
Solving String Constraints with Approximate
Parikh Image ???

Petr Janků and Lenka Turoňová

Faculty of Information Technology, Brno University of Technology
{ijanku,ituronova}@fit.vutbr.cz

Abstract. In this paper, we propose a refined version of the Parikh
image abstraction of finite automata to resolve string length constraints.
We integrate this abstraction into the string solver SLOTH, where on top
of handling length constraints, our abstraction is also used to speed-up
solving other types of constraints. The experimental results show that
our extension of SLOTH has good results on simple benchmarks as well
as on complex benchmarks that are real-word combinations of transducer
and concatenation constraints.

1 Introduction

Strings are a fundamental data type in many programming languages, especially
owing to the rapidly growing popularity of scripting languages (e.g. JavaScript,
Python, PHP, and Ruby) wherein programmers tend to make heavy use of string
variables. String manipulations could easily lead to unexpected programming
errors, e.g., cross-site scripting (a.k.a. XSS), which are ranked among the top
three classes of web application security vulnerabilities by OWASP [11]. Some
renowned companies like Google, Facebook, Adobe and Mozilla pay to whoever
(hackers) finds a web application vulnerability such as cross-site scripting and
SQL injection in their web applications 1, e.g., Google pays up to $10,000.

In recent years, there have been significant efforts on developing solvers for
string constraints. Many rule-based solvers (such as Z3str2 [15], CVC4 [8], S3P
[12]) are quite fast for the class of simple examples that they can handle. They
are sound but do not guarantee termination. Other tools for dealing with string
constraints (such as Norn [1], Sloth [6], Ostrich [4]) are based on automata.
They use decision procedures which work with fragments of logic over string
constraints that are rich enough to be usable in real-world web applications.
They are sound and complete. Sloth was the first solver that can handle string
? This work has been supported by the Czech Science Foundation (project No. 17-
12465S), the IT4Innovations Excellence in Science (project No. LQ1602), and the
FIT BUT internal projects FIT-S-17-4014 and FEKT/FIT-J-19-5906.

?? We thank you to Lukáš Holík for all the support and encouragement he gave us and
also the time he spent with us during discussions.

1 For more information, see https://www.netsparker.com/blog/web-security/google-
increase-reward-vulnerability-program-xss/.

constraints including transducers, however, unlike Norn and Ostrich it is not
able to handle length constraints yet. Moreover, these tools are not efficient on
simple benchmarks as the rule-based solvers above.

Example 1. The following JavaScript snippet is an adaptation of an example
from [7, 2]:

var x = goog.string.htmlEscape(name);
var y = goog.string.escapeString(x);
nameElem.innerHTML = ’<button onclick= "viewPerson(\’’ + y +

’\’)">’ + x + ’</button >’;

This is a typical example of string manipulation in a web application. The code
attempts to first sanitise the value of name using the sanitization functions
htmlEscape and escapeString from the Closure Library [5]. The author of this
code accidentally swapped the order of the two first lines. Due to this subtle
mistake, the code is vulnerable to XSS, because the variable y may be assigned
an unsafe value. To detect such mistakes, we have to first translate the program
and the safety property to a string constraint, which is satisfiable if and only if y
can be assigned an unsafe value. However, if we would add the length constraints
(e.g. x.length == 2*y.lenght;) to the code, none of Sloth, Ostrich, or
Norn would be able to handle them.

The length constraints are quite common in programs like this. Hence, in this
paper, we present how to extend the method of SLOTH to be able to cope with
them. Our decision procedure is based on the computation of Parikh images for
automata representing constraint functions. Parikh image maps each symbol to
the number of occurrences in the string regardless to its position.

For one nonderministic finite automaton, one can easily computate the Parikh
image by standard automata procedures. However, to compute an exact Parikh
image for a whole formula of contraints is demanding. The existing solution pro-
poses first to compute the product of the automata representing the subformulea
and then compute the Parikh image of their product. Unfortunately, the exact
computation of the Parikh images is computationally far too expensive. Even
more importantly, the resulting semilinear expressions become exponential to
the number of automata.

We therefore propose a decision procedure which computes an over-approxi-
mation of the exact solution that is sufficiently close to the exact solution. We
first compute the membership Parikh images of the automata representing the
string constraints. Then we use concatenation and substitution to compute the
over-approximation of the Parikh image of the whole formula. However, we will
not get the same result as with the previous approach since the Parikh image
forgets the ordering of the symbols in the world. This causes that we could
accept even words that are not accepted by the first approach. But even though
our method does not provide accurate results, it is able to handle the lenght
constraints and solve also real-world cases.

Outline. Our paper is organized as follow. In Section 1, we introduce relevant
notions from logic and automata theory. Section 3 presents an introduction to
a string language. Section 4 explains the notion of Parikh image and operations
on Parikh images. Section 5 presents the main decision procedure. In Section 6,
the experimental results are presented.

2 Preliminaries

Bit vector. Let B = {0, 1} be a set of Boolean values and V a finite set of bit
variables. Bit vectors are defined as functions b : V → B. In this paper, bit
vectors are described by conjunctions of literals over V . We will denote the set
of all bit vectors over V by P(V) and a set of all formulae over V by FV .

Further, let k ≥ 1, and let V 〈k〉 = V ×[k] where [k] denotes the set {1, . . . , k}.
Given a word w = bk1 . . . b

k
m ∈ P(V 〈k〉)∗ over bit vectors, we denote by bkj [i] ×

{i} = bkj ∩ (V × {i}), 1 ≤ j ≤ m where bkj [i] ∈ P(V) the j-th bit vector of
the i-th track. Further, w[i] ∈ P(V)∗ such that w[i] = bk1 [i] . . . b

k
m[i] is the word

which keeps the content of the i-th track of w only. For a bit vector b ∈ P(V),
we denote by {b} the set of variables in the vector.

Automata and transducers. A succinct nondeterministic finite automaton (NFA)
over bit variables V is a tuple A = (V,Q,∆, q0, F) where Q is a finite set of
states, ∆ ⊆ Q × FV × Q is transition relation, q0 ∈ Q is an initial state, and
F ⊆ Q is a finite set of final states. A accepts a word w iff there is a sequence
q0b

k
1q1 . . . b

k
mqm where bki ∈ P(V) for every 1 ≤ i ≤ m such that (qi, ϕi, qi−1) ∈ ∆

for every 1 ≤ i ≤ m where bki |= ϕi, qm ∈ F , and w = bk1 . . . bkm ∈ P(V)∗, m ≥ 0,
where each bki , 1 ≤ i ≤ m, is a bit vector encoding the i-th letter of w. The
language of A is the set L(A) of accepted words.

A k-track succinct finite automaton over V is an automatonR〈k〉 = (V 〈k〉, Q,
∆, I, F), k ≥ 1. The relation R(R〈k〉) ⊆ (P(V)∗)k recognised by R contains a
k-tuple of words (x1, . . . , xk) over P(V) iff there is a word w ∈ L(R) such that
xi = w[i] for each 1 ≤ i ≤ k. A finite transducer (FT) R is a 2-track automaton.

Strings and languages. We assume a finite alphabet Σ. Σ∗ represents a set of
finite words over Σ, where the empty word is denoted by ε. Let x and y be finite
words in Σ∗. The concatenation of x and y is denoted by x◦y. We denote by |x|
the length of a word x ∈ Σ∗. A language is a subset of Σ∗. The concatenation of
languages L, L′ is the language L◦L′ = x ◦ x′|x ∈ L ∧ x′ ∈ L′, and the iteration
L∗ of L is the smallest language closed under ◦ and containing L and ε.

3 String Language

Let X be a set of variables and x, y be string variables ranging over Σ∗. A string
formula over string terms {tstr}∗ is a Boolean combination of word equations x =

tstr whose right-hand side tstr might contain the concatenation operator, regular
constraints P , rational constraints R and arithmetic inequalities:

ϕ ::= x = tstr | P(x) | R(x, y) | tar ≥ tar | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ
tstr ::= x | ε | tstr ◦ tstr
tar ::= k | |tstr | | tar + tar

In the grammar, x ranges over string variables, R ⊆ (Σ∗)2 is assumed to be
a binary rational relation on words of Σ∗, and P ⊆ Σ∗ is a regular language. We
will represent regular languages by succinct automata and tranducers denoted
as R and A, respectively. The arithmetic terms tar are linear functions over
term lengths and integers, and arithmetic constraints are inequalities of arith-
metic terms. The set of word variables appearing in a term is defined as follows:
Vars(ε) = ∅, Vars(c) = ∅, Vars(u) = {u} and Vars(t1 ◦ t2) = Vars(t1)∪Vars(t2).

To simplify the representation, we do not consider mixed string terms tstr
that contain, besides variables of X, also symbols of Σ. This is without loss of
generality since a mixed term can be encoded as a conjunction of the pure terms
over X obtained by replacing every occurrence of a letter a ∈ Σ by a fresh variable
x, and adding a regular membership constraint Aa(x) with L(Aa) = {a}.

Semantics. A formula ϕ is interpreted over an assignment ι : Xϕ → Σ∗ of
its variables Xϕ to strings over Σ∗. ι is extended to string terms by ι(ts1 ◦
ts2) = ι(ts1) ◦ ι(ts2) and to arithmetic terms by ι(|ts|) = |ι(ts)|, ι(k) = k and
ι(ti+t

′
i) = ι(ti)+ι(t

′
i). We formalize the satisfaction relation for word equations,

regular constraints, rational constraints, and arithmetic inequalities, assuming
the standard meaning of Boolean connectives:

x = tstr iff ι(x) = ι(tstr)
ι(P(x)) = > iff ι(x) ∈ P

ι(R(x, y)) = > iff (ι(x), ι(y)) ∈ R
ι(ti1 ≤ ti2) = > iff ι(ti1) ≤ ι(ti2)

The truth value of Boolean combinations of formulae under ι is defined as usual.
If ι(ϕ) = > then ι is a solution of ϕ, written ι |= ϕ. The formula ϕ is satisfiable
iff it has a solution, otherwise it is unsatisfiable.

The unrestricted string logic is undecidable, e.g., one can easily encode Post
Correspondence Problem (PCP) as the problem of checking satisfiability of the
constraint R(x, x) for a rational transducer R [10]. Therefore, we restrict the
formulae to be in so-called straight-line form. The definition of straight-line frag-
ment as well as a linear-time algorithm for checking whether a formula ϕ falls
into the straight-line fragment is defined in [9].

4 Parikh Image

The Parikh image of a string abstracts from the ordering in the string. Partic-
ularly, the Parikh image of a string x maps each symbol a to the number of its

occurrences in the string x (regardless to their position). Parikh image of a given
language is then the set of Parikh images of the words of the language.

In this chapter, we present a construction of the Parikh image of a given
NFA A = (V,Q,∆, q0, F). The algorithm is modified version of the algorithm
from [13] which computes the Parikh image for a given context-free grammar G.
This algorithm contains a small mistake that has been fixed by Barner in a 2006
Master’s thesis [3]. Since for every regular grammar there exists a corresponding
NFA, we can easily customize the algorithm for NFA such that one can compute
an existential Presburger formula φA which characterizes the Parikh image of
the language L(A) recognized by A in the following way.

Let us define a variable #ϕ for each ϕ ∈ FV , yt for each t ∈ ∆, and uq for
each q ∈ Q, respectively. The free variables of φA are variables #ϕ and we write
Free(φA) for the set of all free variables in the formula φA. The formula φA is
the conjunction of the following three kinds of formulae:

– uq+
∑
t=(q′,ϕ,q)∈∆ yt−

∑
t=(q,ϕ,q′)∈∆ yt = 0 for each q ∈ Q, where the variable

uq is restricted as follows: uq0 = 1, uqF ∈ {0,−1} for qF ∈ F , and uq = 0 for
all other q ∈ Q \ ({q0} ∪ F).

– yt ≥ 0 for each t ∈ ∆ since the variable yt cannot be assigned a negative
value.

– #ϕ =
∑
t=(q,ϕ,q′)∈∆ yt for each ϕ ∈ F to ensure that the value xϕ are con-

sistent with the yt.
– To express the connectedness of the automaton, we use an additional variable
zq for each q ∈ Q which reflects the distance of q from q0 in a spanning tree
on the subgraph of A induced by those t ∈ ∆ with yt ≥ 0. To this end,
we add for each q ∈ Q a formulae zq = 1 ∧ yt ≥ 0 if q is an initial state,
otherwise (zq = 0 ∧

∧
t∈∆+

q
yt = 0) ∨

∨
t∈∆+

q
(yt ≥ 0 ∧ zq′ ≥ 0 ∧ zq = zq′ + 1)

where ∆+
q = {(q′, ϕ, q) ∈ ∆} is a set of ingoing transitions.

The resulting existential Presburger formula is then ∃zq1 , . . . , zqn , uq1 , . . . , uqn , yt1 ,
. . . , ztm : φA where n is the number of states and m is the number of transitions
of the given automaton. This algorithm can be directly applied to transducers
where the free variables are #ϕ such that ϕ ∈ FV 〈2〉.

4.1 Operations on Parikh Images

In our decision procedure, we will need to use projection of the Parikh image of
transducers and intersection of Parikh images. We have to find a way how to
deal with alphabet predicates of transducers since our version of the intersec-
tion of Parikh images works only with alphabet predicates over a non-indexed
set of bit variables. The intersection of Parikh images is needed since the al-
phabet predicates of one automaton can represent a set of symbols which may
contains common symbols for more than one automaton. These operations can
be implemented in linear space and time.

Projection. Let R = (V 〈2〉, Q, ∆, I, F) be a transducer representing a constraint
R(x, y) and let ϕ ∈ FV 〈2〉 be a formula over {bk} ∈ 2V 〈2〉 where bk ∈ P(V 〈2〉).
We write ϕ[x] to denote a alphabet projection of ϕ where ϕ[x] is the subformula
of ϕ such that only contains bits from bk[i] and i is the position of x in R. Given
the Parikh image φR of R, we denote by φR[x] a projection of φR where the
set of free variables is Free(φR[x]) = {#ϕ[x] | #ϕ ∈ Free(φR)}. Further, we need
to introduce the auxiliary function λ that assigns to each variable #ϕ[x] a set
{#ϕ′ | ϕ′[x] = ϕ[x]}. The resulting formula of projection φR has then the form
φR[x] = ∃#ϕ1

, . . . ,#ϕn
: φR ∧

∧
#ϕ[x]∈Free(φR[x])

(
#ϕ[x] =

∑
#ϕ∈λ(#ϕ[x])

#ϕ

)
where #ϕi ∈ Free(φR) for 1 ≤ i ≤ n.

Intersection. We assume that both Parikh images have alphabet predicates FV
over the same set of bit variables V . Given two Parikh images φ1 and φ2, their
intersection φf = φ1fφ2 can be constructed as follows. First, we compute a set
of fresh variables I = {#ϕ1fϕ2

| #ϕ1
∈ Free(φ1)∧#ϕ2

∈ Free(φ2)∧ ∃b ∈ P(V) :
b |= ϕ1∧ϕ2} representing the number of common symbols for φ1 and φ2. Next, we
define for each Parikh image φi a function τi : Free(φi)→ 2I such that τ1(#ϕ1) =
{#ϕ1fϕ2 ∈ I} and τ2(#ϕ2) = {#ϕ1fϕ2 ∈ I}. Finally, the intersection is define as
φf = φ1∧φ2∧

∧
#ϕ1∈Free(φ1)

(
#ϕ1

=
∑

#ϕ′
1
∈τ1(#ϕ1

) #ϕ′
1
)∧
∧

#ϕ2
∈Free(φ2)

(
#ϕ2

=∑
#ϕ′

2
∈τ2(#ϕ2)

#ϕ′
2

)
.

5 Decision Procedure

Our decision procedure is based on computation of the Parikh images of the
automata representing string constraints. Let ϕ := ϕcstr∧ϕeq∧ϕar be a formula
in straight-line form where ϕcstr is a conjunction of regular constraints (or their
negation) and rational constraints, ϕeq is a conjunction of word equations of the
form x = y1◦y2◦· · ·◦yn, and ϕar is a conjunction of arithmetic inequalities. The
result of the decision procedure is an existential Presburger formula φϕ which
represents an over-approximation of the Parikh image of ϕ.

We assume that each variable x ∈ Vars(ϕ) is restricted by an automaton or a
transducer. Note that the function Vars(ϕ) denotes a set of variables appearing
in the formula ϕ. We write T to denote a set of Parikh images. The procedure
is divided into three steps as follows.

– Step 1: First, we compute Parikh images of automata and transducers
representing the constraints from ϕcstr using the algorithm from Sec. 4.
We define a mapping ρcstr : Vars(ϕcstr) → T that maps each string vari-
able x ∈ Vars(ϕcstr) to the over-approximation of its Parikh image. Let
P1(x), . . . , Pn(x) and R1(x, y), . . . , Rm(x, y) be constraints from ϕcstr re-
stricting x. A formula φx representing the Parikh image of x is then com-
puted using the algorithm from Sec. 4.1 as φx = φAx

f φA1
f . . . f φAn

f
φR1

[x] f . . . f φRm
[x] where φAi

, 0 ≤ i ≤ n, is the Parikh image of the
automaton Ai representing Pi(x) and φRj

, 0 ≤ j ≤ m, is the Parikh image
of the transducer Rj representing Rj(x, y).

– Step 2: We define a mapping ρeq : Vars(ϕeq) → T that maps each string
variable x ∈ Vars(ϕeq) to the over-approximation of its Parikh image as
φx = (

∧k
i=1 ρcstr(yi)∧

∧n
j=k+1 ρeq(yj))fρcstr(x). We assume that Free(y1)∩

· · · ∩ Free(yn) = ∅. This can be done by adding double negation to the
alphabet predicates which helps to distinguish free variables of individual
yi. Parikh image does not preserve the ordering of the symbols in the string,
therefore, we can reorder the right side of the equation y1 ◦ · · · ◦ yk ◦ · · · ◦ yn
such that ∀1 ≤ i ≤ k : yi ∈ ϕcstr and ∀k ≤ j ≤ n : yj ∈ ϕeq. Moreover, the
reordering can be done in such a way that each variable on the right side of
the equation is already defined since ϕ falls into the straight-line fragment.

– Step 3: Finally, we build the final formula φϕ using mappings ρcstr and
ρeq. Let Xeq ⊆ Vars(ϕeq) be a set of all variables that are on the left
side of the equations. The resulting formula φϕ is then a conjunction φϕ =
(fx∈Xeqρeq(x))f (fx∈Vars(ϕ)\Xeq

ρcstr(x)).

6 Experiments

We have implemented our decision procedure extending the method of Sloth
[6] as a tool, called PICoSo. Sloth is a decision procedure for the straight-line
fragment and acyclic formulas. It uses succinct alternating finite-state automata
as concise symbolic representation of string constraints. Like Sloth, PICoSo
was implemented in Scala.

Sloth PICoSo
sat (sec) 314 (545) 313 (566)
unsat (sec) 353 (624) 356 (602)
timeout 0 0

Norn
(1027)

error/un 360 358
sat (sec) 922 (5526) 923 (5801)
unsat (sec) 2033 (5950) 2080 (4382)
timeout 437 389

SLOG
(3392)

error/un 0 0
sat (sec) 0 0
unsat (sec) 266 (659) 296 (773)
timeout 4 15

SLOG-
LEN
(394) error/un 124 83

Table 1. Performance of PICoSo in comparison to
Sloth.

To evaluate its perfor-
mance, we compared PI-
CoSo against Sloth. We
performed experiments on
benchmarks with diverse
characteristics.

The first set of bench-
marks is obtained from
Norn group [1] and im-
plements string manipu-
lating functions such as
the Hamming and Leven-
shtein distances. It con-
sists of small test case that
is combinations of con-
catenations, regular con-
straints, and length constraints. The second set SLOG [14] is derived from
the security analysis of real web applications. It contains regular constraints,
concatenations, and transducer constraints such as Replace but no length con-
straints. The last set is obtained from SLOG by selecting 394 examples con-
taining Replace operation. It was extended by RelaceAll operation and since
in practice, it is common to restrict the size of string variables in web applica-

tions, we added length constraints of the form |x|+ |y|Rn, where R ∈ {=, <,>},
n ∈ {4, 8, 12, 16, 20}, and x, y are string variables.

The summary of the experiments is shown in Table 1. All experiments were
executed on a computer with Intel Xeon E5-2630v2 CPU @ 2.60 GHz and 32 GiB
RAM. The time limit was 30 seconds was imposed on each test case. The rows
indicate the number of times the solver returned satisfiable/unsatisfiable (sat/un-
sat), the number of times the solver ran out of 30-second limit (timeout), and
the number of times the solver either crashed or returned unknown (error/un).

The results show that PICoSo outperforms Sloth on all of unsat examples.
Sloth is however slightly better in case of sat examples due to the addition
computation of the over-approximation of the Parikh image. Sloth timed out
on 441 cases while PICoSo run out of time only in 404 cases. This shows that
our proposed procedure is efficient in solving not only length constraints, but
also other types of constraints.

References

1. P. A. Abdulla, M. F. Atig, Y. Chen, L. Holík, A. Rezine, P. Rümmer, and J. Sten-
man. String constraints for verification. In CAV’14, pages 150–166, 2014.

2. P. Barceló, D. Figueira, and L. Libkin. Graph logics with rational relations. vol-
ume 9, 2013.

3. S. Barner. H3 mit gleichheitstheorien. Master’s thesis, Technical University of
Munich, Germany, 2006.

4. T. Chen, M. Hague, A. W. Lin, P. Rümmer, and Z. Wu. Decision procedures
for path feasibility of string-manipulating programs with complex operations. vol-
ume 3, pages 49:1–49:30, 2019.

5. G. co. 2015. Google closure library (referred in nov 2015). https://developers.
google.com/closure/library/, 2015.

6. L. Holík, P. Janků, A. W. Lin, P. Rümmer, and T. Vojnar. String constraints with
concatenation and transducers solved efficiently. PACMPL, 2(POPL), 2018.

7. C. Kern. Securing the tangled web. In ACM 57, pages 38–47, 2014.
8. T. Liang, A. Reynolds, C. Tinelli, C. Barrett, and M. Deters. A DPLL(T) theory

solver for a theory of strings and regular expressions. In CAV’14, 2014.
9. A. W. Lin and P. Barceló. String solving with word equations and transducers:

towards a logic for analysing mutation XSS. In POPL, pages 123–136, 2016.
10. C. Morvan. On rational graphs. In FoSSaCS, pages 252–266, 2000.
11. OWASP. The ten most critical web application security risks. https://www.owasp.

org/images/f/f8/OWASP_Top_10_-_2013.pdf, 2013.
12. M. Trinh, D. Chu, and J. Jaffar. Progressive reasoning over recursively-defined

strings. In CAV’16, pages 218–240, 2016.
13. K. N. Verma, H. Seidl, and T. Schwentick. On the complexity of equational horn

clauses. In CADE’05, pages 337–352, 2005.
14. H. Wang, T. Tsai, C. Lin, F. Yu, and J. R. Jiang. String analysis via automata

manipulation with logic circuit representation. In CAV’16, volume 9779 of LNCS,
pages 241–260. Springer, 2016.

15. Y. Zheng, V. Ganesh, S. Subramanian, O. Tripp, M. Berzish, J. Dolby, and
X. Zhang. Z3str2: an efficient solver for strings, regular expressions, and length
constraints. Formal Methods in System Design, 50(2-3):249–288.

