
Distributed PCFG Password Cracking

Radek Hranický, Lukáš Zobal, Ondřej Ryšavý, Dušan Kolář, and Dávid Mikuš

Faculty of Information Technology, Brno University of Technology, Czech Republic
{ihranicky,izobal,rysavy,kolar}@fit.vutbr.cz, d.mikus@gmail.com

Abstract. In digital forensics, investigators frequently face cryptographic
protection that prevents access to potentially significant evidence. Since
users prefer passwords that are easy to remember, they often unwittingly
follow a series of common password-creation patterns. A probabilistic
context-free grammar is a mathematical model that can describe such
patterns and provide a smart alternative for traditional brute-force and
dictionary password guessing methods. Because more complex tasks re-
quire dividing the workload among multiple nodes, in the paper, we pro-
pose a technique for distributed cracking with probabilistic grammars.
The idea is to distribute partially-generated sentential forms, which re-
duces the amount of data necessary to transfer through the network. By
performing a series of practical experiments, we compare the technique
with a naive solution and show that the proposed method is superior in
many use-cases.

Keywords: Distributed · Password · Cracking · Forensics · Grammar

1 Introduction

With the complexity of today’s algorithms, it is often impossible to crack a hash
of a stronger password in an acceptable time. For instance, verifying a single
password for a document created in MS Office 2013 or newer requires 100,000
iterations of SHA-512 algorithm. Even with the use of the popular hashcat1

tool and a machine with 11 NVIDIA GTX 1080 Ti2 units, brute-forcing an 8-
character alphanumeric password may take over 48 years. Even the most critical
pieces of forensic evidence lose value over such a time.

Over the years, the use of probability and statistics showed the potential
for a rapid improvement of attacks against human-created passwords [12,13,19].
Various leaks of credentials from websites and services provide an essential source
of knowledge about user password creation habits [2, 20], including the use of
existing words [4] or reusing the same credentials between multiple services [3].
Therefore, the ever-present users’ effort to simplify work is also their major
weakness. People across the world unwittingly follow common password-creation
patterns over and over.

1 https://hashcat.net/
2 https://onlinehashcrack.com/tools-benchmark-hashcat-gtx-1080-ti-1070-ti

https://hashcat.net/
https://onlinehashcrack.com/tools-benchmark-hashcat-gtx-1080-ti-1070-ti

2 R. Hranický et al.

Weir et al. showed how probabilistic context-free grammars (PCFG) [19]
could describe such patterns. They proposed a technique for automated cre-
ation of probabilistic grammars from existing password datasets that serve as
training dictionaries. A grammar is a mathematical model that allows represent-
ing the structure of a password as a composition of fragments. Each fragment is
a finite sequence of letters, digits, or special characters. Then, by derivation us-
ing rewriting rules of the grammar, one can not only generate all passwords from
the original dictionary but produce many new ones that still respect password-
creation patterns learned from the dictionary.

The rewriting rules of PCFG have probability values assigned accordingly to
the occurrence of fragments in the training dictionary. The probability of each
possible password equals the product of probabilities of all rewriting rules used
to generate it. Generating password guesses from PCFGs is deterministic and is
performed in an order defined by their probabilities. Therefore, more probable
passwords are generated first, which helps with a precise targeting of an attack.

Since today’s challenges in password cracking often require distributed com-
puting [11], it is necessary to find appropriate mechanisms for PCFG-based
password generators. From the entire process, the most complex part that needs
distribution is the calculation of password hashes. It is always possible to gen-
erate all password guesses on a single node and distribute them to others that
perform the hash calculation. However, as we detected, the generating node
and the interconnecting network may quickly become a bottleneck. Inspired by
Weir’s work with preterminal structures [19] and our previously published par-
allel PCFG cracker [10], we present a distributed solution that only distributes
“partially-generated” passwords, and the computing nodes themselves generate
the final guesses.

1.1 Contribution

We propose a mechanism for distributed password cracking using probabilistic
context-free grammars. The concept uses preterminal structures as basic units
for creating work chunks. In the paper, we demonstrate the idea by designing
a proof-of-concept tool that also natively supports the deployment of the hashcat
tool. Our solution uses adaptive work scheduling to reflect the performance of
available computing nodes. We evaluate the technique in a series of experiments
by cracking different hash algorithms using different PCFGs, network speeds,
and numbers of computing nodes. By comparison with the naive solution, we
illustrate the advantages of our concept.

1.2 Structure of the paper

The paper is structured as follows. Section 2 provides a summary of related
work. Section 3 describes the design of our distributed PCFG Manager. Section
4 shows experimental results of our work. Finally, Section 5 concludes the paper.

Distributed PCFG Password Cracking 3

2 Background and related work

The use of probabilistic methods for computer-based password cracking dates
back to 1980. Martin Hellman introduced a time-memory trade-off method for
cracking DES cipher [6]. This chosen-plaintext attack used a precomputation of
data stored in memory to reduce the time required to find the encryption key.
With a method of distinguished points, Ron Rivest reduced the necessary amount
of lookup operations [16]. Phillipe Oechslin improved the original concept and
invented rainbow tables as a compromise between the brute-force attack and
a simple lookup table. For the cost of space and precomputation, the rainbow
table attack reduces the cracking time of non-salted hashes dramatically [14].

The origin of passwords provides another hint. Whereas a machine-generated
password may be more or less random, human beings follow specific patterns we
can describe mathematically. Markov chains are stochastic models frequently
used in natural language processing [15]. Narayanan et al. showed the profit
of using zero-order and first-order Markovian models based on the phonetical
similarity of passwords to existing words [13]. Hashcat cracking tool utilizes this
concept in the default configuration of a mask brute-force attack. The password
generator uses a Markov model supplied in an external .hcstat file. Moreover, the
authors provide a utility for the creation of new models by automated processing
of character sequences from existing wordlists.

Weir et al. introduced password cracking using probabilistic context-free
grammars (PCFG) [19]. The mathematical model is based on classic context-free
grammars [5] with the only difference that each rewriting rule has a probabil-
ity value assigned. Similarly to Markovian models, a grammar can be created
automatically by training on an existing password dictionary. For generating
passwords guesses from an existing grammar, Weir proposed the Next function
together with a proof of its correctness. The idea profits from the existence of
pre-terminal structures - sentential forms that produce password guesses with
the same probability. By using PCFG on MySpace dataset (split to training
and testing part), Weir et al. were able to crack 28% to 128% more passwords
in comparison with the default ruleset from John the Ripper (JtR) tool3 using
the same number of guesses [19]. The original approach did not distinguish be-
tween lowercase and uppercase letter. Thus, Weir extended the original concept
by adding special rules for capitalization of letter fragments. Due to high space
complexity, the original Next function was later replaced by the Deadbeat dad
algorithm [18].

Through the following years, Weir’s work inspired other researchers as well.
Veras et al. proposed a semantic-based extension of PCFGs that makes the
provision of the actual meaning of words that create passwords [17]. Ma et al.
performed a large-scale evaluation of different probabilistic password models and
proposed the use of normalization and smoothing to improve the success rate
[12]. Houshmand et al. extended Weir’s concept by adding an extra set of rules
that respect the position of keys on keyboards to reflect frequent patterns that

3 https://www.openwall.com/john/

https://www.openwall.com/john/

4 R. Hranický et al.

people use. The extension helped improve the success rate by up to 22%. Besides,
they advised to use Laplace probability smoothing, and created guidelines for
choosing appropriate attack dictionaries [8]. After that, Houshmand et al. also
introduced targeted grammars that utilize information about a user who created
the password [7]. Last but not least, Agarwall et al. published a well-arranged
overview of new technologies in password cracking techniques, including the
state-of-the-art improvements in the area of PCFGs and Markovian models [1].

In our previous research, we focused on the practical aspects of grammar-
based attacks and identified factors that influence the time of making password
guesses. We introduced parallel PCFG cracking and possibilities for additional
filtering of an existing grammar. Especially, removing rules that rewrite the
starting non-terminal to long base structures lead to a massive speedup of pass-
word guessing with nearly no impact on success rate [10]. In 2019, Weir released4

a compiled PCFG password guesser written in pure C to achieve faster cracking
and easier interconnection with existing tools like hashcat and JtR.

Making the password guessing faster, however, resolves only a part of the
problem. Serious cracking tasks often require the use of distributed computing.
But how to efficiently deliver the password guesses to different nodes? Weir et
al. suggested the possible use of preterminal structures directly in a distributed
password cracking trial [19]. To verify the idea, we decided to narrowly analyze
the possibilities for distributed PCFG guessing, create a concrete design of intra-
node communication mechanisms, and experimentally test its usability.

3 Distributed PCFG Manager

For distributed cracking, we assume a network consisting of a server and a set
of clients, as illustrated in Figure 1. The server is responsible for handling client
requests and assigning work. Clients represent the cracking stations equipped
with one or more OpenCL-compatible devices like GPU, hardware coprocessors,
etc. In our proposal, we talk about a client-server architecture since the clients
are actively asking for work, whereas the server is offering a “work assignment
service.”

In PCFG-based attacks, a probabilistic context-free grammar represents the
source of all password guesses, also referred to as candidate passwords. Each
guess represents a string generated by the grammar, also known as a terminal
structure [18,19]. In a distributed environment, we need to deliver the passwords
to the cracking nodes somehow. A naive solution is to generate all password
candidates on the server and distribute them to clients. However, such a method
has high requirements on the network bandwidth, and as we detected in our
previous research, also high memory requirements to the server [10]. Another
drawback of the naive solution is limited scalability. Since all the passwords are
generated on a single node, the server may easily become a bottleneck of the
entire network.

4 https://github.com/lakiw/compiled-pcfg

https://github.com/lakiw/compiled-pcfg

Distributed PCFG Password Cracking 5

Server

Clients

GPUs

Fig. 1: An example of a cracking network

And thus, we propose a new distributed solution that is inspired by our par-
allel one [10]. In the following paragraphs, we describe the design and communi-
cation protocol of our distributed PCFG Manager. To verify the usability of our
concept, we created a proof-of-concept tool that is freely available5 on GitHub.
For implementation, we chose Go6 programming language, because of its speed,
simplicity, and compilation to machine language. The tool can run either as
a server or as a client. The PCFG Manager server should be deployed on the
server node. It is responsible for processing the input grammar and distribution
of work. The PCFG Manager client running on the client nodes generates the
actual password guesses. It either prints the passwords directly to the standard
output or passes them to an existing hash cracker. The behavior depends on the
mode of operation specified by the user. Details are explained in the following
paragraphs.

The general idea is to divide the password generation across the computing
nodes. The server only generates the preterminal structures (PT), while the
terminal structures (T) are produced by the cracking nodes. The work is assigned
progressively in smaller pieces called chunks. Each chunk produced by the server
contains one or more preterminal structures, from which the clients generate the
password guesses. To every created chunk, the server assigns a unique identifier
called the sequence number. The keyspace, i.e., the number of possible passwords,
of each chunk is calculated adaptively to fit the computational capabilities of a
node that will be processing it. Besides that, our design allows direct cracking
with hashcat tool. We chose hashcat as a cracking engine for the same reasons

5 https://github.com/nesfit/pcfg-manager
6 https://golang.org/

https://github.com/nesfit/pcfg-manager
https://golang.org/

6 R. Hranický et al.

as we did for the Fitcrack distributed password cracking system [11], mainly
because of its speed and range of supported hash formats. The proposed tool
supports two different modes of operation:

– Generating mode - the PCFG Manager client generates all possible pass-
word guesses and prints them to the standard output. A user can choose to
save them into a password dictionary for later use or to pass them to another
process on the client-side.

– Cracking mode - With each chunk, the PCFG Manager client runs hashcat
in stdin mode with the specified hashlist and hash algoritm. By using a
pipe, it feeds it with all password guesses generatable from the chunk. Once
hashcat processes all possible guesses, the PCFG Manager client returns a
result of the cracking process, specifying which hashes were cracked within
the chunk and what passwords were found.

3.1 Communication protocol

The proposed solution uses remote procedure calls with the gRPC7 framework.
For describing the structure of transferred data and automated serialization of
payload, we use the Protocol buffers8 technology.

The server listens on a specified port and handles requests from client nodes.
The behavior is similar to the function of Gouroutine M from the parallel version
[10] - it generates PT and tailors workunits for client nodes. Each workunit, called
chunk, contains one or more PTs. As shown in listing 1.1, the server provides
clients an API consisting of four methods. Listing 1.2 shows an overview of
input/output messages that are transferred with the calls of API methods.

1 service PCFG {

2 rpc Connect (Empty) returns (ConnectResponse) {}

3 rpc Disconnect(Empty) returns (Empty);

4 rpc GetNextItems(Empty) returns (Items) {}

5 rpc SendResult(CrackingResponse) returns (←↩
ResultResponse);

6 }

Listing 1.1: Server API

When a client node starts, it connects to the server using the Connect()

method. The server responds with the ConnectResponse message containing
a PCFG in a compact serialized form. If the desire is to perform an attack on
a concrete list of hashes using hashcat, the ConnectResponse message also con-
tains a hashlist (the list of hashes intended to crack) and a number that defines
the hash mode9, i.e., cryptographic algorithms used.

7 https://grpc.io/
8 https://developers.google.com/protocol-buffers
9 https://hashcat.net/wiki/doku.php?id=example_hashes

https://grpc.io/
https://developers.google.com/protocol-buffers
https://hashcat.net/wiki/doku.php?id=example_hashes

Distributed PCFG Password Cracking 7

1 message ConnectResponse {

2 Grammar grammar = 1;

3 repeated string hashList = 2;

4 string hashcatMode = 3;

5 }

6 message Items {

7 repeated TreeItem preTerminals = 1;

8 }

9 message ResultResponse {

10 bool end = 1;

11 }

12 message CrackingResponse {

13 map <string , string > hashes = 1;

14 }

Listing 1.2: Messages transferred between the server and clients

Once connected, the client asks for a new chunk of preterminal structures
using the GetNextItems() method. In response, the server assigns the client
a chunk of 1 to N preterminal structures, represented by the Items message.
After the client generates and processes all possible passwords from the chunk,
using the SendResult() call, it submits the result in the CrackingResponse

message. In cracking mode, the message contains a map (an associative array)
of cracked hashes together with corresponding plaintext passwords. If no hash
is cracked within the chunk or if the PCFG Manager runs in generating mode,
the map is empty. With the ResultResponse message, the server then informs
the client, if the cracking is over or if the client should ask for a new chunk by
calling the GetNextItems() method.

The last message is Disconnect() that clients use to indicate the end of their
participation, so that the server can react adequately. For instance, if a client had
a chunk assigned, but disconnected without calling the SendResult() method,
the server may reassign the chunk to a different client. The flow of messages
between the server and a client is illustrated in Figure 2.

3.2 Server

The server represents the controlling point of the computation network. It main-
tains the following essential data structures:

– Priority queue - the queue is used by the Deadbeat dad algorithm [18] for
generating preterminal structures.

– Buffered channel - the channel represents a memory buffer for storing
already generated PTs from which the server creates chunks of work.

– Client information - for each connected client, the server maintains its
IP address, current performance, the total number of password guesses per-
formed by the client, and information about the last chunk that the client

8 R. Hranický et al.

Fig. 2: The proposed communication protocol

completed: its keyspace and timestamps describing when the processing
started and ended. If the client has a chunk assigned, the server also stores
its sequence number, PTs, and the keyspace of the chunk.

– List of incomplete chunks - the structure is essential for a failure-recovery
mechanism we added to the server. If any client with a chunk assigned dis-
connects before reporting its result, the chunk is added to the list to be
reassigned to a different client.

– List of non-cracked hashes (cracking mode only) - the list contains all
input hashes that have not been cracked yet.

– List of cracked hashes (cracking mode only) - The list contains all hashes
that have already been cracked, together with corresponding passwords.

Once started, the server loads an input grammar in the format used by Weir’s
PCFG Trainer10. Next, it checks the desired mode of operation and other con-
figuration options – the complete description is available via the tool’s help.
In cracking mode, the server loads all input hashes to the list of non-cracked
hashes. In generating mode, all hashlists remain empty. The server then allo-
cates memory for the buffered channel, where the channel size can be specified
by the user.

As soon as all necessary data structures get initialized, the server starts to
generate PTs using the Deadbeat dad algorithm, and with each PT, it calculates

10 https://github.com/lakiw/legacy-pcfg/blob/master/python_pcfg_cracker_

version3/pcfg_trainer.py

https://github.com/lakiw/legacy-pcfg/blob/master/python_pcfg_cracker_version3/pcfg_trainer.py
https://github.com/lakiw/legacy-pcfg/blob/master/python_pcfg_cracker_version3/pcfg_trainer.py

Distributed PCFG Password Cracking 9

and stores its keyspace. Generated PTs are sent to the buffered channel. The
process continues as long as there is free space in the channel, and the gram-
mar allows new PTs to be created. If the buffer infills, generating new PTs is
suspended until the positions in the channel get free again.

When a client connects, the server adds a new record to the client information
structure. In the ConnectResponse message, the client receives the grammar that
should be used for generating passwords guesses. In cracking mode, the server
also sends the hashlist and hash mode identifying the algorithms that should be
used, as illustrated in Figure 2.

Upon receiving the GetNextItems() call, the server pops one or more PTs
from the buffered channel and sends them to the client as a new chunk. Besides,
the server updates the client information structure to denote what chunk is
currently assigned to the client. The number of PTs taken depends on their
keyspace. Inspired by our adaptive scheduling algorithm that we Like in Fitcrack
[9, 11], the system schedules work adaptively to the performance of each client.

In our previous research, we introduced an algorithm for adaptive task schedul-
ing. We integrated the algorithm into our proof-of-concept tool, Fitcrack11 - a
distributed password cracking system, and showed its benefits [9, 11]. There-
fore, we decided to use a similar technique and schedule work adaptively to
each client’s performance. In our distributed PCFG Manager, the performance
of a client (pc) in passwords per second is calculated from the keyspace (klast)
and computing time (∆tlast) of the last assigned chunk. The keyspace of a new
chunk (knew) assigned to the client depends on the client’s performance and the
chunk duration parameter that the user can specify:

pc =
klast
∆tlast

, (1)

knew = pc ∗ chunk duration. (2)

The server removes as many PTs from the channel as needed to make the total
keyspace of the new chunk at least equal to knew. If the client has not solved
any chunk yet, we have no clue to find pc. Therefore, for the very first chunk,
the knew is set to a pre-defined constant.

An exception occurs if a client with a chunk assigned disconnects before
reporting its result. In such a case, the server saves the assignment to the list of
incomplete chunks. If the list is not empty, chunks in it have an absolute priority
over the newly created ones. And thus, upon the following GetNextItems() call
from any client, the server uses the previously stored chunk.

Once a client submits a result via the SendResult() call, the server updates
the information about the last completed chunk inside the client information
structure. For each cracked hash, the server removes it from the list of non-
cracked hashes and adds it to the list of cracked hashes together with the result-
ing password. If all hashes are cracked, the server prints each of them with the
correct password and ends. In generating mode, the server continues as long as

11 https://fitcrack.fit.vutbr.cz

https://fitcrack.fit.vutbr.cz

10 R. Hranický et al.

new password guesses are possible. The same happens in the cracking mode in
case there is a non-cracked hash.

Finally, if a client calls the Disconnect() method, the server removes its
record from the client information structure. As described above, if the client
had a chunk assigned, the server will save it for later use.

3.3 Client

After calling the Connect() method, a client receives the ConnectResponse mes-
sage containing a grammar. In cracking mode, the message also include a hashlist
and a hash mode. Then it calls the GetNextItems() method to obtain a chunk
assigned by the server. Like in our parallel version, the client then subsequently
takes one PT after another and uses the generating goroutines to create pass-
words from them [10]. In the generating mode, all password guesses are printed
to the standard output.

For the cracking mode, it is necessary to have a compiled executable of hash-
cat on the client node. The user can define the path using the program parame-
ters. The PCFG Manager then starts hashcat in the dictionary attack mode with
the hashlist and hash mode parameters based on the information obtained from
the ConnectResponse message. Since no dictionary is specified, hashcat auto-
matically reads passwords from the standard input. And thus, the client creates
a pipe with the end connected to the hashcat’s input. All password guesses are
sent to the pipe. From each password, hashcat calculates a cryptographic hash
and compares it to the hashes in the hashlist. After generating all password
guesses within the chunk, the client closes the pipe, waits for hashcat to end,
and reads its return value. On success, the client loads the cracked hashes.

In the end, the client informs the server using the SendResult() call. If any
hashes are cracked, the client adds them to the CrackingResponse message that
is sent with the call. The architecture of the PCFG Manager client is displayed
in Figure 3.

4 Experimental results

We conduct a number of experiments in order to validate several assumptions.
First, we want to show the proposed solution results in a higher cracking per-
formance and lower network usage. We also show that while the naive terminal
distribution quickly reaches the speed limit by filling the network bandwidth,
our solution scales well across multiple nodes. We discuss the differences among
different grammars and the impact of scrambling the chunks during the compu-
tation. In our experiments, we use up to 16 computing nodes for the cracking
tasks and one server node distributing the chunks. All nodes have the following
configuration:

– CentOS 7.7 operating system,
– NVIDIA GeForce GTX1050 Ti GPU,
– Intel(R) Core(TM) i5-3570K CPU, and 8GB RAM.

Distributed PCFG Password Cracking 11

Fig. 3: The architecture of the client side

The nodes are in a local area network connected with links of 10, 100, and 1000
Mbps bandwidth. During the experiments, we incrementally change the network
speed to observe the changes. Furthermore, we limit the number of generated
passwords to 1, 10, and 100 million.

With this setup, we conduct a number of cracking tasks on different hash
types and grammars. As the hash cracking speed has a significant impact on
results, we chose bcrypt with five iterations, a computationally difficult hash
type, and SHA3-512, an easier, yet modern hash algorithm. Table 1 displays all
chosen grammars with description. The columns cover statistics of the source
dictionary: password count (pw-cnt) and average password length (avg-len), as
well as statistics of the generated grammar: the number of possible passwords
guesses (pw-cnt), the number of base structures (base-cnt), their average length
(avg-base-len) and the maximum length of base structures (max-base-len), in
nonterminals. One can also notice the enormous number of generated passwords,
especially with the myspace grammar. Such a high number is caused only by few
base structures with many nonterminals. We discussed the complexity added by
long base structure in our previous research [10]. If not stated otherwise, the
grammars are generated from password lists found on SkullSecurity wiki page12.
For each combination of described parameters, we run two experiments – first,
with the naive terminal distribution (terminal), and second using our solution
with the preterminal distribution (preterminals).

4.1 Computation Speedup and Scaling

The primary goal is to show that the proposed solution provides faster password
cracking using PCFG. In Figure 4, one can see the average cracking speed of

12 https://wiki.skullsecurity.org/Passwords
13 https://github.com/danielmiessler/SecLists/blob/master/Passwords/

darkweb2017-top10000.txt

https://wiki.skullsecurity.org/Passwords
https://github.com/danielmiessler/SecLists/blob/master/Passwords/darkweb2017-top10000.txt
https://github.com/danielmiessler/SecLists/blob/master/Passwords/darkweb2017-top10000.txt

12 R. Hranický et al.

Dictionary Statistics PCFG Statistics

name pw-cnt avg-len pw-cnt base-cnt avg-base-len max-base-len

myspace 37,145 8.59 6E+1874 1,788 4.50 600

cain 306,707 9.27 3.17E+15 167 2.59 8

john 3,108 6.06 1.32E+09 72 2.14 8

phpbb 184,390 7.54 2.84E+37 3,131 4.11 16

singles 12,235 7.74 6.67E+11 227 3.07 8

dw1713 10,000 7.26 2.92E+15 106 2.40 12

Table 1: Grammars used in the experiments

SHA3-512 hash with myspace grammar, with different task sizes and network
bandwidths.

Apart from the proposed solution being generally faster, we see a significant
difference in speeds with the lower network bandwidths. This is well seen in
the detailed graph in Figure 5 which shows the cracking speed of SHA3-512 in
a 10Mbps network with different task sizes. The impact of the network band-
width limit is expected as the naive terminal distribution requires a significant
amount of data in the form of a dictionary to be transmitted. In the naive solu-
tion, network links become the main bottleneck that prevents achieving higher
cracking performance. In our solution, the preterminal distribution reduces data
transfers dramatically, which removes the obstacle and allow for achieving higher
cracking speeds.

Apart from SHA3-512, we conducted the same set of experiments with SHA1
and MD5 hashes. Results from cracking these hashes are not present in the paper
as they are very similar to SHA3. The reason for this is the cracking performance
of SHA1 and MD5 is very high, similar to the former.

Figure 6 illustrates the network activity using both solutions. The graph
compares the data transfered in time in SHA3-512 cracking task with the lowest
limit on network bandwidth. With the naive terminal distribution one can notice
the transfer speed is limited for the entire experiment with small pauses for
generating the terminals. As a result, the total amount of data transferred is
more than 15 times bigger than with the proposed preterminal distribution.
The maximum speed has not reached the 10 Mbit limit due to auto-negotiation
problems on the local network.

The difference between the two solutions disappears if we crack very com-
plex hash algorithms. Figure 7 shows the results of cracking bcrypt hashes with
myspace grammar. The average cracking speeds are multiple times lower than
with SHA3. In this case, the two solutions do not differ because the transferred
chunks have much lower keyspace since clients can not verify as many hashes as
was possible for SHA3. Most of the experiment time is used by hashcat itself,
cracking the hashes.

In the previous graphs, one could also notice the cracking speed increases with
more hashes. This happens since smaller tasks cannot fully leverage the whole
distributed network as the smallest task took only several seconds to crack.

Distributed PCFG Password Cracking 13

Fig. 4: Average cracking speed with different bandwidths and password count
(SHA3-512 / myspace grammar / 4 nodes)

Fig. 5: Detail of 10Mbps network bandwidth experiment (SHA3-512 / myspace
grammar / 4 nodes)

Fig. 6: Comparison of network activity (SHA3-512 / myspace grammar / 100
million hashes / 10 Mbps network bandwidth / 16 nodes)

14 R. Hranický et al.

Fig. 7: Average cracking speed with different bandwidths and password count
(bcrypt / myspace grammar)

Figure 8 shows that the average cracking speed is influenced by the number
of connected cracking nodes. While for the smallest task, there is almost no
difference with the increasing node count, for the largest task, the speed rises
even between 8 and 16 nodes. As this task only takes several minutes, we expect
larger tasks would visualize this even better. One can also observe the naive
solution using terminal distribution does not scale well. Even though we notice
a slight speedup up to 4 nodes. The speed is capped after that even in the largest
task because of the network bottleneck mentioned above.

Figure 9 shows a similar picture but now with the network bandwidth cap
increased from 100 Mbps to 1000 Mbps. While the described patterns remain
visible, the difference between our and the naive solutions narrows. The reason
for this is with the increased bandwidth, it is possible to send greater chunks
of pre-generated dictionaries, as described above. With the increasing number
of nodes and cracking task length, advantages of the proposed solution become
more clear, as seen at the top of the described graph.

4.2 Grammar Differences

Next, we measure how the choice of a grammar influences the cracking speed. In
Figure 10, we can see the differences are significant. While the cracking speed of
the naive solution is capped by the network bandwidth, results from the proposed
solution show generating passwords using some grammars is slower than with
others – a phenomenon that is connected with the base structures lengths [10].

Generating passwords from the Darkweb2017 (dw17) grammar is also very
memory demanding because of the long base structures at the beginning of the
grammar, and 8 GB RAM is not enough for the largest cracking task using the
naive solution. With the proposed preterminal-based solution, we encounter no
such problem.

Distributed PCFG Password Cracking 15

Fig. 8: Scaling across multiple cracking nodes (SHA3-512 / myspace grammar /
100 Mbps network bandwidth)

Fig. 9: Scaling across multiple cracking nodes (SHA3-512 / myspace grammar /
1000 Mbps network bandwidth)

16 R. Hranický et al.

Fig. 10: Differences in cracking speed among grammars

4.3 Workunit Scrambling

The Deadbeat dad algorithm [18] ran on the server ensures the preterminal
structures are generated in a probability order. The same holds for passwords, if
generated sequentially. However, in a distributed environment, the order of out-
going chunks and incoming results may scramble due to the non-deterministic
behavior of the network. Such a property could be removed by adding an extra
intra-node synchronization to the proposed protocol. However, we do not con-
sider that necessary if the goal is to verify all generated passwords in the shortest
possible time.

Moreover, the scrambling does not affect the result as a whole. The goal of
generating and verifying n most probable passwords is fulfilled. For example, for
an assignment of generating and verifying 1 million most probable passwords
from a PCFG, our solution generates and verifies 1 million most probable pass-
words, despite the incoming results might be received in a different order.

Though the scrambling has no impact on the final results, we study the extent
of chunk scrambling in our setup. We observe the average difference between the
expected and real order of chunks arriving at the server, calling it a scramble
factor Sf . In the following equation, n is the number of chunks, and rk is the
index where k-th chunk was received:

Sf =
1

n

n∑
k=1

|(k − rk)|. (3)

We identified two key features affecting the scramble factor – the number of
the computing nodes in the system and the number of chunks distributed. In
Figure 11, one can see that the scramble factor is increasing with the increasing
number of chunks and computing nodes. This particular graph represents exper-
iments with bcrypt algorithm, myspace grammar, capped at 10 million hashes.
Other experiments resulted in a similar pattern. We conclude that the scrambling
is relatively low in comparison with the number of chunks and nodes.

Distributed PCFG Password Cracking 17

Fig. 11: Average scramble factor, bcrypt myspace grammar capped at 10 milion
hashes

5 Conclusion

We proposed a method and a protocol for distributed password cracking using
probabilistic context-free grammars. The design was experimentally verified us-
ing our proof-of-concept tool with a native hashcat support. We showed that
distributing the preterminal structures instead of the final passwords reduces
the bandwith requirements dramatically, and in many cases, brings a significant
speedup. This fact confirms the hypothesis of Weir et al., who suggested preter-
minal distribution may be helpful in a distributed password cracking trial [19].
Moreover, we showed how different parameters, such as the hash algorithm, net-
work bandwidth, or the choice of concrete grammar, affect the cracking process.

In the future, we would like to redesign the tool to become an envelope over
Weir’s compiled version of the password cracker in order to stay up to date with
the new features that are added over time. The C-based version could figure as
a module for our solution.

Acknowledgements The research presented in this paper is supported by Min-
istry of Education, Youth and Sports of the Czech Republic from the National
Programme of Sustainability (NPU II) project “IT4Innovations excellence in
science” LQ1602.

References

1. Aggarwal, S., Houshmand, S., Weir, M.: New technologies in password crack-
ing techniques. In: Cyber Security: Power and Technology, pp. 179–198. Springer
(2018)

18 R. Hranický et al.

2. Bonneau, J.: The science of guessing: Analyzing an anonymized corpus of 70 million
passwords. In: 2012 IEEE Symposium on Security and Privacy. pp. 538–552 (May
2012). https://doi.org/10.1109/SP.2012.49

3. Das, A., Bonneau, J., Caesar, M., Borisov, N., Wang, X.: The tangled web of
password reuse. In: NDSS. vol. 14, pp. 23–26 (2014)

4. Florencio, D., Herley, C.: A large-scale study of web password habits. In: Proceed-
ings of the 16th International Conference on World Wide Web. pp. 657–666. WWW
’07, ACM, New York, NY, USA (2007). https://doi.org/10.1145/1242572.1242661

5. Ginsburg, S.: The Mathematical Theory of Context Free Languages. McGraw-Hill
Book Company (1966)

6. Hellman, M.: A cryptanalytic time-memory trade-off. IEEE transactions on Infor-
mation Theory 26(4), 401–406 (1980)

7. Houshmand, S., Aggarwal, S.: Using personal information in targeted grammar-
based probabilistic password attacks. In: IFIP International Conference on Digital
Forensics. pp. 285–303. Springer (2017)

8. Houshmand, S., Aggarwal, S., Flood, R.: Next gen pcfg password cracking. IEEE
Trans. Information Forensics and Security 10(8), 1776–1791 (2015)

9. Hranický, R., Holkovič, M., Matoušek, P., Ryšavý, O.: On efficiency of distributed
password recovery. The Journal of Digital Forensics, Security and Law 11(2), 79–96
(2016), http://www.fit.vutbr.cz/research/view_pub.php.cs?id=11276

10. Hranický, R., Lǐstiak, F., Mikuš, D., Ryšavý, O.: On practical aspects of pcfg
password cracking. In: Foley, S.N. (ed.) Data and Applications Security and Privacy
XXXIII. pp. 43–60. Springer International Publishing, Cham (2019)

11. Hranický, R., Zobal, L., Ryšavý, O., Kolář, D.: Distributed password crack-
ing with boinc and hashcat. Digital Investigation 2019(30), 161–172 (2019).
https://doi.org/10.1016/j.diin.2019.08.001, https://www.fit.vut.cz/research/

publication/11961

12. Ma, J., Yang, W., Luo, M., Li, N.: A study of probabilistic password models.
In: 2014 IEEE Symposium on Security and Privacy. pp. 689–704 (May 2014).
https://doi.org/10.1109/SP.2014.50

13. Narayanan, A., Shmatikov, V.: Fast dictionary attacks on passwords using time-
space tradeoff. In: Proceedings of the 12th ACM Conference on Computer and
Communications Security. pp. 364–372. CCS ’05, ACM, New York, NY, USA
(2005). https://doi.org/10.1145/1102120.1102168

14. Oechslin, P.: Making a faster cryptanalytic time-memory trade-off. In: Boneh, D.
(ed.) Advances in Cryptology - CRYPTO 2003. pp. 617–630. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2003)

15. Rabiner, L.R.: A tutorial on hidden markov models and selected applications
in speech recognition. Proceedings of the IEEE 77(2), 257–286 (Feb 1989).
https://doi.org/10.1109/5.18626

16. Robling Denning, D.E.: Cryptography and data security. Addison-Wesley Longman
Publishing Co., Inc. (1982)

17. Veras, R., Collins, C., Thorpe, J.: On semantic patterns of passwords and their
security impact. In: NDSS (2014)

18. Weir, C.M.: Using probabilistic techniques to aid in password cracking attacks.
Ph.D. thesis, Florida State University (2010)

19. Weir, M., Aggarwal, S., d. Medeiros, B., Glodek, B.: Password cracking using
probabilistic context-free grammars. In: 2009 30th IEEE Symposium on Security
and Privacy. pp. 391–405 (May 2009). https://doi.org/10.1109/SP.2009.8

https://doi.org/10.1109/SP.2012.49
https://doi.org/10.1145/1242572.1242661
http://www.fit.vutbr.cz/research/view_pub.php.cs?id=11276
https://doi.org/10.1016/j.diin.2019.08.001
https://www.fit.vut.cz/research/publication/11961
https://www.fit.vut.cz/research/publication/11961
https://doi.org/10.1109/SP.2014.50
https://doi.org/10.1145/1102120.1102168
https://doi.org/10.1109/5.18626
https://doi.org/10.1109/SP.2009.8

Distributed PCFG Password Cracking 19

20. Weir, M., Aggarwal, S., Collins, M., Stern, H.: Testing metrics for password cre-
ation policies by attacking large sets of revealed passwords. In: Proceedings of
the 17th ACM conference on Computer and communications security. pp. 162–175
(2010)

	Distributed PCFG Password Cracking

