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Abstract. We address the satisfiability problem for string constraints that com-
bine relational constraints represented by transducers, word equations, and string
length constraints. This problem is undecidable in general. Therefore, we pro-
pose a new decidable fragment of string constraints, called weakly chaining string
constraints, for which we show that the satisfiability problem is decidable. This
fragment pushes the borders of decidability of string constraints by generalis-
ing the existing straight-line as well as the acyclic fragment of the string logic.
We have developed a prototype implementation of our new decision procedure,
and integrated it into in an existing framework that uses CEGAR with under-
approximation of string constraints based on flattening. Our experimental results
show the competitiveness and accuracy of the new framework.

Keywords: String Constraints · Satisfiability modulo theories · Program verifi-
cation

1 Introduction

The recent years have seen many works dedicated to extensions of SMT solvers with
new background theories that can lead to efficient analysis of programs with high-level
data types. A data type that has attracted a lot of attention is string (for instance [10,
9, 17, 37, 38, 33, 18, 16, 4, 2, 20, 7, 14]). Strings are present in almost all programming
and scripting languages. String solvers can be extremely useful in applications such as
verification of string-manipulating programs [4] and analysis of security vulnerabilities
of scripting languages (e.g., [29, 30, 37, 20]). The wide range of the commonly used
primitives for manipulating strings in such languages requires string solvers to handle
an expressive class of string logics. The most important features that a string solver
have to model are concatenation (which is used to express assignments in programs),
transduction (which can be used to model sanitisation and replacement operations), and
string length (which is used to constraint lengths of strings).

It is well known that the satisfiability problem for the full class of string constraints
with concatenation, transduction, and length constraints is undecidable in general [23,

? This work has been supported by the Czech Science Foundation (project No. 19-24397S),
the IT4Innovations Excellence in Science (project No. LQ1602), and the FIT BUT internal
projects FIT-S-17-4014 and FEKT/FIT-J-19-5906.



2 P. A. Abdulla et al.

10] even for a simple formula of the form T (x,x) where T is a rational transducer and
x is a string variable. However, this theoretical barrier did not prevent the development
of numerous efficient solvers such as Z3-str3 [7], Z3-str2 [38], CVC4 [18], S3P [33,
34], and TRAU [2, 3]. These tools implement semi-algorithms to handle a large variety
of string constraints, but do not provide completeness guarantees. Another direction
of research is to find meaningful and expressive subclasses of string logics for which
the satisfiability problem is decidable. Such classes include the acyclic fragment of
Norn [5], the solved form fragment [13], and also the straight-line fragment [20, 14, 9].

In this paper, we propose an approach which is a mixture of the two above research
directions, namely finding decidable fragments and making use of it to develop efficient
semi-algorithms. To that aim, we define the class of chain-free formulas which strictly
subsumes the acyclic fragment of Norn [5] as well as the straight-line fragment of [20,
14, 9], and thus extends the known border of decidability for string constraints. The ex-
tension is of a practical relevance. A straight-line constraint models a path through a
string program in the single static assignment form, but as soon as the program com-
pares two initialised string variables, the string constraint falls out of the fragment. The
acyclic restriction of Norn on the other hand does not include transducer constraints
and does not allow multiple occurrences of a variable in a single string constraint (e.g.
an equation of the form xy = zz). Our chain-free fragment is liberal enough to accom-
modate constraints that share both these forbidden features (including xy = zz).

The following pseudo-PHP code (a variation of a code at [35]) that prompts a user to
change his password is an example of a program that generates a chain-free constraint
that is neither straight-line nor acyclic according to [20, 4].

$old=$database->real_escape_string($oldIn);

$new=$database->real_escape_string($newIn);

$pass=$database->query("SELECT password FROM users WHERE userID=".$user);

if($pass == $old)

if($new != $old)

$query = "UPDATE users SET password=".$new." WHERE userID=".$user;

$database->query($query);

The user inputs the old password oldIn and the new password newIn, both are sani-
tized and assigned to old and new, respectively. The old sanitized password is compared
with the value pass from the database, to authenticate the user, and then also with the
new sanitized password, to ensure that a different password was chosen, and finally
saved in the database. The sanitization is present to prevent SQL injection. To ensure
that the sanitization works, we wish to verify that the SQL query query is safe, that is,
it does not belong to a regular language Bad of dangerous inputs. This safety condition
is expressed by the constraint

new= T (newIn)∧old= T (oldIn)∧pass= old∧new 6= old

∧query= u.new.v.user∧query ∈ Bad

The sanitization on lines 1 and 2 is modeled by the transducer T , and u and v are the
constant strings from line 7. The constraints fall out from the straight-line due to the test
new 6= old. The main idea behind the chain-free fragment is to associate to the set of
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relational constraints a splitting graph where each node corresponds to an occurrence
of a variable in the relational constraints of the formula (as shown in Figure 1). An
edge from an occurrence of x to an occurrence of y means that the source occurrence
of x appears in a relational constraint which has in the opposite side an occurrence of y
different from the target occurrence of y. The chain-free fragment prohibits loops in the
graph, that we call chains, such as those shown in red in Figure 1.

x z y

y x u v

Fig. 1: The split-
ting graph of
x = z · y∧ y = x ·u · v.

Then, we identify the so called weakly chaining frag-
ment which strictly extends the chain-free fragment by al-
lowing benign chains. Benign chains relate relational con-
straints where each left side contains only one variable, the
constraints are all length preserving, and all the nodes of the
cycles appear exclusively on the left or exclusively on the
right sides of the involved relational constraints (as is the
case in Figure 1). Weakly chaining constraints may in prac-
tice arise from the checking that an encoding followed a de-
coding function is indeed the identity, i.e., satisfiability of
constraints of the form Tenc(Tdec(x)) = x, discussed e.g. in [15]. For instance, in situ-
ations similar to the example above, one might like to verify that the sanitization of a
password followed by the application of a function supposed to invert the sanitization
gives the original password.

Our decision procedure for the weakly chaining formulas proceeds in several steps.
The formula is transformed to an equisatisfiable chain-free formula, and then to an
equisatisfiable concatenation free formula in which the relational constraints are of the
form T (x,y) where x and y are two string variables and T is a transducer/relational
constraint. Finally, we provide a decision procedure of a chain and concatenation-free
formulae. The algorithm is based on two techniques. First, we show that the chain-free
conjunction over relational constraints can be turned into a single equivalent transducer
constraint (in a similar manner as in [6]). Second, consistency of the resulting transducer
constraint with the input length constraints is checked via the computation of the Parikh
image of the transducer.

To demonstrate the usefulness of our approach, we have implemented our decision
procedure in SLOTH [14], and then integrated it in the open-source solver TRAU [2,
3]. TRAU is a string solver which is based on a Counter-Example Guided Abstrac-
tion Refinement (CEGAR) framework which contains both an under- and an over-
approximation module. These two modules interact together in order to automatically
make these approximations more precise. We have implemented our decision procedure
inside the over-approximation module which takes as an input a constraint and checks
if it belongs to the weakly chaining fragment. If it is the case, then we use our decision
procedure outlined above. Otherwise, we start by choosing a minimal set of occurrences
of variables x that needs to be replaced by fresh ones such that the resulting constraint
falls in our decidable fragment. We compare our prototype implementation against four
other state-of-the-art string solvers, namely Ostrich [10], Z3-str3 [7], CVC4 [18, 19],
and TRAU [1]. For our comparison with Z3-str3, we use the version that is part of Z3
4.8.4. Our experimental results show the competitiveness as as well as accuracy of the
framework compared to the solver TRAU [2, 3]. Furthermore, the experimental results
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show the competitiveness and generality of our method compared to the existing tech-
niques. In summary, our main contributions are: (1) a new decidable fragment of string
constraints, called chain-free, which strictly generalises the existing straight-line as well
as the acyclic fragment [20, 4] and precisely characterises the decidability limitations of
general relational/transducer constraints combined with concatenation, (2) a relaxation
of the chain-free fragment, called weakly chaining, which allows special chains with
length preserving relational constraints, (3) a decision procedures for checking the sat-
isfiability problem of chain-free as well as weakly chaining string constraints, and (4)
a prototype with experimental results that demonstrate the efficiency and generality of
our technique on benchmarks from the literature as well as on new benchmarks.

2 Preliminaries

Sets and strings. We use N, Z to denote the sets of natural numbers and integers,
respectively. A finite set Σ of letters is an alphabet, a sequence of symbols a1 · · ·an
from Σ is a word or a string over Σ, with its length n denoted by |w|, ε is the empty word
with |ε|= 0, it is a neutral element with respect to string concatenation ◦, and Σ∗ is the
set of all words over Σ including ε.

Logic. Given a predicate formula, an occurrence of a predicate is positive if it is un-
der an even number of negations. A formula is in disjunctive normal form (DNF) if
it is a disjunction of clauses that are themselves conjunctions of (negated) predicates.
We write Ψ[x/t] to denote the formula obtained by substituting in the formula Ψ each
occurrence of the variable x by the term t.

(Multi-tape)-Automata and transducers. A Finite Automaton (FA) over an alphabet
Σ is a tuple A = 〈Q,∆, I,F〉, where Q is a finite set of states, ∆ ⊆ Q× Σε×Q with
Σε = Σ∪ {ε} is a set of transitions, and I ⊆ Q (resp. F ⊆ Q ) are the initial (resp.
accepting) states. A accepts a word w iff there is a sequence q0a1q1a2 · · ·anqn such that
(qi−1,ai,qi) ∈ ∆ for all 1≤ i≤ n, q0 ∈ I, qn ∈ F , and w = a1 ◦ · · · ◦an. The language of
A , denoted L(A), is the set all accepted words.

Given n ∈ N, a n-tape automaton T is an automaton over the alphabet (Σε)
n. It

recognizes the relation R (T ) ⊆ (Σ∗)n that contains vectors of words (w1,w2, . . . ,wn)
for which there is (a(1,1),a(2,1), . . . ,a(n,1)) · · ·(a(1,m),a(2,m), . . . ,a(n,m)) ∈ L(T ) with
wi = a(i,1) ◦ · · · ◦a(i,m) for all i ∈ {1, . . . ,n}. A n-tape automaton T is said to be length-
preserving if its transition relation ∆⊆Q×Σn×Q. A transducer is a 2-tape automaton.

Let us recall some well-know facts about the class of multi-tape automata. First, the
class of n-tape automata is closed under union but not under complementation nor in-
tersection. However, the class of length-preserving multi-tape automata is closed under
intersection. Multi-tape automata are closed under composition. Let T and T ′ be two
multi-tape automata of dimension n and m, respectively, and let i ∈ {1, . . . ,n} and j ∈
{1, . . . ,m} be two indices. Then, it is possible to construct a (n+m−1)-tape automaton
T ∧(i, j) T ′ which accepts the set of words (w1, . . . ,wn,u1, . . . ,u j−1,u j+1, . . . ,um) if and
only if (w1, . . . ,wn)∈R (T ) and (u1, . . . ,u j−1,wi,u j+1, . . . ,um)∈R (T ′). Furthermore,
we can show that multi-tape automata are closed under permutations: Given a permu-
tation σ : {1, . . . ,n} → {1, . . . ,n} and a n-tape automaton T , it is possible to construct
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a n-tape automaton σ(T ) such that R (σ(T )) = {(wσ(1), . . . ,wσ(n)) |(w1,w2, . . . ,wn) ∈
R (T )}. Finally, given a n-tape automaton T and a natural number k ≥ n, we can con-
struct a k-tape automaton s. t. (w1, . . . ,wk)∈R (T ′) if and only if (w1, . . . ,wn)∈R (T ).

3 String Constraints

Ψ ::= ϕ |Ψ∧Ψ |Ψ∨Ψ | ¬Ψ

ϕ ::= A(tstr) | R(tstr, tstr) | tar ≥ tar
R ::= T |=

tstr ::= ε | x | tstr ◦ tstr
tar ::= k | |tstr| | tar + tar

Fig. 2: Syntax of string formulae

The syntax of a string formula Ψ over an al-
phabet Σ and a set of variables X is given
in Figure 2. It is a Boolean combination
of memberships, relational, and arithmetic
constraints over string terms tstr (i.e., con-
catenations of variables in X). Membership
constraints denote membership in the lan-
guage of a finite-state automaton A over
Σ. Relational constraints denote either an
equality of string terms, which we normally write as t = t ′ instead of =(t, t ′), or that
the terms are related by a relation recognised by a transducer T . (Observe that the
equality relations can be also expressed using length preserving transducers.) Finally,
arithmetic terms tar are linear functions over term lengths and integers, and arithmetic
constraints are inequalities of arithmetic terms. String formulae allow using negation
with one restriction, namely, constraints that are not invertible must have only positive
occurrences. General transducers are not invertible, it is not possible to negate them.
Regular membership, length preserving relations (including equality), and length con-
straints are invertible.

To simplify presentation, we do not consider mixed string terms tstr that contain,
besides variables of X, also symbols of Σ. This is without loss of generality because a
mixed term can be encoded as a conjunction of the pure term over X obtained by replac-
ing every occurrence of a letter a ∈ Σ by a fresh variable x and the regular membership
constraints Aa(x) with L(Aa) = {a}. Observe also that membership and equality con-
straints may be expressed using transducers.

Semantics. We describe the semantics of our logic using a mapping η, called interpre-
tation, that assigns to each string variable in X a word in Σ∗. Extended to string terms by
η(ts1 ◦ ts2) = η(ts1)◦η(ts2). Extended to arithmetic terms by η(|ts|) = |η(ts)|, η(k) = k
and η(ti + t ′i) = η(ti)+η(t ′i). Extended to atomic constraints, η returns a truth value:

η(A(tstr)) => iff η(tstr) ∈ L(A)
η(R(tstr, t ′str)) => iff (η(tstr),η(t ′str)) ∈ R (R)

η(ti1 ≤ ti2) => iff η(ti1)≤ η(ti2)

Given two interpretations η1 and η2 over two disjoint sets of string variables X1 and
X2, respectively. We use η1 ∪η2 to denote the interpretation over X1 ∪X2 such that
(η1∪η2)(x) = η1(x) if x ∈ X1 and (η1∪η2)(x) = η2(x) if x ∈ X2.

The truth value of a Boolean combination of formulae under η is defined as usual.
If η(Ψ) => then η is a solution of Ψ, written η |= Ψ. The formula Ψ is satisfiable iff
it has a solution, otherwise it is unsatisfiable.
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A relational constraint is said to be left-sided if and only if it is on the form R(x, tstr)
where x∈X is a string variable and tstr is a string term. Any string formula can be trans-
formed into a formula where all the relational constraints are left-sided by replacing any
relational constraint of the form R(tstr, t ′str) by R(x, t ′str)∧ x = t where x is fresh.

A formula Ψ is said to be concatenation free if and only if for every relational
constraint R(tstr, t ′str), the string terms tstr and t ′str appearing in the parameters of any
relational constraints in Ψ are variables (i.e., tstr, t ′str ∈ X).

4 Chain Free and Weakly Chaining Fragment

It is well known that the satisfiability problem for the class of string constraint for-
mulas is undecidable in general [23, 10]. This problem is undecidable already for a
single transducer constraint of the form T (x,x) (by a simple reduction from the Post-
Correspondence Problem). In the following, we define a subclass called weakly chain-
ing fragment for which we prove that the satisfiability problem is decidable.

Splitting graph. Let Ψ ::=
∧m

j=1 ϕ j be a conjunction of relational string constraints
with ϕ j ::= R j(t2 j−1, t2 j),1≤ j ≤ m where for each i : 1≤ i≤ 2m, ti is a concatenation
of variables x1

i ◦ · · · ◦ xni
i . We define the set of positions of Ψ as P = {(i, j) | 1 ≤ j ≤

2m ∧ 1 ≤ i ≤ n j}. The splitting graph of Ψ is then the graph GΨ = (P,E,var,con)
where the positions in P are its nodes, and the mapping var : P→X labels each position
(i, j) with the variable xi

j appearing at that position. We say that (i,2 j−1) (resp. (i,2 j))
is the ith left (resp. right) positions of the jth constraint, and that R j is the predicate
of these positions. Any pair of a left and a right position of the same constraint are
called opposing. The set of edges E then consists of edges (p, p′) between positions for
which there is an intermediate position p′′ (different from p′) that is opposing to p and
is labeled by the same variable as p′ (var(p′′) = var(p′)). Finally, the labelling con of
edges assigns to (p, p′) the constraint of p, that is, con(p, p′) = R j where p is a position
of the jth constraint. An example of a splitting graph is on Fig. 1.

Chains. A chain3 in the graph is a sequence of the form (p0, p1),(p1, p2), . . . ,(pn, p0)
of edges in E. A chain is benign if (1) all the relational constraints corresponding to
the edges con(p0, p1),con(p1, p2), . . . ,con(pn, p0) are left sided and and all the string
relations involved in these constraints are length preserving, and (2) the sequence of
positions p0, p1, . . . , pn consists of left positions only, or from right positions only. Ob-
serve that if there is a benign chain that uses only right positions then there exists also a
benign chain that uses only left positions. The graph is chain-free if it has no chains, and
it is weakly chaining if all its chains are benign. A formula is chain-free (resp. weakly
chaining) if the splitting graph of every clause in its DNF is chain-free (resp. weakly
chaining). Benign chains are on Fig. 1 shown in red.

In the following sections, we will show decision procedures for the chain-free and
weakly chaining fragments. Particularly, we will show how a weakly chaining formula
can be transformed to a chain-free formula by elimination of benign cycles, how then

3 We use chains instead of cycles in order to avoid confusion between our decidable fragment
and the ones that exist in literatures.



Chain-Free String Constraints 7

concatenation can be eliminated from a chain-free formula, and finally how to decide a
concatenation free-formula.

Undecidability of Chaining Formulae. Before presenting the decision procedures for
weakly chaining formulae, we finish the current section by stating that the chain-free
fragment is indeed the limit of decidability of general transducer constraints, in the
following sense: We say that two conjunctive string formulae have the same relation-
concatenation skeleton if one can be obtained from the other by removing member-
ship and length constraints and replacing a constraint of the form R(t, t ′) by another
constraint of the form R′(t, t ′). A skeleton class is then an equivalence class of string
formulae that have the same relation-concatenation skeleton.

Lemma 1. The satisfiability problem is undecidable for every given skeleton class.

The proof of the above lemma can be done through a reduction from undecidability of
general transducer constraints of the form T (x,x). Together with decidability of chain-
free formulae, discussed in Sections 6 and 7, the lemma implies that the satisfiability
problem for a skeleton class is decidable if and only if its splitting graph is chain-free.
In other words, chain-freeness is the most precise criterion of decidability of string
formulae based on relation-concatenation skeletons (that is, a criterion independent of
the particular values of relational, membership, and length constraints).

5 Weakly Chaining to Chain-Free

In the following, we show that, given a weakly chaining formula, we can transform it
to an equisatisfiable chain-free formula.

Theorem 1. A weakly chaining formula can be transformed to an equisatisfiable chain-
free formula.

The rest of this section is devoted to the proof of Theorem 1 (which also provides
an algorithm how to transform any weakly chaining formula into an equisatisfiable
chain-free formula). In the following, we assume w.l.o.g. that the given weakly-chaining
formula Ψ is conjunctive. The proof is done by induction on the number B of relational
constraints that are labelling the set of benign chains in the splitting graph of Ψ.
Base Case (B=0). Since there is no benign chain in GΨ, Theorem 1 holds.
Induction Case (B> 0). In the following, we will show how to remove one benign chain
(and its set of labelling relational constraints) in the case where the splitting graph of
Ψ does not contain nested chains. If nested chains are present, then the proof follows
the same main ideas, but the reasoning is generalised from one benign chain to strongly
connected components. Let ρ = (p0, p1),(p1, p2), . . . ,(pn, p0) be a benign chain in the
splitting graph GΨ. For every i ∈ {0, . . . ,n}, let Ri(xi, ti) be the length preserving re-
lational constraint to which the position pi belongs. We assume w.l.o.g.4 that all the
positions p0, p1, . . . , pn are left positions. Since ρ is a benign chain, we have that the

4 This is possible since if there is benign chain that uses only right positions then there exists
also a benign chain that uses only left positions.
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variable xi is appearing in the string term t(i+n)mod(n+1) for all i ∈ {0, . . . ,n}. Further-
more, we can use the fact that the relational constraints are length preserving to de-
duce that the variables x0,x1, . . . ,xn have the same length. This implies also that, for
every i ∈ {0,1, . . . ,n}, the string term t ′i that is constructed by removing from ti one
occurrence of x(i+1)mod(n+1) is equivalent to the empty word. Therefore, the relational
constraint Ri(xi, ti) can be rewritten as Ri(xi,x(i+1)mod(n+1)) for all i ∈ {0,1, . . . ,n}.

Let xi1 ,xi2 , . . . ,xik be the maximal subsequence of pairwise distinct variables in
x0,x1, . . . ,xn. Let index be a mapping that associates to each index ` ∈ {0, . . . ,n}
the index j ∈ {1, . . . ,k} such that x` = xi j . We can transform the transducer Ri,
with i ∈ {0, . . . ,n}, to a length preserving k-tape automaton Ai such that a word
(w1,w2, . . . ,wk) is accepted by Ai if and only if (windex(i),windex((i+1)mod(n+1))) is
accepted by Ri. Let then A be the k-tape automaton resulting from the intersec-
tion of A0, . . . ,An. Observe that A is also length-preserving. Furthermore, we have
that (w1,w2, . . . ,wk) is accepted by A if and only if (windex(i),windex((i+1)mod(n+1)))
is accepted by Ri for all i ∈ {0, . . . ,n} (i.e., the automaton A characterizes all pos-
sible solutions of

∧n
i=0 Ri(xi,x(i+1)mod(n+1))). Ideally, we would like to replace the∧n

i=0 Ri(xi,x(i+n)mod(n+1)) by A(xi1 ,xi2 , . . . ,xik), however, our syntax forbids such k-ary
relation. To overcome this problem, we first extend our alphabet Σ by all the letters in
Σk and then we replace

∧n
i=0 Ri(xi,x(i+1)mod(n+1)) by ϕ := A(x)∧

∧k
j=1 π j(xi j ,x) where

x is a fresh variable and for every j ∈ {1, . . . ,k}, π j is the length preserving transducer
that accepts all pairs of the form (w j,(w1,w2, . . . ,wk)). Finally, let Ψ′ be the formula
obtained from Ψ by replacing the subformula

∧n
i=0 Ri(xi, ti) in Ψ by ϕ∧ |t ′i | = 0 (re-

member that the string term t ′i is ti from which we have removed one occurrence of the
variable x(i+1)mod(n+1)). It is easy to see that Ψ′ is satisfiable iff Ψ is also satisfiable.
Furthermore, the number of relational constraints that are labelling the set of benign
chains in the splitting graph of Ψ′ is strictly less than B (since π j can not be used to
label any benign chain in Ψ′).

6 Chain-Free to Concatenation Free

In the following, we show that we can reduce the satisfiability problem for a chain
free formula to the satisfiability problem of a concatenation free formula. To that aim,
we describe an algorithm that eliminates concatenation from relational constraints by
iterating simple splitting steps. When it terminates, it returns a formula over constraints
that are concatenation free. The algorithm can be applied if the string constraints in the
formula allow splitting, and it is guaranteed to terminate if the formula is chain-free.
We will explain these two notions below together with the description of the algorithm.

Splitting. The split of a relational constraint ϕ ::= R(x ◦ t,y ◦ t ′) with t, t ′ 6= ε is the
formula ΦL∨ΦR where

ΦL ::=
∨n

i=1 Ri(x1,y)∧R′i(x2 ◦ t, t ′) [x/x1 ◦ x2]

ΦR ::=
∨m

j=1 R j(x,y1)∧R′j(t,y2 ◦ t ′) [y/y1 ◦ y2]

m,n∈N, x1,x2,y1,y2 are fresh variables, and η |= ϕ if and only if there is an assignment
η′ : {x1,x2,y1,y2}→ Σ∗ such that η∪η′ |= (ΦL∧ x = x1 ◦ x2)∨ (ΦR∧ y = y1 ◦ y2). The
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formula ΦL is called the left split and ΦR is called the right split of ϕ. In case t ′ = ε, the
split is defined in the same way but with ΦL left out, and if t = ε, then ΦR is left out.
If both t and t ′ equal ε, then ϕ is concatenation free and does not have a split. A simple
example is the equation xy = zz with the split (x1 = z∧x2y = z)∨ (x = z1∧y = z2z1z2).
A class of relational constraints C allows splitting if for every constraint in C that is
not concatenation free, it is possible to compute a split that belongs to C . Equalities as
well as transducer constraints allow splitting. A left split of an equality x ◦ t = y ◦ t ′ is
x1 = y∧ x2 ◦ t = t ′. A left split of a transducer constraint T (x◦ t,y◦ t ′) is the formula∨

q∈Q
Tq(x1,y)∧ qT (x2 ◦ t, t ′)

where Q is the set of states of T , and qT and Tq are the T with the original set of initial
and final states, respectively, replaced by {q} (this is the automata splitting technique
of [4] extended to transducers in [20]). The right splits are analogous.

Splitting algorithm. A splitting algorithm for eliminating concatenation iterates split-
ting steps on a formula in DNF. A splitting step can be applied to one of the clauses if
it can be written in the form ϒ ::= ϕ∧Ψ where ϕ ::= R(x◦ t,y◦ t ′). It then replaces the
clause by a DNF of the disjunction

(ΦL∧Ψ[x/x1 ◦ x2]∧|x|= |x1|+ |x2|)∨ (ΦR∧Ψ[y/y1 ◦ y2]∧|y|= |y1|+ |y2|)

where ΦL and ΦR are the left and the right split, respectively, of ϕ. The left or the right
disjunct is omitted if t ′ = ε or t = ε, respectively. The splitting step is not applied when
both t and t ′ equal ε, i.e. ϕ is concatenation free. In order to ensure termination, the
algorithm applies splitting steps under the following regimen consisting of two phases.

In Phase 1, the algorithm maintains each clause ϒ of a DNF of the string formula
annotated with a reminder, a sub-graph Hϒ of its splitting graph Gϒ. The reminders
restrict the choice of splitting steps so that a splitting step can be applied to a clause
ϒ = ϕ∧Ψ only if ϕ is a root constraint in Hϒ, meaning that all positions at one of
the sides of ϕ are root nodes of Hϒ. The reminder graphs are assigned to clauses as
follows. The algorithm is initialised with Hϒ ::= Gϒ for each clause ϒ. After taking a
splitting step, the reminder graph of each new clause ϒ′ is a sub-graph Hϒ′ of its splitting
graph Gϒ′ . Particularly, Hϒ′ contains only those constraints of ϒ′ (their positions that is)
that are non-concatenation-free successors of the constraints of ϒ that appear in Hϒ.
The newly created concatenation free constraints do not propagate to Hϒ′ . Here, by
saying that a constraint ϕ′ of ϒ′ is a successor of a constraint ϕ of ϒ means that either
ϕ′=ϕ[x/x1◦x2] or ϕ′=ϕ[y/y1◦y2], or that they are the constraints explicitly mentioned
in the definition of left or right split. Phase 1 terminates when the reminder graphs of
all clauses are empty.

Phase 2 then performs splitting steps in any order until all constraints are concate-
nation free.

Theorem 2. When run on a chain-free formula, the splitting algorithm terminates with
an equisatisfiable chain and concatenation-free formula.

Hereafter, we provide a brief overview of the proof of Theorem 2. The main diffi-
culty with proving termination of splitting is the substitution of variables involved in
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the left and right split. The left split makes a step towards concatenation freeness by re-
moving one concatenation operator ◦ from the clause, since the terms x◦ t and y◦ t ′ are
replaced by x1, y, t ′, and x2 ◦ t. However, the substitution of x by x1 ◦ x2 in the reminder
of the clause introduces as many new concatenations as there are occurrences of x other
than the one explicit in the definition of the left split (and similarly for the right split).
Therefore, to guarantee termination of splitting, we must limit the effect of substitution
by enforcing chain-freeness.

Why chain-freeness is the right property here may be intuitively explained as fol-
lows. The splitting graph of a clause is in fact a map of how chains of substitutions may
increase the number of concatenations in the clause. Consider an edge in the splitting
graph from a position p to a position p′. By definition, there is an intermediate position
p′′ opposite p and carrying the same variable as p′. This means that when splitting de-
creases the number of concatenations on the side of p by one (the label of p may be y
referred to in the left split), the substitution of the label of p′′ (this would be x in the
left split) would cause that the position p′ also labeled by x is replaced by the concate-
nation x1 ◦ x2. Moreover, since the length of the side of p′ is now larger, it is possible
to perform more splitting steps that follow edges starting at the side of p′ and increase
numbers of ◦ at positions reachable from p′ and consequently also further along the
path in the splitting graph starting at (p, p′). Hence the intuitive meaning of the edge is
that decreasing the number of ◦ at the side of p might increase the number of ◦ at the
side of p′. Chain-freeness now guarantees that it can happen only finitely many times
that decreasing the number of ◦ at the side of a position p can through a sequence of
splitting steps lead to increasing this number.

7 Satisfiability of Chain and Concatenation-Free Formula

In this section, we explain a decision procedure of a chain and concatenation-free for-
mula. The algorithm is essentially a combination of two standard techniques. First,
concatenation and chain-free conjunction over relational constraints is a formula in the
”acyclic fragment” of [6] that can be turned into a single equivalent transducer con-
straint (an approach used also in e.g. [14]). Second, consistency of the resulting trans-
ducer with the input length constraints may be checked via computation of the Parikh
image of the transducer.

We will now describe the two steps in a more detail. For simplicity, we will assume
only transducer and length constraints. This is without loss of generality because the
other types of constraints can be encoded to transducers.

Transducer constraints. A conjunction of transducer constraints may be decided
through computing an equisatisfiable multi-tape transducer constraint and checking
emptiness of its language. The transducer constraint is computed by synchronizing pairs
of constraints in the conjunction. That is, synchronization of two transducer constraints
T1(x1, . . . ,xn) and T2(y1, . . . ,ym) is possible if they share at most one variable (essen-
tially the standard automata product construction where the two transducers synchro-
nise on the common variable). The result of their synchronization is then a constraint
T1∧(i, j) T2(x1, . . . ,xn,y1 . . .y j−1,y j+1, . . . ,ym) where y j is the common variable equal to
xi for some 1≤ i≤ n or a constraint T1∧T2(x1, . . . ,xn,y1, . . . ,ym) if there is no common
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variable. The T1∧T2 is a lose version of ∧(i, j) that does not synchronise the two transi-
tion relations (see e.g. [14, 20] for details on implementation of a similar construction).
Since the original constraint is chain and concatenation-free, two constraints may share
at most one variable. This property is an invariant under synchronization steps, hence
they may be preformed in any order until only single constraint remains. Termination
of this procedure is immediate because every step decreases the number of constraints.

Length constraints. A formula of the form Ψr ∧Ψl where Ψr is a conjunction
of relational constraints and Ψl is a conjunction of length constraints may be decided
through replacing Ψr by a Presburger formula Ψ′r over length constraints that captures
the length constraints implied by Ψr. That is, an assignment ν : {|x| | x ∈ X} → N is a
solution of Ψ′r if and only if there is a solution η of Ψr such that |η(x)|= ν(|x|) for all
x∈X. The conjunction Ψ′r∧Ψl is then an existential Presburger formula equisatisfiable
to the original conjunction, solvable by an of-the-shelf SMT solver.

Construction of Ψ′r is based on computation of the Parikh image of the synchro-
nised constraint T (x1, . . . ,xn) equivalent to Ψr. Since T is a standard finite automaton
over the alphabet of n-tuples Σn

ε , its Parikh image can be computed in the form of a
semi-linear set represented as an existential Presburger formula ΨParikh by a standard
automata construction (see e.g. [32]). The formula captures the relationship between
the numbers of occurrences of letters of Σn

ε in words of L(T ). Particularly, the numbers
of letter occurrences are represented by the Parikh variables P = {#α | α ∈ Σn

ε} and it
holds that The formulaν |= ΨParikh iff there is a word w∈ L(T ) such that for all α∈ Σn

ε ,
α appears ν(#α) times in w.

The formula Ψ′r is then extracted from ΨParikh as follows. Let A= {#ai | a ∈ Σ,1≤
i≤ n} be a set of auxiliary variables expressing how many times the letter a∈ Σ appears
on the ith position of a symbol from Σn

ε in a word from L(T ). Let α[i] denotes the ith
component of the tuple α ∈ Σn

ε . We construct the formula Φ that uses variables A to
describe the relation between values of |x1|, . . . , |xn| and variables of P:

Φ :=
∧n

i=1

(
|xi|= ∑a∈Σ

#ai∧
∧

a∈Σ

(
#ai = ∑α∈Σn

ε s.t. α[i]=a #α

))
We the obtain Ψ′r by eliminating the quantifiers from ∃P∃A : Φ∧ΨParikh.

8 Experimental Results

We have implemented our decision procedure in SLOTH [14] and then used it in the
over-approximation module of the string solver TRAU+, which is an extension of
TRAU[3]. TRAU+ is as an open source string solver and used Z3 [11] as the SMT solver
to handle generated arithmetic constraints. TRAU+ is based on a Counter-Example
Guided Abstraction Refinement (CEGAR) framework which contains both an under-
and an over-approximation module. These two modules interact together in order to
automatically make these approximations more precise. The extension of SLOTH in the
over-approximation module of TRAU+ takes as an input a constraint and checks if it
belongs to the weakly-chaining fragment. If it is the case, then we use our decision pro-
cedure outlined above. Otherwise, we start by choosing a minimal set of occurrences
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Ostrich Z3-str3 CVC4 TRAU TRAU+
sat 0 - - - 5
unsat 0 - - - 14
timeout 6 - - - 7Chain-Free (26)

error/unknown 20 - - - 0
sat 106 - - 26 105
unsat 14 - - 4 14
timeout 0 - - 0 1ReplaceAll (120)

error/unknown 0 - - 90 0
sat 1250 298 1278 1174 1287
unsat 2022 2075 2079 2080 2081
timeout 3 903 9 24 23Replace (3392)

error/unknown 117 116 26 114 1
sat 36 839 4178 4244 4245
unsat 299 1477 1281 1287 1287
timeout 0 3027 105 35 35PyEx-td (5569)

error/unknown 5234 226 5 3 2
sat 35 1211 5617 6680 6681
unsat 466 1870 1346 1357 1357
timeout 0 4760 1449 374 374PyEx-z3 (8414)

error/unknown 7913 573 2 3 2
sat 38 2840 9817 8966 8967
unsat 141 1974 1202 1192 1193
timeout 0 5988 416 1277 1276PyEx-zz (11438)

error/unknown 11259 636 3 3 2
solved 4407 12730 26798 27010 27236Total (28959) unsolved 24552 16229 2161 1949 1723

Table 1: Results of running solvers over Chain-Free, two sets of the SLOG, and four
sets of PyEx suite.

of variables x that needs to be replaced by fresh ones such that the resulting constraint
falls in our decidable fragment.

We compare TRAU+ performance against the performance of four other state-of-
the-art string solvers, namely Ostrich [10], Z3-str3 [7], CVC4 1.6 [18, 19], and TRAU
[1]. For our comparison with Z3-str3, we use the version that is part of Z3 4.8.4. The
goal of our experiments is twofold:

– TRAU+ handles transducer constraints in an efficient manner TRAU+ can handle
more cases than TRAUsince the new over-approximation of TRAU+ supports more
and new transducer constraints that the one of TRAU.

– TRAU+ performs either better or as well as existing tools on transducer-less bench-
marks.

We carry experiments on suites that draw from the real world applications with
diverse characteristics. The first suite is our new suite Chain-Free. Chain-Free is ob-
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tained from variations of various PHP code, including the introductory example. The
second suite is SLOG [36] that is derived from the security analysis of real web ap-
plications. The suite was generated by Ostrich group. The last suite is PyEx [27] that
is derived from PyEx - a symbolic executor designed to assist Python developers to
achieve high coverage testing. The suite was generated by CVC4 group on 4 popular
Python packages: httplib2, pip, pymongo, and requests. The summary of experi-
menting Chain-Free, SLOG, and PyEx is given in Table 1. All experiments were per-
formed on an Intel Core i7 2.7Ghz with 16 GB of RAM. The time limit is 30s for each
test which is widely used in the evaluation of other string solvers. Additionally, we use
2700s for Chain-Free suite - much larger than usual as its constraints are difficult. Rows
with heading “sat”(“unsat”) indicate the number of times the solver returned satisfiable
(unsatisfiable). Rows with heading “timeout” indicate the number of times the solver
exceeded the time limit. Rows with heading “error/unknown” indicate the number of
times the solver either crashed or returned unknown.

Chain-Free suite consists of 26 challenging chain-free tests, 6 of them being also
straight-line. The tests contain Concatenation, ReplaceAll, and general transducers
constraints encoding various JavaScript and PHP functions such as htmlescape, es-
capeString. Since Z3-str3, CVC4, and TRAU do not support the language of general
transducers, we skip performing experiments on those tools in the suite. Ostrich returns
6 times “timeout” for straight-line tests, and times 20 “unknown” for the rest. TRAU+
handles well most cases, and gets “timeout” for only 7 tests.

SLOG suite consists of 3512 tests which contain transducer constraints such as Re-
place and ReplaceAll. Since Z3-str3 and CVC4 do not support the ReplaceAll function,
we skip doing experiments on those tools in the ReplaceAll set. In both sets, the re-
sult shows that TRAU+ clearly improved TRAU. In particular, TRAU+ can handle most
cases where TRAU returns either “unknown” and “timeout”. TRAU+ has also better
performance than other solvers.

PyEx suite consists of 25421 tests which contain diverse string constraints such
as IndexOf, CharAt, SubString, Concatenation. TRAU and CVC4 have similar perfor-
mance on the suite. While TRAU is better on PyEx-dt and PyEx-z3 sets (3 less error/un-
known results, roughly 1000 less timeouts), CVC4 is better on PyEx-zz set (about 800
less timeouts). CVC4 and TRAU clearly have an edge over Z3-str3 in all aspects. Com-
paring with Ostrich on this benchmark is problematic because it mostly fails due to
unsupported syntactic features. TRAU+ is better than TRAU on all three benchmark
sets. This shows that our proposed procedure is efficient in solving not only transducer
examples, but also in transducer-less examples.

To summarise our experimental results, we can see that:

– TRAU+ handles more transducer examples in an efficient manner. This is illus-
trated by the Chain-Free and Slog suites. The experiment results on these bench-
marks show that TRAU+ outperforms TRAU. Many tests on which TRAU returns
“unknown” are now successfully handled by TRAU+ .

– TRAU+ performs as well as existing tools on transducer-less benchmarks and in
fact sometimes TRAU+ outperforms them. This is illustrated by the PyEx suite.
In fact, this benchmark is handled very well by TRAU, but nevertheless, as evi-
dent from the table, our tool is doing better than TRAU. In fact, As TRAU+ out-
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performs TRAU in some examples in the PyEx suite. In those examples, TRAU
returned “unknown’ while TRAU+ returned “unsat”. This means that the new over-
approximation not only improves TRAU in transducer benchmarks, but it also im-
proves TRAU in transducer-less examples. Furthermore, observe that the PyEx suite
has only around 4000 “unsat” cases out of 25k cases.

9 Related Work

Already in 1946, Quine [26] showed that the first order theory of string equations is
undecidable. An important line of work has been to identify subclasses for which de-
cidability can be achieved. The pioneering work by Makanin [21] proposed a decision
procedure for quantifier-free word equations, i.e., Boolean combinations of equalities
and disequalities, where the variables may denote words of arbitrary lengths. The decid-
ability and complexity of different subclasses have been considered by several works,
e.g. [24, 25, 22, 28, 31, 13, 12]. Generalizations of the work of Makanin by adding new
types of constraints have been difficult to achieve. For instance, the satisfiability of word
equations combined with length constraints of the form |x| = |y| is open [8]. Recently,
regular and especially relational transducers constraints were identified as a strongly
desirable feature of string languages especially in the context software analysis with an
emphasis on security. Adding these to the mix leads immediately to undecidability [23]
and hence numerous decidable fragments were proposed [4, 6, 20, 9, 10]. From these,
the straight line fragment of [20] is the most general decidable combination of con-
catenation and transducers. It is however incomparable to the acyclic fragment of [4]
(which does not have transducers but could be extended with them in a straightforward
manner). Some works add also other syntactic features, such as [9, 10], but the limit
of decidable combinations of the core string features—transducers/regular constraints,
length constraints, and concatenation stays at [20] and [4]. The weakly chaining decid-
able fragment present in this paper significantly generalises both these fragments in a
practically relevant direction.

The strong practical motivation in string solving led to a rise of a number of
SMT solvers that do not always provide completeness guarantees but concentrate on
solving practical problem instances, through applying a variety of calculi and algo-
rithms. A number of tools handle string constraints by means of length-based under-
approximation and translation to bit-vectors [17, 29, 30], assuming a fixed upper bound
on the length of the possible solutions. Our method on the other hand allows to analyse
constraints without a length limit and with completeness guarantees. More recently,
also DPLL(T)-based string solvers lift the restriction of strings of bounded length;
this generation of solvers includes Z3-str3 [7], Z3-str2 [38], CVC4 [18], S3P [33, 34],
Norn [5], Trau [3], Sloth [14], and Ostrich [10]. DPLL(T)-based solvers handle a variety
of string constraints, including word equations, regular expression membership, length
constraints, and (more rarely) regular/rational relations; the solvers are not complete for
the full combination of those constraints though, and often only decide a (more or less
well-defined) fragment of the individual constraints. Equality constraints are normally
handled by means of splitting into simpler sub-cases, in combination with powerful
techniques for Boolean reasoning to curb the resulting exponential search space. Our
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implementation is combining strong completeness guarantees of [14] extended to han-
dle the fragment proposed in this paper with an efficient approximation techniques of
[3] and its performance on existing benchmarks compares favourably with the most
efficient of the above tools.

A further direction is automata-based solvers for analyzing string-manipulated
programs. Stranger [37] soundly over-approximates string constraints using regular
languages, and outperforms DPLL(T)-based solvers when checking single execution
traces, according to some evaluations [16]. It has recently also been observed [36, 14]
that automata-based algorithms can be combined with model checking algorithms, in
particular IC3/PDR, for more efficient checking of the emptiness for automata. How-
ever, many kinds of constraints, including length constraints and word equations, cannot
be handled by automata-based solvers in a complete manner.
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