* = {(xi| i ≤ m) ∈ Pm(G); 0 < m ≤ n and (xi| i ≤ m) ∈ B̂ or (xm−i| i ≤ m) ∈ B̂}.
Thus, we haveB ⊆ B̂ ⊆ B*.

Let Gj be a graph and Bj ⊆ Pn(Gj) for every j = 1, 2, ...,m (m > 0 an integer). Then, we put
∏m
j=1Bj =

{((x1i , x2i , ..., xmi )| i ≤ n); there is a nonempty subset J ⊆ {1, 2, ...,m} such that (xji| i ≤ n) ∈ Bj for every j ∈
J and (xji| i < j) is a constant sequence for every j ∈ {1, 2, ...,m}− J}. It is evident that

∏m
j=1Bj ⊆ Pn(

∏m
j=1 Gj).∏m

j=1Bj will be called the strong product ofBj, j = 1, 2, ...,m (it will always be clear whether a strong product
discussed relates to graphs or path sets). If Gj = G and Bj = B for every j = 1, 2, ...,m, we write Bm instead
of

∏m
j=1Bj.
Let G be a graph with the vertex set V andB ⊆ Pn(G). For every X ⊆ V, we put

fn(B)X = X ∪ {x ∈ V; there exists (xi| i ≤ m) ∈ B̂ with {xi; i < m} ⊆ X and xm = x}.

It may easily be seen that fn(B) is an Sn+1-closure operator on V - it will be said to be associated with B.
It is evident that every path belonging to B* is a connected subset of the closure space (V , fn(B)). For the
properties of the closure operators fn(B) see [17].

Recall [16] that, given a graph G = (V , E) and B ⊆ Pn(G), a sequence C = (xi| i ≤ p), p > 0 an integer,
of vertices of V is called a B-walk in G if there is an increasing sequence (ik| k ≤ q), q > 0 an integer, of
non-negative integers with i0 = 0 and iq = p such that ik − ik−1 ≤ n and (xi| ik−1 ≤ i ≤ ik) ∈ B* for every k with
0 < k ≤ q. If the terms of C are pairwise di�erent, then C is called aB-path in G.

A B-walk C is said to be a B-circle if, for every pair i0, i1 of di�erent integers with 0 ≤ i0, i1 ≤ p, xi0 = xi1
is equivalent to {i0, i1} = {0, p}.

Clearly, every B-walk (B-path, B-circle) in a graph G = (V , E) is a walk (path, circle) in G and both
concepts coincide ifB = {(x, y); {x, y} ∈ E} ⊆ P1(G).

We will need the following statement proved in [16]:

Proposition 2.1. Let G be a graph with the vertex set V and B ⊆ Pn(G). A subset A ⊆ V is connected in the
closure space (V , fn(B)) if and only if any two di�erent vertices of G belonging to A can be joined by a B-walk
in G contained in A.

3 The closure operator on Z3 induced by a set of paths of length 2
Recall that the 2-adjacency graph (on Z) is the graph H = (Z, A2)where A2 = {{p, q}; p, q ∈ Z, |p − q| = 1}.

For every l ∈ Z, we put

Il =
{
(ln + i| i ≤ n) if l is odd,
((l + 1)n − i| i ≤ n) if l is even.

In the sequel, (for a given integer n > 1) B will denote the set B ⊆ Pn(H) given by B = {Il; l ∈ Z}. Thus, all
paths Il belonging to B are just the arithmetic sequences (xi|i ≤ n) of integers where the di�erence equals 1
and x0 = ln if l is odd and the di�erence equals 1 and x0 = (l + 1)n if l is even. Note that each element z ∈ Z
belongs to at least one and at most two paths in B. It belongs to two (di�erent) paths from B if and only if
there is l ∈ Zwith z = ln (in which case, z is the �rst member of each of the paths Il and Il−1 if l is odd, and z
is the last member of each of the two paths if l is even).

The closure space (Zm , f1(Bm)) coincides with the m-dimensional Khalimsky space for every positive
integerm. A digital Jordan curve theorem for the Khalimsky plane (Z2, f1(B2))was proved in [4] and a digital
Jordan surface theorem for theKhalimsky space (Z3, f1(B3))wasproved in [13]. In [16], a Jordan curve theorem
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Figure 1: The path setB2 ⊆ P2(H2).

for the closure space (Z2, fn(B2)) is proved (for an arbitrary integer n > 1). In the present note, we will focus
on proving a digital Jordan surface theorem for the closure space (Z3, f2(B3)). Note that the graphs H2 and
H3 are simply the well known 8- and 26-adjacency graphs, respectively - cf. [11]. The path set B2 ⊆ P2(H2)
is demonstrated in Figure 1 where the paths belonging to B2 are marked by line segments directed from the
�rst to the last terms of the paths.

From now on, we assume that n = 2. Hence, B is a set of paths of length 2 (B ⊆ P2(H)) and so is B3

(B3 ⊆ P2(H3)). By [16], (Z3, f2(B3)) is connected.

De�nition 3.1. Each of the following subsets of Z3 will be called a fundamental rectangle:

(1) {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, 4l ≤ y ≤ 4l + 4, z = 4m}, k, l,m ∈ Z,
(2) {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, y = 4k, 4m ≤ z ≤ 4m + 4}, k, l,m ∈ Z,
(3) {(x, y, z) ∈ Z3; x = 4k, 4l ≤ y ≤ 4l + 4, 4m ≤ z ≤ 4m + 4}, k, l,m ∈ Z,
(4) {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, y = x − 4k + 4l, 4m ≤ z ≤ 4m + 4}, k, l,m ∈ Z,
(5) {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, y = 4k + 4l + 4 − x, 4m ≤ z ≤ 4m + 4}, k, l,m ∈ Z,
(6) {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, 4l ≤ y ≤ 4l + 4, z = x − 4k + 4m}, k, l,m ∈ Z,
(7) {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, 4l ≤ y ≤ 4l + 4, z = 4k + 4m + 4 − x}, k, l,m ∈ Z,
(8) {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, 4l ≤ y ≤ 4l + 4, z = y − 4l + 4m}, k, l,m ∈ Z,
(9) {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, 4l ≤ y ≤ 4l + 4, z = 4l + 4m + 4 − y}, k, l,m ∈ Z.

Clearly, a subset T ⊆ Z3 is a fundamental rectangle if and only if there is a digital cube {(x, y, z); 4k ≤ x ≤
4k + 4, 4l ≤ y ≤ 4l + 4, 4m ≤ z ≤ 4m + 4}, k, l,m ∈ Z, such that T is a (digital) face of the cube or is the
intersection of the cube with the (digital) plane that is perpendicular to a face of the cube and contains one
of the two (digital) diagonals of the face. Hence, every fundamental rectangle T consists of 25 points and has
the form of a digital square parallel to a coordinate plane (hence perpendicular to the other two coordinate
planes) or a digital rectangle perpendicular to a coordinate plane with the angle π

4 between T and each of
the other two coordinate planes. Thus, it is clear which sets of points (digital line segments) are the sides of
a fundamental rectangle. By the help of Figure 1 (where the path set B2 demonstrated is a two-dimensional
projection ofB3), we may easily see that every two di�erent points of a fundamental rectangle may be joined
by aB3-path contained in the rectangle. Thus, by Proposition 2.1, every fundamental rectangle is connected
in (Z3, f2(B3)).

De�nition 3.2. Each of the following subsets of Z3 will be called a fundamental triangle:

(1) {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, 4l ≤ y ≤ x − 4k + 4l, z = 4m}, k, l,m ∈ Z,
(2) {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, x − 4k + 4l ≤ y ≤ 4l + 4, z = 4m}, k, l,m ∈ Z,
(3) {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, 4l ≤ y ≤ 4k + 4l + 4 − x, z = 4m}, k, l,m ∈ Z,
(4) {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, 4k + 4l + 4 − x ≤ y ≤ 4l + 4, z = 4m}, k, l,m ∈ Z,
(5) {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, y = 4l, 4m ≤ z ≤ x − 4k + 4m}, k, l,m ∈ Z,

Brought to you by | Chiang Mai University
Authenticated

Download Date | 11/20/19 3:07 AM



1378 | Josef Šlapal

(6) {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, y = 4l, x − 4k + 4m ≤ z ≤ 4m + 4}, k, l,m ∈ Z,
(7) {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, y = 4l, 4m ≤ z ≤ 4k + 4m + 4 − x}, k, l,m ∈ Z,
(8) {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, y = 4l, 4k + 4m + 4 − x ≤ z ≤ 4m + 4}, k, l,m ∈ Z,
(9) {(x, y, z) ∈ Z3; x = 4k, 4l ≤ y ≤ 4l + 4, 4m ≤ z ≤ y − 4l + 4m}, k, l,m ∈ Z,

(10) {(x, y, z) ∈ Z3; x = 4k, 4l ≤ y ≤ 4l + 4, y − 4l + 4m ≤ z ≤ 4m + 4}, k, l,m ∈ Z,
(11) {(x, y, z) ∈ Z3; x = 4k, 4l ≤ y ≤ 4l + 4, 4m ≤ z ≤ 4l + 4m + 4 − y}, k, l,m ∈ Z,
(12) {(x, y, z) ∈ Z3; x = 4k, 4l ≤ y ≤ 4l + 4 4l + 4m + 4 − y ≤ z ≤ 4m + 4}, k, l,m ∈ Z.

Clearly, a subset T ⊆ Z3 is a fundamental triangle if and only if there is a fundamental rectangle parallel
to a coordinate plane, hence a square, such that T is one of the four (digital) half-square triangles obtained
from the square (by splitting it along a diagonal). Thus, every fundamental triangle has the form of a (digital)
isosceles right-angled triangle parallel to a coordinate plane. It is, therefore, clear which sets of points (digital
line segments) are the sides of a fundamental triangle. As in the case of fundamental rectangles, fundamental
triangles, too, may easily be seen, by the help of Figure 1 and Proposition 2.1, to be connected in (Z3, f2(B3)).

De�nition 3.3. Each of the following subsets of Z3 will be called a fundamental prism:

(1) {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, 4l ≤ y ≤ x − 4k + 4l, 4m ≤ z ≤ 4m + 4}, k, l,m ∈ Z,
(2) {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, x − 4k + 4l ≤ y ≤ 4l + 4, 4m ≤ z ≤ 4m + 4}, k, l,m ∈ Z,
(3) {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, 4l ≤ y ≤ 4k + 4l + 4 − x, 4m ≤ z ≤ 4m + 4}, k, l,m ∈ Z,
(4) {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, 4k + 4l + 4 − x ≤ y ≤ 4l + 4, 4m ≤ z ≤ 4m + 4}, k, l,m ∈ Z,
(5) {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, 4l ≤ y ≤ 4l + 4, 4m ≤ z ≤ x − 4k + 4m}, k, l,m ∈ Z,
(6) {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, 4l ≤ y ≤ 4l + 4, x − 4k + 4m ≤ z ≤ 4m + 4}, k, l,m ∈ Z,
(7) {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, 4l ≤ y ≤ 4l + 4, 4m ≤ z ≤ 4k + 4m + 4 − x}, k, l,m ∈ Z,
(8) {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, 4l ≤ y ≤ 4l + 4 4k + 4m + 4 − x ≤ z ≤ 4m + 4}, k, l,m ∈ Z,
(9) {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, 4l ≤ y ≤ 4l + 4, 4m ≤ z ≤ y − 4l + 4m}, k, l,m ∈ Z,

(10) {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, 4l ≤ y ≤ 4l + 4, y − 4l + 4m ≤ z ≤ 4m + 4}, k, l,m ∈ Z,
(11) {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, 4l ≤ y ≤ 4l + 4, 4m ≤ z ≤ 4l + 4m + 4 − y}, k, l,m ∈ Z,
(12) {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, 4l ≤ y ≤ 4l + 4 4l + 4m + 4 − y ≤ z ≤ 4m + 4}, k, l,m ∈ Z.

Clearly, every fundamental prism has the form of a digital triangular prismwith 75 points such that each of its
faces is a fundamental triangle or a fundamental rectangle. Every cube {(x, y, z) ∈ Z3; 4k ≤ x ≤ 4k + 4, 4l ≤
y ≤ 4l + 4, 4m ≤ z ≤ 4m + 4}, k, l,m ∈ Z, is the union of two di�erent fundamental prisms having a face in
common (and all fundamental prisms are obtained in this way).

Lemma 3.4. Every fundamental prism is connected in (Z3, f2(B3)) and so is every subset of Z3 obtained from
a fundamental prism by removing some of its faces.

Proof. Let P be the fundamental prism given by condition (1) in De�nition 3.3, i.e., P = {(x, y, z) ∈ Z3; 4k ≤ x ≤
4k + 4, 4l ≤ y ≤ x − 4k + 4l, 4m ≤ z ≤ 4m + 4}where k = l = m = 0. Clearly, P is the union of the �ve triangles
obtained as the intersection of Pwith the digital plane (parallel to the coordinate plane xy) {(x, y, z) ∈ Z3; z =
k}where k is one of the integers 0,1,2,3,4. The projection of each of the �ve triangles onto the coordinate plane
xy is the fundamental triangle (0,0)(4,0)(4,4) in Figure 1 (which is connected in (Z2, f2(B2)) by Proposition
2.1). Hence, each of the �ve triangles is connected in (Z3, f2(B3)). The same is true for every set obtained from
anyof the �ve triangles by removing someof its edges. Put C = ((3, 1, 0), (3, 1, 1), (3, 1, 2), (3, 1, 3), (3, 1, 4)).
Since both ((3, 1, 2), (3, 1, 1), (3, 1, 0)) and ((3, 1, 2), (3, 1, 3), (3, 1, 4)) belong toB3, C is anB3-path. Thus,
by Proposition 2.1, C is a connected subset of (Z3, f2(B3)). It is evident that C meets each of the �ve triangles
and is contained in their union and the same is true even if some sides of the triangles are removed. Therefore,
the fundamental prism P (which is the union of the triangles) is connected and the same is true if some faces
of the prism are removed. If some of the integers k, l, m di�er from 0, the proof is much the same. Thus, the
Lemma is proved for fundamental prisms of the form (1) in De�nition 3.3. For fundamental prisms of the other
eleven forms, the proofs are done along similar lines.�
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Figure 2: A Jordan surface in (Z3 , f2(B3)).

Theorem 3.5. (Digital Jordan Surface Theorem) Let S be a connected subset of (Z3, f2(B3))which is the union
of a �nite (non-empty) set F of fundamental triangles and fundamental rectangles such that

(1) For every pair F1, F2 ∈ F, F1 ≠ F2, we have card(F1 ∩ F2) ≤ 1 or F1 ∩ F2 = J where J is a common side
of F1 and F2.

(2) For every F1 ∈ F, if J is a side of F1, then there exists exactly one F2 ∈ F, F1 ≠ F2, such that J is a a side
of F2.

Then, S separates (Z3, f2(B3)) into exactly two components and the union of S with each of them is connected.

Proof. Let S satisfy the conditions of the statement. Clearly, S is a polyhedral surface which is the union of all
faces of a polyhedron TF ⊆ Z3 consisting of fundamental prisms. More precisely, TF may be expressed as the
union of a (�nite) sequence of pairwise di�erent fundamental prisms such that any two of them are disjoint
or meet in just one face in common and every prism in the sequence, except for the �rst one, has a face in
common with at least one of its predecessors. However, the set TI = (Z3 − TF) ∪ S, too, may be written as
the union of such an (in�nite) sequence of fundamental prisms. By Lemma 3.4, TF, TF − S, TI , and TI − S are
connected in (Z3, f2(B3)).

It is obvious that every B3-walk C = (zi| i ≤ k), k > 0 an integer, joining a point of TF − S with a point
of TI − S meets S (i.e., meets a fundamental prism face contained in S). Thus, by Proposition 2.1, the set
Z3 − S = (TF − S) ∪ (TI − S) is not connected in (Z3, f2(B3)). Hence, TF − S and TI − S are components of the
subspace Z3 − S of (Z3, f2(B3)), TF − S �nite and TI − S in�nite, with TF and TI connected in (Z3, f2(B3)).�

Conclusion.We have introduced a closure operator on the digital space Z3, f2(B3), which provides a connect-
edness that allows for a digital Jordan surface theorem (Theorem 3.5). The Jordan surfaces introduced, i.e.,
the surfaces S satisfying the assumptions of Theorem 3.5, have the advantage over the Jordan surfaces with
respect to the Khalimsky topology proposed in [13] that the angle between a pair of fundamental rectangles
belonging to S may be π

4 . For example, the surface of the letter M demonstrated in Figure 2 (where only the
points on the edges of the letter are marked) is a Jordan surface in (Z3, f2(B3)) but it is not a Jordan surface
with respect to the Khalimsky topology f1(B3) in the sense of [13] because there are four pairs of fundamental
rectangles that meet at an angle of π4 . Therefore, the closure operator f2(B3) gives a convenient structure on
Z3 for the study of three-dimensional digital images providing more �exible digital Jordan surfaces than the
Khalimsky topology.
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