
2019 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)

Accelerated DDoS Attacks Mitigation using
Programmable Data Plane

Mário Kuka
CESNET, a.l.e.

Prague, Czech Republic
kuka@cesnet.cz

Kamil Vojanec
Brno University of Technology

Faculty of Information Technology
Centre of Excellence IT4Innovations

Brno, Czech Republic
xvojan00@stud.fit.vutbr.cz

Jan Kučera
CESNET, a.l.e.

Prague, Czech Republic
jan.kucera@cesnet.cz

Pavel Benáček
CESNET, a.l.e.

Prague, Czech Republic
benacek@cesnet.cz

Abstract—DDoS attacks are a significant threat to internet
service or infrastructure providers. This poster presents an
FPGA-accelerated device and DDoS mitigation technique to
overcome such attacks. Our work addresses amplification attacks
whose goal is to generate enough traffic to saturate the victims
links. The main idea of the device is to efficiently filter malicious
traffic at high-speeds directly in the backbone infrastructure
before it even reaches the victim’s network. We implemented our
solution for two FPGA platforms using the high-level description
in P4, and we report on its performance in terms of throughput
and hardware resources.

Index Terms—Denial-of-service Attacks, DDoS Mitigation,
Programmable Data Planes, P4, FPGA

I. INTRODUCTION

Distributed Denial-of-Service (DDoS) attacks are one of the
most serious threats to all internet service or infrastructure
providers. Such an attack aims to take down a service or
even the whole network to make it inaccessible to legitimate
users. During the attack, the network traffic generally consists
of legitimate and malicious packets. The main issue is that
the malicious packets consume bandwidth and other resources
of the victim so that other incoming packets, especially the
legitimate ones, have to be discarded non-deterministically. To
mitigate the attack it is necessary to find a way to efficiently
distinguish between a legitimate and a malicious packet with
minimal disruption to the communication of legitimate traffic.
However, due to the overwhelming computational complexity
of the mitigation methods, this leads to challenges in meeting
the performance requirements of modern high-speed networks.
Moreover, the volume and complexity of DDoS attacks contin-
uously grows every year [1], [2] which makes efficient defense
more and more difficult and expensive.

This poster aims to present our DDoS mitigation technique.
We propose an FPGA-accelerated device which deals with
such attacks by filtering the traffic in an ISP backbone infras-
tructure before it reaches the victim’s network. The proposed

This research has been supported by the Ministry of Education, Youth and
Sports of the Czech Republic from the National Programme of Sustainability
(NPU II), project IT4Innovations excellence in science – LQ1602, and by
the project Reg. No. CZ.02.1.01/0.0/0.0/16 013/0001797 co-funded by the
Ministry of Education, Youth and Sports of the Czech Republic and European
Regional Development Fund.

Software Controller

Select Block

Detect(Server CPU)

NIC Dataplane
(FPGA Firmware)

Logs, statistics

Legitimate
traffic

Control

Incoming
traffic

Fig. 1. High-level architecture of the device.

mitigation algorithm focuses on reflection attacks [3], while
the decision to block the traffic is based on the volumetric
contribution of source IP addresses to the attack. Originally,
we implemented our idea manually using pure VHDL. Later,
we also ported this architecture into a high-level description
using P4 language [4], [5] based on match-action tables.
Finally, we generated a synthesizable code suitable for two
FPGA platforms, i.e. Xilinx UltraScale+ and Intel Stratix 10.
In this work, we present the details of architecture design and
then report its performance in terms of throughput and its
requirements in terms of hardware resources.

II. SYSTEM DESIGN

The proposed mitigation device uses a commodity hardware
server with a dedicated 100 GbE network interface card
connected to the host via PCI Express bus and equipped with
an FPGA chip. The high-level architecture of the device is
depicted in Fig. 1.

NIC implements fast packet forwarding and filtering data
plane managed by a software controller. According to a set of
user-defined rules, the FPGA accelerator first selects affected
subset of incoming network traffic (a destination IP prefix,
DNS traffic, etc.), extracts and collects interesting data from
packets (header fields, e.g., IP addresses, TCP/UDP ports,
volume statistics) and provides these data in a predefined
format to the software part of the system. The controller
continuously evaluates these network traffic parameters, and
as soon as a DDoS attack is detected, a heuristic algorithm
identifies aggressive IP addresses, and the controller instructs

978-1-7281-4387-3/19/$31.00 © 2019 IEEE

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Malicious Traffic

Limit rate

Optimal rate

Time [hours]

Legitimate Traffic

Top-N sources
(the most contributing)

Tr
a
ffi

c
V
o
lu

m
e
 [

G
b
p
s]

Fig. 2. Example of the mitigation principle.

the data plane to block this traffic immediately. However, the
essential part is to identify the offending IP addresses correctly.

In this work, we focus on the specific family of volumetric
DDoS attacks called reflective amplification attacks [3]. In this
case, the malicious packets hitting a victim are reflected from
a public server (e.g., an open DNS resolver) and thus contain
a valid (i.e., not spoofed) source IP address of the reflector.
Therefore, blocking the traffic from the particular source IP
addresses appears to be effective.

Fig. 2 shows the mitigation principle. The technique aims
to decrease the volume of traffic to an acceptable intensity
so that it does not saturate the links of the victim server,
and the target infrastructure can handle it. To this end, an
operator must specify a set of rules for a subset of traffic and
each protected network to define requested traffic limits. In
general, such a rule consists of two parts: (1) a condition,
(2) limit and optimal traffic rates. The condition specifies
which packet should match the rule (e.g., protected destination
IP prefix, TCP/UDP ports). The limit defines the rate of
packets or bits per second that must be exceeded to start
filtering the traffic targeting the protected network (matching
the condition). The optimal traffic rate defines the desired rate
to which the traffic should be reduced. Finally, as soon as
the limit is exceeded, the algorithm filters traffic coming from
the top-N most contributing sources, i.e., it selectively blocks
source IP addresses producing the majority of malicious traffic,
while the number of top-N blocked IP addresses is selected
so that the desired optimal traffic rate is achieved.

III. FIRMWARE DESIGN

The FPGA firmware architecture consists of nine major
building blocks. Fig. 3 depicts a view of the architecture and
illustrates the operations performed for each incoming packet.
The structure is organized around three main paths: the packet
data path (red), packet headers and metadata (blue), and the
software access and control path (green).

Each incoming packet is first parsed, and flow identification
fields are extracted in HFE (Header Field Extractor). The
desired interesting packet headers and metadata are formed
into a predefined format (Unified Header) in UH generator.

Packet

(TX MAC)
Output Packets

(RX MAC)
Input Packets

RX DMA
Software

TX DMA
Software

Check & Drop Editor
MAC & VLAN

Decrement
TTL

HFE

Blocking
Filter

Forwarding
Filter

Selection
Filter

Memory
External

Generator
UH

Access & Control
Software

Fig. 3. FPGA firmware architecture.

Then, according to the software-defined rules, Selection Filter
decides in which form and which packets are delivered to the
software part of the system for further analysis. Data can be
forwarded either in the form of whole packets or as Unified
Headers. In case of UHs, only a few bytes for each packet are
transferred to software, thus reducing the PCIe utilization and
CPU load, because the packet is fully parsed in hardware, and
only necessary data are transferred.

Malicious traffic coming from the particular offending IP
addresses is blocked using Blocking Filter, as requested by
the software controller. Blocking filter utilizes an exact match
cuckoo hashing based table. It is realized using external on-
board QDR memories and has a total capacity of over 250 000
rules. The filter also maintains packets and bytes statistics of
each blocked IP address and provides them to the controller.
The individual packets marked by the filter are dropped in
Packet Check & Drop component, which also performs invalid
packets checks (invalid checksums, etc.). To correctly deliver
the cleansed traffic back to a target network, the mitigation
device has to support some of the router forwarding capabil-
ities. Thus, TTL Decrement ensures the decrement of TTL,
or Hop Limit for IPv6 respectively, and drops the packet if
it zeros out. Finally, Forwarding Filter implements an LPM
(Longest Prefix Match) IP lookup algorithm to determine the
next hop, and MAC & VLAN Editor replaces the destination
MAC address and optionally the output VLAN tag.

IV. P4 IMPLEMENTATION

We first created a pure hand-optimized VHDL implemen-
tation. Later, we also ported the architecture into a high-level
description in P4 using match-action tables.

The P4 (Programming Protocol-independent Packet Pro-
cessors) [4], [5] is an open-source, high-level and platform-
agnostic language. Its purpose is to provide a way to define
packet processing functionality of network devices, paying
attention to reconfigurability in the field, protocol, and tar-
get platform independence. P4 allows to define five aspects
of packet processing: (1) Header formats, (2) Packet parser,
(3) Table specification, (4) Action specification and (5) Control

TABLE I
ARCHITECTURE HW RESOURCES UTILIZATION RESULTS.

Implementation LUTs REGs BRAM Frequency
Virtex US+ (VHDL) 43 068 62 277 3 780 kb 200.3 MHz
Virtex US+ (P4) 117 906 162 484 2 502 kb 202.9 MHz
Stratix 10 (P4) 105 333 233 456 2 601 kb 189.8 MHz

program. We provide a more detailed description of the map-
ping between our architecture and P4 match-action constructs.
In our case, we are using the compiler toolkit from P414 (the
previous release) to VHDL [6].

In P4, we implemented HFE as the packet parser and
header definitions. It describes the finite state machine used
to traverse packet headers from start to end, extracting field
values as it goes. Also UH structure is a kind of header, and
we defined it as a P4 program metadata item. Then, we easily
described UH generator as a P4 action which fills the UH
metadata with desired parsed headers. Each filter component,
namely Selection Filter, Forwarding Filter and Blocking Filter,
implements a single match-action table that have several user-
defined actions. Selection Filter uses ternary match, Forward-
ing Filter uses prefix match, and Blocking Filter utilizes exact
match. Moreover, Blocking Filter works with stateful counters
to maintain the statistics. Unfortunately, the compiler toolkit
does not currently support mapping counters into external
memory. Thus, the collection of statistics stayed implemented
outside of the P4 pipeline. Finally, Packet Check & Drop, TTL
Decrement and MAC & VLAN Editor map into user actions
using elementary instructions to manipulate packet headers.

V. EXPERIMENTAL RESULTS

To quantify requirements of the architecture in terms of
hardware resources, we synthetized P4 code and also the
pure hand-optimized VHDL implementation for two different
FPGAs, i.e., Xilinx Virtex UltraScale+ (model XCVU7P)
and Intel Stratix 10 (model 1SG280HU). Tab. I shows the
chip occupancy and frequency for both implementations and
platforms. In contrast to the original VHDL implementation,
designs generated from P4 occupy more resources. Due to
a higher level of abstraction, it is 2-3× more in case of
lookup tables and 3-4× more in case of registers. On the other
hand, because of high-throughput optimizations, the original
implementation uses about 50 % more block RAM.

Fig. 4 shows the overall throughput using Virtex Ul-
traScale+ platform. The P4-generated design sustains very
high throughput (almost 90-95 Gbps). However, the optimized
VHDL implementation achieves nearly wire-speed throughput
(99.9 Gbps) for almost all frame lengths. There appears only
small inefficiency for the shortest (64-96 B) frames. Although
the P4 results in more hardware resources and lower through-
put, the difference between P4 and hand-optimized code is
small enough to justify the flexibility of P4.

VI. CONCLUSION

We have designed an FPGA-accelerated device and DDoS
mitigation technique to overcome reflective amplification

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200 1400

T
hr

ou
gh

pu
t [

G
bp

s]

Ethernet frame length [B]

P4-generated implementation
Hand-optimized VHDL implementation

Fig. 4. Virtex US+ implementation throughput.

DDoS attacks. It is currently deployed in our infrastructure. Its
purpose is to filter malicious traffic at high-speeds in the back-
bone network to prevent the attacks from saturating victim’s
links. It blocks individual source IP addresses based on their
volumetric contribution to the attack. However, considering the
high-level P4 implementation, the device offers an interface
to implement other mitigation algorithms. For example, we
develop a heuristic approach to mitigate TCP SYN flood
attacks, and our future work is to further extend mitigation
algorithms to allow for their flexible utilization according to
the current attack surface. In future work, we will also describe
the design of the software controller and our experience with
the device deployment. We will further evaluate it and compare
its performance and accuracy to other existing solutions.

REFERENCES

[1] O. Kupreev, E. Badovskaya, and A. Gutnikov, “DDoS attacks in Q2
2019,” Kaspersky Lab, Tech. Rep., Aug. 2019, Accessed: 2019-08-20.
[Online]. Available: https://securelist.com/ddos-report-q2-2019/91934/

[2] Cisco Systems, Inc., “Cisco Visual Networking In-
dex: Forecast and Trends, 2017–2022 White Paper,”
Tech. Rep., Jan. 2017, Accessed: 2019-08-20. [Online].
Available: https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white-paper-c11-741490.pdf

[3] V. Paxson, “An analysis of using reflectors for distributed
denial-of-service attacks,” SIGCOMM Comput. Commun. Rev.,
vol. 31, no. 3, pp. 38–47, Jul. 2001. [Online]. Available:
http://doi.acm.org/10.1145/505659.505664

[4] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014. [Online].
Available: http://doi.acm.org/10.1145/2656877.2656890

[5] P4 Language Consortium, “P4,” 2019, Accessed: 2019-08-20. [Online].
Available: http://p4.org/

[6] P. Benáček, “Generation of high-speed network device from high-level
description,” Ph.D. dissertation, Czech Technical University in Prague,
Faculty of Information Technology, Thakurova 9, 160 00, Prague 6, 3
2016.

